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REVIEW

Metabolic landscapes in sarcomas
Richard Miallot1*, Franck Galland1, Virginie Millet1, Jean‑Yves Blay2 and Philippe Naquet1*  

Abstract 

Metabolic rewiring offers novel therapeutic opportunities in cancer. Until recently, there was scant information regard‑
ing soft tissue sarcomas, due to their heterogeneous tissue origin, histological definition and underlying genetic his‑
tory. Novel large‑scale genomic and metabolomics approaches are now helping stratify their physiopathology. In this 
review, we show how various genetic alterations skew activation pathways and orient metabolic rewiring in sarcomas. 
We provide an update on the contribution of newly described mechanisms of metabolic regulation. We underscore 
mechanisms that are relevant to sarcomagenesis or shared with other cancers. We then discuss how diverse meta‑
bolic landscapes condition the tumor microenvironment, anti‑sarcoma immune responses and prognosis. Finally, we 
review current attempts to control sarcoma growth using metabolite‑targeting drugs.
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Background
Sarcomas encompass a wide variety of tumors, with more 
than 170 subtypes, according to the last WHO classifi-
cation. They originate from the neoplastic transforma-
tion of mesenchymal cells in connective tissues [1, 2]: 
87% arise from soft tissue and 13% from bone [3, 4]. Soft 
tissue sarcoma (STS) presents as an indolent or aggres-
sive disease, often only diagnosed at an advanced and/or 
metastatic stages. Current sarcoma classification relies 
on histopathology that may lead to errors in up to a quar-
ter of cases [5]. In terms of prevalence, they represent less 
than 1% of adult cancers, but up to one fifth of pediat-
ric solid malignant cancers [3]. Surgery is the standard 
of care for patients supplemented with chemotherapy 
or radiotherapy [6]. Targeted therapies remain limited 
to tumors with well-defined oncogenic drivers [1, 2]. 
Clinical trials targeting immune checkpoints show low 
response rates, with few responsive histotypes. Finally, 
biomarkers or tertiary lymphoid structures may be be 
predictive tools for 10% of patients [7]. Consequently, 

improving sarcoma typing and treatment requires the 
use of large-scale “omics” tools to identify the oncogenic 
drivers, often resulting from multiple genetic alterations 
in adult STS. These can include translocations, mutations 
or amplifications/deletions that cripple major growth and 
differentiation pathways [8–12].

Given the limits of current treatments, exploiting drugs 
targeting metabolic pathways may pave the way to effec-
tive therapy for these largely incurable diseases.

Aggressive tumors must survive in a reorganized, 
stressful and metabolically competitive microenviron-
ment. This necessary adaptation exploits tumor heteroge-
neity and cell networks in the tumor microenvironment. 
Furthermore, within a given cell, plasticity depends on 
interconnections between various metabolic pathways to 
adapt growth to the available metabolites. A major trait 
often amplified in these tumors is the use of aerobic gly-
colysis, known as the Warburg effect [13], that optimizes 
tumor cell growth through provision of building blocks 
to increase biomass [14]. Since Warburg’s discovery, a 
debate has existed about the persistence of mitochon-
drial activity in glycolytic tumors and its potential to be a 
drug target [15]. Despite the central role of mitochondria 
not only in cell energetics, homeostasis and stress sens-
ing [16] but also reactive oxygen species (ROS) produc-
tion [17] their contribution to oncogenic transformation 
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is still debated. In some STS, germline mutations affect-
ing mitochondrial enzymes lead to the accumulation of 
oncometabolites that induce a pseudo-hypoxic response 
and alter epigenetic marks and differentiation [18]. In 
the tumor microenvironment, glycolytic and oxidizing 
cells may compete or cooperate for an optimal use and 
exchange of energetic metabolites. This network involves 
immune cells that adapt their metabolism to exert their 
functions in this competitive environment [19]. The 
purpose of this review is to link recent findings on STS 
genetics to the alterations of intracellular pathways 
affecting their tumor metabolic landscapes. Although 
not necessarily specific to STS, they may represent novel 
therapeutic opportunities.

Unsupervised omics and single cell‑based analyses 
highlight metabolic signatures in cancer
The development of more integrated technologies 
with increased sensitivity and/or resolution has helped 
to unravel tumor genomic and metabolic complexity 
in situ and to bridge the gap between mouse models and 
patients. Several recent studies documented the power 
of integrated genomic or metabolomic strategies to deci-
pher tumors complexity. An article from The Cancer 
Genome Atlas (TCGA) Research Network [8] combined 
genetic, epigenetic and transcriptomic analyses and pro-
posed a novel classification of STS subtypes with com-
plex genomes. In their analysis of the number and nature 
of copy number variations (CNVs), they identified three 
dominant profiles from leiomyosarcoma (LMS), myxo-
fibrosarcoma (MFS), undifferentiated pleomorphic sar-
coma (UPS) to dedifferentiated liposarcoma (DDLPS) 
displaying the highest level of genomic alterations. In 
addition to these modifications, the nature of epigenet-
ics marks, activating pathways or immune signatures 
add further prognostic value. Another article exploited 
TCGA data to describe the relative contribution of 114 
metabolic pathways to cancer progression [20]. This anal-
ysis showed that master metabolic transcriptional regu-
lators behave as genetic drivers explaining the metabolic 
profiles displayed by various tumors compared to nor-
mal tissues, and help predict responsiveness to metabo-
lism-targeting drugs. For example, alterations of specific 
transcriptional regulators explain the defect in polyam-
ine biosynthesis in prostate cancer. Similarly, distinct 
pathways enriched in breast cancer allow the discrimi-
nation of aggressive tumors from those associated with 
a good prognostic. Based on this finding, metformin, 
a mitochondrial complex 1 inhibitor, has been pro-
posed as a potential adjunct therapy against basal breast 
cancer cells, due to its unique deregulation of the Tri-
carboxylic Acid (TCA) cycle. In STS, this analysis high-
lighted the enrichment in the pentose and glucuronate 

interconversion (PGI) pathway, also amplified in the Yang 
Huang syndrome described in the context of traditional 
Chinese pharmacology [21]. The PGI pathway relies on 
UDP-glucuronosyltransferase (UGT) enzymes that cata-
lyze the binding of d-glucuronic acid to toxic substances 
or endogenous compounds such as bilirubin via glyco-
sidic bonds, contributing to the detoxification of lipo-
philic compounds or glucuronides.

Exploration of the TCGA database allows one to iden-
tify more discrete signatures displayed by major STS sub-
types versus other types of cancers. As shown in Fig. 1, 
all cancer types display abnormalities in cell cycle regu-
lation. Most carcinomas show an enrichment in onco-
genic pathways, glycolytic signatures and alterations 
of energetic, nucleotide, amino acid or macromolecule 
pathways. When considering STS as a whole, RAS, PI3K 
and HIPPO pathways light up, as in [8], coupled to a 
dominant glycolytic/OXPHOS signature. More discrete 
signals confirm the enhancement of the PGI pathway in 
STS, although this trend is not detectable when consid-
ering individually the STS subtypes. Our analysis also 
indicates that distinct signatures preferentially match 
with STS subtypes, with UPS featuring an enrichment in 
PPAR/fatty acids and glycine/serine/threonine pathways, 
whereas LMS display an enhanced OXPHOS signature. 
Similarly, differences in oncogenic pathway usage are 
apparent but it is difficult to relate these pathways to the 
metabolic bias in tumors.

The improvement of chromatographic and mass 
spectrometry (MS) analyses such as Ultra High Per-
formance Liquid Chromatography Q-Exactive MS 
(UHPLC-QE MS) has allowed time to be saved in sam-
ple separation while preserving the detection capacity 
of a large spectrum of metabolites. In osteosarcoma 
(OS), studies combining state-of-the-art transcriptomic 
and metabolomics approaches highlighted the ampli-
fication of nucleotide and amino acid (namely alanine, 
aspartate, glutamate, arginine, proline, methionine) 
pathways, glycolysis and the pentose phosphate shunt 
[26, 27]. Spatially-correlated analysis, mass spectrom-
etry imaging (MALDI-MSI) can further reveal how 
biomolecular ions are distributed on tissue sections, 
linking their molecular identification to their spatial 
distribution. Results from two studies [28, 29] compar-
ing STS subtypes showed that the overexpression of 
acyl-CoA-binding protein and stearyl-CoA desaturase 
(directly involved in the processing of fatty acids) as 
well as MIF1, galectin 1, thioredoxin could help distin-
guish LMS from MFS, and predict their prognostic. To 
identify tumor-associated metabolites in  situ, airflow-
assisted desorption electrospray ionization mass spec-
trometry imaging (AFADESI-MSI) was used on tissues 
from 256 esophageal cancer (ESCA) patients [30]. This 
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analysis unraveled the dysregulation of several meta-
bolic pathways affecting proline, glutamine, histidine, 
uridine, fatty acid and polyamine homeostasis. Among 
others, it identified pyrroline-5-carboxylate reductase 
2 (PYCR2) and ornithine decarboxylase (ODC), rate-
limiting enzymes in proline and polyamine biosyn-
thesis, respectively, as markers of tumor proliferation. 
Table 1 summarizes biomarkers and metabolites linked 
to alterations in the activation of metabolic pathways in 
STS. In the future, these explorations will benefit from 
single-cell strategies evaluating the metabolic status 
of tumor versus surrounding cells. In this context, the 
development of novel flow cytometry-based methods 
to assess metabolic activity such as Met-Flow [31] or 
SCENITH [32] have already proven their potential to 
assay the metabolic status of circulating or tumor-infil-
trating immunocytes.

Here, we will review and update the mechanisms that 
link complex oncogenic stimuli associated with various 
STS to metabolic alterations.

Oncogenic drivers upstream of growth pathways rewire 
metabolism in sarcomas
Physiologically, growth factor receptors (GFR) trigger the 
RAS/MAPK and PI3K/AKT/mTOR pathways and acti-
vate transcriptional regulators such as JUN/FOS/EGR1 
that drive cell division (Fig.  2A). This process is tempo-
rally regulated by the co-engagement of restriction points 
controlled by tumor suppressor genes (TSGs) (Fig.  2B) 
[73]. In cancer cells, prolonged exposure to oncogenic sig-
nals strongly stimulates ERK-dependent EGR1 activation, 
bypassing cell cycle regulation and provoking PI3K activa-
tion that antagonizes p53-dependent tumor suppression 
[74] (Fig. 2B). In p53-mutated cancers, the temporal regu-
lation of MEK/MYC/PI3K is dysfunctional and this allows 
cancer cells exposed to transient growth signals to prolif-
erate, in a context of increased genomic instability. These 
pathways have been shown to be involved in sarcomagen-
esis in both human and rodent models (Fig.  2A), down-
stream of oncogenic GFRs or receptors involved in tissue 
organization and trophicity. We will highlight how various 

LIHC : Liver hepatocellular carcinoma
LUAD : Lung adenocarcinoma
BRCA : Breast invasive carcinoma
STAD : Stomach adenocarcinoma
ESCA : Esophageal carcinoma
OVCA : Ovarian serous
cystadenocarcinoma

LUSC : Lung squamous cell carcinoma
BLCA : Bladder Urothelial Carcinoma
PAAD : Pancrea�c adenocarcinoma
MESO : Mesothelioma
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Fig. 1 Analysis of the TCGA transcriptomic database. Dotplots showing functional enrichment for co‑expression modules found in various cancer 
types and predominant sarcoma subtypes. Htseq raw counts were retrieved from TCGA using GDCquery [22] and VST‑normalized [23]. For each 
dataset, the unsigned co‑expression network was produced using WGCNA with automatic pick for soft‑thresholding powers. Genes in each 
module were queried for functional enrichment against Reactome Pathway Database [24] using clusterProfiler [25]. p values were adjusted using 
Benjamini–Hochberg procedure. For each dataset‑pathway pair, the p value corresponds to the lowest one from all the co‑expression modules. A 
subset of the significant (q‑value < 0.05) pathways was manually annotated into functional groups for display in the figure. Dots highlight significant 
pathway‑dataset pairs
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Table 1 Biomarkers and metabolites associated with STS

Cell processes Biomarkers (genes or 
metabolites)

STS subtype Prognosis significance References

Signaling RAS signaling GLUT, HK, PFK UPS, MFS Poor prognosis [33, 34]

PI3K‑AKT signaling LMS, EWS Poor prognosis [35, 36]

miR‑181b STLMS, ULMS RFS [8]

MDM2 amplification DDLPS Poor prognosis

GFR signaling IGFR1 overexpression STLMS, EWS, MLS, ARMS, 
SS

Poor RFS/DSS [8, 37, 38]

Her4/Erbb4 OS, EWS Poor prognosis [38]

Serum bFGF, VEGF STS Poor prognosis [39]

JUN signaling DDLPS Poor prognosis [8]

HIPPO pathway Nuclear YAP/TAZ, VGLL3 UPS, MFS, MLS, RMS Poor prognosis [40–45]

WNT pathway Nuclear β‑catenin/LEF1; 
MEG3 (lncRNA) down‑
regulation

EWS, OS Poor prognosis [46, 47]

Cell cycle/death Cell cycle CINSARC—67 genes STS Poor prognosis [48]

TP53, RB1, CDKN2A defi‑
ciency

LMS, UPS, MFS Poor prognosis [8, 49–51]

TP53, IGAR, GLUT LMS, UPS, MFS, EWS Poor prognosis

CDCA2, KIF14, IGBP7 SS Metastasis [52]

CDK4 amplification DDLPS Poor prognosis [8]

DNA replication TOP2A MPNST Poor prognosis [8]

RRM1 OS, EWS Good prognosis [8]

ATRX deletion DDLPS Poor prognosis [8]

Transcriptional regulation DNA hypermethylation, DDLPS, STLMS poor RFS/DSS [8]

HMGA2 amplification DDLPS Poor prognosis [8]

Energetic pathways Glycolysis GLUT, ENO1, TPI1, PKG1, 
LDHC, lactate, pyruvate

STS Poor prognosis [20, 53, 54]

FBP2 loss LPS, LMS, FS, UPS Poor DSS [55]

Serum LDH ULMS, EWS Poor prognosis [39, 51]

PKM1/2 isoenzymes OS Poor prognosis [56]

Pentose and glucoronate 
interconversions

UGT STS Prognosis [20]

Citrate cycle/OXPHOS Downregulated metabo‑
lites

OS Poor prognosis [27]

Decreased ATP Synthase 
subunits

OS Poor prognosis [56]

SDH, FH mutations (suc‑
cinate accumulation)

GIST Poor prognosis [57]

Others AMPKa, CHK1, S6, ARID1A, 
RBM15, MSH6, Acetyl‑
Tubulin

STS Combined survival related 
signature

[58]

Nucleotide metabolism STS Poor prognosis [57]

Amino acids Alanine, aspartate, gluta‑
mate

GLS OS, KS, EWS High risk [27, 59, 60, 56]

Arginine, ornithine ASS1 deficiency, ODC OS, MFS, KS DSS, MFS [27, 61, 62]

Proline PYCR2 OS, KS DSS, MFS [27, 63]

Serine, glycine PHGDH, PSAT1, PSPH, 
SHMT2, SLC1A5, 
MTHFD2, MTHFD1L

EWS DSS, MFS [60, 64]

Tryptophane TDO2 (low) EWS DSS, MFS [65]

5 methylthioadenosine OS DSS, MFS [27]
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activation pathways engage these metabolic programs 
to sustain STS cell growth and rely alternatively on vari-
ous carbon sources such as glucose, amino acids or lipids 
(Fig. 3). We also provide an update on current clinical trials 
exploiting metabolic interference in Table 2.

Overactivated MAP and PI3 kinase pathways drive a Warburg 
effect
Both mutations and oncogene-driven overexpression of 
GFRs contribute to STS development. Gain-of-function 
mutations of the GFR KIT or PDGF-Rα drive gastroin-
testinal stromal tumor (GIST) progression [93]. In the 
translocation-associated Ewing’s sarcoma (EWS), myx-
oid liposarcomas (MLS) or alveolar rhabdomyosarcoma 
(ARMS), the fusion proteins EF, FUS-DDIT3 or PAX3-
FOXO1, respectively, enhance IGF1R expression, a major 
driver of RAS/AKT/mTOR activation [37]. Hyperacti-
vation of the RAS pathway is predictive of a high risk of 
disease recurrence and impaired overall survival in 30% 
undifferentiated pleomorphic  sarcoma (UPS), a common 
adult STS [33, 34]. Similarly, the loss of the phosphatase 
PTEN induces growth-factor independent PI3K/AKT acti-
vation that sustains autonomous nutrient uptake in some 
LMS or MPNST [94]. Accordingly, sarcoma incidence 
increases in hereditary neurofibromatosis patients with 
carrying deletions of the RAS negative regulator genes NF1 
or NF2 [49, 95]. To investigate the mechanisms of tumor 
progression in a mouse model, whole-exome sequencing 
was performed on STS induced by either KrasG12D acti-
vation/p53 deletion, 3-methylcholanthrene (MCA) or ion-
izing radiation [96]. Whereas CNVs were very frequent 
in radiation-induced STS, MCA-induced tumors showed 
a high mutational burden, combined with high genomic 
instability in the absence of p53. Candidate oncogenic 
drivers affecting MAPK signaling were identified either 
as mutations of Kras, Nf1 and Hippo effectors (Fat1/4), or 
as amplification of Kras and Myc in p53 deficient mice, or 
Met and Yap1 in radiation-induced STS. Mutations in the 
RAS pathway influence the prognosis of human STS such 
as DDLPS or pediatric embryonic rhabdomyosarcoma 
(ERMS) [97]. In the latter, the overactivation of p38 MAPK 
induces high levels of reactive oxygen species (ROS) that 

increase the mutation rate [97] and may sensitize tumors to 
therapies enhancing oxidative stress [98, 99].

RAS- or PI3K/AKT-driven activation increases the 
expression of glucose importers (GLUT) and of the 
upstream ATP-consuming glycolytic enzymes hexoki-
nase (HK) and phosphofructokinase (PFK), recently 
shown to control the glycolytic flow quantitatively [100]. 
The oncogenic KRAS4A isoform and to lesser extent 
other RAS isoforms were shown to interact with HK1 
on mitochondria (Fig. 3), preventing its allosteric inhibi-
tion by glucose-6-phosphate (G6P), thereby enhancing 
glycolysis [101]. Hypoxia or mutations affecting the RAS 
pathway modulated the activity of PKM2 or PGK1, two 
ATP-generating enzymes in the last steps of glycolysis, 
thus providing them with non-metabolic pro-oncogenic 
functions [102]. Thus, an increase in the proportion of 
PKM2 dimers, lacking pyruvate kinase activity, drives 
PKM2 nuclear translocation where it participates in 
STAT3 phosphorylation and mek5 gene transcription, 
driving cell growth [103]. Another study showed that 
activated ERK phosphorylates PGK1, promoting its asso-
ciation with PIN1 and its translocation into the mito-
chondria. There, it phosphorylates and activates pyruvate 
dehydrogenase kinase 1 (PDK1), an inhibitor of pyruvate 
dehydrogenase (PDH), the checkpoint of pyruvate entry 
in the TCA cycle [104] (Fig.  3). Globally, these RAS-
driven effects reinforce glycolysis over mitochondrial 
respiration and favor glucose- and glutamine-dependent 
anabolism as shown in a pancreatic ductal adenocarci-
noma (PDAC) model [105, 106]. Several clinical trials are 
currently based on drugs inhibiting PI3K, AKT, mTOR 
and ERK signaling in STS (Fig. 4 and Table 2).

An altered HIPPO pathway induces aerobic glycolysis in STS
Several sarcoma histiotypes re-express genes involved in 
developmental pathways [107–110], such as HIPPO that 
controls organ size. Its engagement in intercellular adhe-
sion complexes activates the MST and LATS kinases that 
phosphorylate the transcriptional factors YAP1 and TAZ, 
promoting their degradation. In contrast, upon nuclear 
translocation, YAP/TAZ cooperate with mitogenic effec-
tors and boost proliferation (Fig.  2A). HIPPO interferes 
with the RAS and PI3K pathways that control cell death 

Table 1 (continued)

Cell processes Biomarkers (genes or 
metabolites)

STS subtype Prognosis significance References

Redox, vitamins Pantothenate metabolism VNN1 (low) FS Poor prognosis [66]

Redox metabolism TXR, MIF1, GAL1, AcCoaBP LMS (high), MFS (low) Poor prognosis [67]

Hypoxia HIF1α, hypoxia gene 
signatures

EWS, OS, GIST, KS Poor prognosis [68–72]
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induction [111], acting as a tumor suppressor pathway 
[112]. Through cross-inhibition, MST and AKT differ-
entially regulate the expression level of pro-apoptotic 
effectors (NOXA, FASL, BIM, TRAIL). In addition, ERK 
induces the expression of anti-apoptotic effectors (BCL2, 
BCL-XL, IAP, MCL1) partly via YAP/TAZ activation. 
Furthermore, in a PDAC model, YAP1 amplification can 
bypass the need for oncogenic KRAS activation [113]. 
The amount of translocated YAP/TAZ determines their 
co-activating potential for TEAD transcriptions factors 
and thereby the balance of proliferation versus cell death 
[40].

Loss of MST/LATS or YAP overexpression is pro-
tumoral in mice [114, 115], and this pathway is often 
affected in MCA- or radiation-induced STS [96] and UPS 
[8]. In transgenic models, altering HIPPO effectors alone 
or in combination with other deficits augmented STS 
frequency [41]. An increased YAP/TAZ nuclear staining 
is predictive of poor survival in UPS, DDLPS and ERMS 
[42–45, 116]. Two studies investigated how fusion gene 
products mediate sarcomagenesis through alteration of 
the HIPPO pathway in mice. One study explored MLS 
that account for 5–10% STS, among which 90% tumors 
depend on the product of the FUS:DDIT3 translocation 
[44]. The authors performed a large-scale RNA inter-
ference screen and identified YAP1 as a non-redundant 
oncogenic driver. In MLS cell lines, FUS:DDIT3 led to a 
two to threefold increase in expression and co-transcrip-
tional activity of YAP1. Co-immunoprecipitation and 
immunofluorescence studies revealed a physical interac-
tion of YAP1 with FUS:DDIT3 in the nucleus. Pharmaco-
logical inhibition of YAP1 activity inhibited the growth of 
MLS xenografts. The other study, based on a new trans-
genic model, showed that doxycycline (DOX)-induced 
expression of YAP1 in the myogenic MYOD1 cell lineage 
provoked the development of ERMS through the trans-
formation of activated satellite cells [45]. Retrieval of 
DOX released a YAP1-dependent differentiation block 
and reduced tumor formation. Transcriptional profiling 
of the tumors revealed that YAP1 induces pro-oncogenic 
effector genes and represses terminal differentiation of 
myoblasts. In line with these observations, an independ-
ent study found no evidence that mutant RAS isoforms 
were responsible for YAP overexpression in myoblasts 
[116]. In ARMS, the translocation product PAX3-FOXO1 
suppresses HIPPO signaling through overexpression of 
RASSF4, which inhibits the MST1 kinase. Similarly, this 

effect is linked to PAX3-FOXO1 co-localization with 
YAP1 in the nuclei of cancer cells. This chimeric tran-
scription factor cooperates with YAP1/TEAD to induce 
downstream effectors that trigger IGFs and NF-κB acti-
vation, and repress senescence and apoptosis in mes-
enchymal cells [40, 44]. Therefore, mutations of HIPPO 
effectors can be oncogenic in STS.

The HIPPO pathway restricts tissue growth and is con-
nected to nutrient cues [117, 118]. Upon glucose star-
vation, AMPK- and LATS-kinases phosphorylate YAP 
resulting in its degradation [119]. Furthermore, Wang 
et  al. showed that the phosphorylation level of YAP1 at 
position S61 is regulated by AMPK, itself recruited to 
YAP protein complexes in the cytosol of glucose-deprived 
cells. Addition of glucose was associated with a decrease 
in YAP phosphorylation and its nuclear translocation, 
where it interacted with TEAD transcriptional regulators 
to induce glycolytic genes. This glucose-sensing pathway 
via YAP and TAZ was required for the full deployment 
of glucose growth-promoting activity in breast cancer. 
In addition, glycolysis was required to sustain YAP/TAZ 
tumorigenic properties [120]. Mechanistically, phospho-
fructokinase (PFK1) bound to and co-activated the YAP/
TAZ transcriptional cofactors TEADs (Fig.  3). In some 
cancers, the loss of NF2, an upstream negative regula-
tor of HIPPO signaling, simultaneously unleashed YAP/
TAZ and SMAD2/3 activation leading indirectly to the 
induction of aerobic glycolysis via derepression of GLUT, 
HK2, LDH and MCT genes [121]. Interestingly, NF2 
mutations might contribute to the maintenance of rare 
aggressive sarcomas [122]. This hypothesis was tested in 
a kidney cancer cell model bearing NF2 mutations [123]. 
There, DOX-induced expression of shRNA downregu-
lating YAP/TAZ expression provoked the regression of 
tumors in  vivo. YAP/TAZ-depletion induced a substan-
tial decrease in EGFR and AKT phosphorylation, associ-
ated with a reduction in glucose uptake, and a switch to 
glutamine anaplerosis that boosted mitochondrial respi-
ration and ROS production. Under conditions of glucose 
or glutamine withdrawal, this metabolic shift favored cell 
death. Whereas restoration of AKT signaling by expres-
sion of a constitutively active form of AKT rescued cell 
proliferation, it did not prevent starvation-induced death. 
In vivo, YAP/TAZlow tumors survived due to the engage-
ment of a compensatory lysosome-mediated activation 
of MAPK signaling. By combining YAP/TAZ and MEK 
inhibition, tumor growth durably regressed. YAP can 

(See figure on next page.)
Fig. 2 Oncogenic and tumor suppressor pathways altered in STS. (A) This figure highlights mutations that alter regulations of PI3K/AKT/mTOR and 
MAP kinase pathways in sarcoma. Colored triangles associate sarcoma subtypes (listed on the bottom right corner) with the corresponding genes 
alterations, either expression or loss, on the scheme. Expression or regulations of tumor suppressor genes is altered (p53, PTEN) concomitantly 
with increased expression of oncogenes driving malignant transformation (increase Anabolism, Warburg effect). (B) Panel B focuses on cell cycle 
alterations at the level of the p53 and RB1 tumor suppressor genes notably
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also induce aerobic glycolysis through a direct interaction 
with HIF1α in a hypoxic environment [124, 125]. There-
fore, the proglycolytic effect of YAP/TAZ engagement 
depends on their participation in various nuclear tran-
scriptional complexes. In a muscle-derived UPS model, a 
combination of epigenetic modulators suppressed YAP1 
activity and reduced sarcomagenesis through regulation 
of metabolism. In this case, YAP1 nuclear translocation 
was associated with a poor prognosis [126] and its inac-
tivation by epigenetic modulators allowed the restoration 
of a clock gene-mediated unfolded protein response and 
muscle differentiation. It also promoted a switch toward 
lipid catabolism and autophagy, limiting YAP-driven UPS 
cell growth. The YAP/TAZ inhibitor Verteporfin is cur-
rently being tested in Ewing’s sarcoma (EWS) (Fig. 4 and 
Table 2).

Glutamine and arginine metabolic pathways contribute 
to STS growth
In a UPS mouse model harboring Kras mutations and 
p53 deletion in the muscle [59], tumors developed in the 
hindlimb and metastasized in the lung, as in the human 
disease. Additional deletion of HIF-2α or its binding 
partner aryl hydrocarbon receptor nuclear transloca-
tor (ARNT) enhanced tumor development. Use of an 
unbiased pan metabolomics strategy combining LC–MS 
and stable isotope metabolite tracing revealed a reli-
ance on glutaminolysis for tumors, unlike muscle cells. 
Accordingly, glutaminase (GLS) inhibitors blocked UPS 
tumor growth in  vivo and are the object of clinical tri-
als in humans (Fig. 4 and Table 2). Mechanistically, GLS 
hydrolyses glutamine to glutamate, which is then dehy-
drogenated to alpha-ketoglutarate (αKG) by glutamate 
dehydrogenase GLUD or an aminotransferase (such as 
PSAT), boosting mitochondrial anaplerosis [127]. In this 
UPS model, tracing using  C13- or  N15-labeled glutamine 
demonstrated that glutamine is a carbon donor for the 
TCA cycle and a nitrogen donor for aspartate produc-
tion from oxaloacetate. Aspartate is a crucial carbon 
source for purine and pyrimidine synthesis and sustains 
cell growth [128, 129]. Aspartate is also required for the 
conversion of citrullin into arginine through the activity 
of the rate-limiting argininosuccinate synthase 1 (ASS1) 
that initiates the urea cycle. This reaction generates argi-
nine and contributes to the clearance of nitrogenous 
wastes. ASS1 deficiency has been observed in various 
cancers, including MFS, due to epigenetic silencing of 
its promoter [61]. Reexpression of ASS1 inhibited tumor 

growth and metastases. To investigate how arginine aux-
otrophy induced by ASS1 deficiency contributed to the 
progression of tumors, another study used a pegylated 
arginine deiminase (ADI-PEG20) to deplete arginine 
pharmacologically [89]. A short-term treatment by ADI-
PEG20 applied to LMS cell lines, immediately induced 
cell proliferation arrest and autophagy. Upon prolonged 
therapy, cell lines became resistant to ADI-PEG20 due 
to the reexpression of ASS1 that regenerated arginine. 
A metabolomic profiling of treated cell lines revealed a 
reduction in PKM2 levels. In addition,  U13C glucose trac-
ing studies showed that carbons were shifted away from 
lactate and citrate production, and reoriented toward 
serine/glycine synthesis. Analysis of metabolic require-
ments for growth showed a reduced reliance on glucose 
and a reinforcement in OXPHOS and glutaminolysis, 
as an alternative source of TCA cycle intermediates via 
anaplerosis. In STS, a clinical trial using ADI-PEG20 
in combination with Gemcitabine and Docetaxel has 
been launched (Fig.  4 and Table  2). Similarly, targeting 
glutamine metabolism through GLS inhibition could 
provoke the lethality of ASS1-deficient cancers and is 
currently being evaluated in GIST and NF1-mutated can-
cers (Fig. 4 and Table 2).

Complex metabolic rewiring in Kaposi’s sarcoma
Kaposi’s sarcoma (KS) is caused by a lytic oncogenic her-
pes virus (KSHV/HHV8), infecting endothelial cell pre-
cursors in immunosuppressed individuals. Infection, 
which is necessary but not sufficient for the growth of 
KS lesions, leads to the development of a vascular neo-
plasm associated with cytokine dysregulation driven by 
the virally encoded G protein coupled receptor (vGPCR). 
In lytically infected cells, vGPCR induced Rac1/NOX-
dependent production of ROS that activated the redox 
sensitive STAT3 and HIF pathways [130]. Infected cells 
had increased lactate production and decreased mito-
chondrial respiration, a phenotype in part attributable to 
HIF1α activation [131]. Indeed, aerobic glycolysis favored 
by PKM2 induction sustains the maintenance of KS cells 
[132] (Fig. 3). Infected cells also exert a paracrine effect 
on neighboring endothelial cells. Indeed, PKM2 acts as a 
coactivator of HIF1α reinforcing the production of angio-
genic cytokines [131]. Among them, PDGFRA, found 
phosphorylated in KS-biopsies [133], plays a major onco-
genic role. HIF1α also participates in the reactivation 
of latently infected cells [134]. Upon transformation by 
KHSV, however, endothelial cells depended on glutamine 

Fig. 3 Metabolic consequences of STS‑associated molecular alterations. This scheme integrates sarcoma genetic alterations affecting tumor 
suppressor genes (green background) or oncogenes (black background) in the tumor metabolic network. These alterations enhance enzymatic 
reactions in favor of anabolic pathways by increasing the glycolytic flux (pink) and branched pathways, notably nucleotide (yellow), fatty acids 
(orange) and DNA/RNA synthesis at the cost of dampens mitochondrial function and TCA cycle proper functioning

(See figure on next page.)
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for proliferation. KHSV also provoked an increase in 
ASS1 expression, in part through the action of KHSV-
encoded miRNAs [62], leading to increased arginine 
production. Knockdown of ASS1 inhibited cell prolifera-
tion and iNOS-dependent, arginine-derived NO produc-
tion. Treatment of KS cells with a NO donor-activated 
STAT3 without affecting ROS cell levels. A recent arti-
cle questioned the relevance of these metabolic changes 
by comparing 2D versus 3D cultures of KHSV-infected 
cells [135]. An unbiased metabolomics analysis revealed 
significant changes in the levels of various non-essen-
tial amino acids in 3D cultures. GST-pull down studies 
showed that the viral K1 protein physically interacted 
with and activated the pyrroline-5-carboxylate reduc-
tase PYCR leading to increased proline production. This 
phenotype, abrogated by PYCR depletion, promoted 3D 
spheroid culture and tumorigenesis in nude mice. These 
results highlight the complex metabolic rewiring that 
occurs during infection and transformation by KHSV but 

also the need for appropriate in vitro culture systems to 
evaluate metabolic adaptation.

One carbon metabolism is overactive in aggressive STS
In Ewing’s sarcoma (EWS), the fusion protein resulting 
from a single translocation event between the regula-
tory domain of EWS and the DNA-binding domain of 
FLI1 behaves as a chimeric transcription factor called EF 
that enhances IGFR1 activation (Fig. 2A). Transcriptomic 
studies [60, 64] identified EF as an upstream regulator 
of PHGDH, PSAT, PSPH and SHMT1/2 genes involved 
in serine-glycine biosynthesis as well as SLC1A4/5 glu-
tamine transporter genes (Fig.  3). Accordingly, knock-
down of EF reduced the proportion of glucose-derived 
3-phosphoglycerate reoriented toward serine and gly-
cine synthesis; EWS cell lines were highly dependent on 
glutamine for growth and survival. Earlier work using a 
metabolomics approach with isotope labeling had already 
shown that a large proportion of glycolytic carbon was 
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Table 2 Clinical trials affecting metabolic pathways in STS

Biomarker target Therapeutic agent Tumor type Biomarker 
relevance/clinical 
trial phase

N° Clinical trial References

MAPK pathways RAF Dabrafenib Advanced solid 
tumors with BRAF 
mutations

Phase II NCT02465060 [75]
[A]
[B]

Vemurafenib Relapsed or refrac‑
tory advanced 
solid tumors with 
BRAF V600 muta‑
tions

Phase II NCT03220035

Dabrafenib + trametinib MULTISARC Phase III NCT03784014

Dabrafenib + trametinib BRAF V600E‑ mutated 
rare cancers

Phase II NCT02034110

MEK1/2 Binimetinib + pexidartinib Advanced GIST Phase I completed NCT03158103 [A]
[B]
[C]

Trametinib Advanced solid 
tumors with BRAF 
mutations

Phase II NCT02465060

Cobimetinib + MPDL3280A Locally advanced or 
metastatic solid 
tumors

Phase I NCT01988896

GDC‑0941 + GDC‑0973 Locally advanced or 
metastatic solid 
tumors

Phase II NCT00996892

ERK1/2 Ulixertinib STS, OS, EWS Phase I/II NCT03520075 [C]

PI3K/AKT/mTOR 
signaling

PIK3CA/mTOR Samotolisib STS
GIST

Phase I/II NCT02008019 [C]
[76]

Pediatric sarcoma Phase II
MATCH trial

NCT03458728
NCI MATCH EAY131‑Z1F

[77]
[78]

GDC‑0941 Locally advanced or 
metastatic solid 
tumors

Phase I NCT00876109 [A]

GDC‑0980 Locally advanced or 
metastatic solid 
tumors

Refractory solid 
tumors

Phase I NCT00876122NCT00854152
NCT00854126

[A]

AKT/ERK ONC201 Desmoplastic small 
round cell tumor

In vitro [C]

GDC‑0973 + GDC‑0068 Locally advanced or 
metastatic solid 
tumors

Phase I NCT01562275 [A]

mTOR Sirolimus + pexidartinib STS MPNST Phase I/II NCT02584647 [79]
[80]
[A]Rapamycin + gemcitabine OS Phase II completed NCT02429973

nanoparticle albumin‑bound 
rapamycin + pazopanib

Advanced nonadi‑
pocytic soft tissue 
sarcomas

Phase I/II trial NCT03660930

Lenvatinib + everolimus Refractory pediatric 
solid tumors

Phase I/II NCT03245151

CCI‑779 STS/GIST Phase II NCT00087074

Cixutumumab + temsiroli‑
mus

Locally advanced, 
metastatic, or 
recurrent STS or 
bone sarcoma

Phase II NCT01016015

CP‑751,871 + RAD001 Advanced sarcomas 
and other malig‑
nant neoplasms

Phase I NCT00927966

Everolimus RAD001/progressive 
sarcoma

Phase II NCT00767819
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diverted into serine and glycine metabolism in mela-
noma; this was due to the amplification of the PHGDH 
gene [136], also elevated in high-risk EWS patients [100]. 
Serine or glycine can provide one carbon to tetrahy-
drofolate initiating the folate cycle. The enhancement 
of one-carbon metabolism, considered as an integrator 
of nutrient status [97], boosts the interconnected folate 
and methionine cycles leading to enhanced NADPH and 
nucleotide synthesis. NADPH regulates ROS-depend-
ent death and methyl transfer contributes to epigenetic 
modifications. Knockdown of PHGDH recapitulated the 

effect of anti-metabolite chemotherapies and had a major 
effect on cell growth and epigenetic control. Two studies 
investigated the sensitizing effect of methionine restric-
tion on chemo- or radio resistant models of RAS-driven 
colorectal cancer and STS, respectively [137, 138]. In 
the FSF  KrasG12D/+; Tp53−/− STS mouse model, tumor 
development was triggered by the intramuscular injec-
tion of an adenovirus carrying the FlpO recombinase. In 
these aggressive tumors, only the combination of diet and 
radiation delayed tumor growth. By combining tumor 
metabolomics and metabolite tracing with a time-course 

Table 2 (continued)

Biomarker target Therapeutic agent Tumor type Biomarker 
relevance/clinical 
trial phase

N° Clinical trial References

HIPPO YAP/TAZ Verteporfin High histological 
grade

Reduced EWS meta‑
static potential

[81]
[82]
[83]
[84]

TCA CYCLE IDH 1 IDH 1—AG‑120 Chondrosarcoma Phase I NCT02073994 [85]
[86]
[87]IDH 1—FT‑2102 Advanced solid 

tumors
Active NCT03684811

IDH 1—IDH305 Advanced malignan‑
cies with IDH1R132 
mutations

Phase I NCT02381886

IDH 1—BAY1436032 IDH1‑mutant 
advanced solid 
tumors

Active NCT02746081

AG‑881 Advanced solid 
tumors with an 
IDH1 and/or IDH2 
mutation

Phase I NCT02481154

AG‑120 + nivolumab IDH1 mutant tumors Phase II NCT04056910

IDH2 IDH 2—AG‑221 Advanced solid 
tumors

Phase I/II NCT02273739

TCA cycle enzymes Devimistat STS FDA orphan drug 
designation

[D]

Amino acids ASS1 deficiency ADI‑PEG20 + gemcit‑
abine + docetaxel

STS, OS, EWS Phase II NCT03449901 [88]
[89]

PDK DCA FS Mice [90]

GLS CB‑839—glutaminase 
inhibitor

GIST Phase I completed NCT02071862 [59]

Telaglenastat NF1 mutation posi‑
tive MPNST

Phase II NCT03872427

Telaglenastat
 + talazoparib

Solid tumors Phase I + phase II NCT03875313

Heparan sulfate 
proteoglycans

Sulfen EWS Zebrafish model [91]

NAMPT FK866—MV87 inhibitors FS Mice [92]

Folate receptor α Pemetrexed STS Phase II NCT04605770 [C]

Lipid metabolism CPI‑613 CCS Phase II NCT01832857 [A]
[E]

[A] The Life Raft Group. Gisttrials. https:// gistt rials. org/ iLRG/ showf rstl ine. php. Accessed 16 June 2021

[B] NIH U.S. National Library of Medicine. Clinicalstrial.gov. https:// clini caltr ials. gov/ ct2/ home. Accessed 16 June 2021

[C] NIH. Cancer.gov. https:// www. cancer. gov/ about- cancer/ treat ment/ clini cal- trials/ search/ r? loc= 0&q= sarco ma& rl=1. Accessed 16 June 2021

[D] Rafael Pharmaceuticals, Inc. https:// rafae lphar ma. com/ resea rch- and- devel opment/ cpi- 613- drug. Accessed 16 June 2021

[E] ICH GCP. Good Clinical Practice Network. https:// ichgcp. net/ clini cal- trials- regis try/ NCT04 593758. Accessed 16 June 2021

https://gisttrials.org/iLRG/showfirstline.php
https://clinicaltrials.gov/ct2/home
https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/r?loc=0&q=sarcoma&rl=1
https://rafaelpharma.com/research-and-development/cpi-613-drug
https://ichgcp.net/clinical-trials-registry/NCT04593758
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analysis of data, alterations were observed for nucleotide 
and redox metabolisms. Interestingly, the consequences 
of methionine restriction could be detected at the meta-
bolic level when applied to healthy individuals. These 
results indicated that a targeted dietary manipulation 
could improve tumor response to therapies.

Linking Wnt signaling alterations to metabolic rewiring
Physiologically, the canonical Wnt pathway participates 
to the maintenance of stem cell pools and cell fate, in part 
via the nuclear translocation of β-catenin, leading to its 
interaction with TCF/LEF transcription factors [139]. 
In a model of osteoblast differentiation, Wnt3a signal-
ing induces aerobic glycolysis by increasing the level of 
glycolytic effectors (HK2, LDHA, PDK1, GLUT1). This 
process requires LRP5-mediated mTORC2/AKT activa-
tion but not β-catenin [140]. Other studies showed that 
Wnt engagement also reduced nuclear acetyl coenzyme 
A (AcCoA) levels and consequently impaired osteoblastic 
gene expression [141]. In contrast, in mature osteoblasts, 
Wnt-LRP5 boosted fatty acid oxidation and was required 
for bone mass increase [142]. In osteosarcoma (OS), Wnt 
participates in bone remodeling, maintenance of stem 
cell niches and EMT in collaboration with TGF-β and 
BMP signaling (reviewed in [143, 144]). In EWS, syno-
vial sarcoma (SS), OS, and to a lesser extent in LMS [143, 
145], a high level of Wnt activation, scored by the nuclear 
localization of β-catenin or LEF-1, is associated with 
a poor clinical outcome [46]. In OS, deletion of Wnt-
related genes has been reported [146]. In some primary 
OS, the loss of the tumor suppressor RASSF1A enhanced 
Wnt activation through the AKT/GSK-3-Wnt/β-catenin 
pathway [147]. Other studies indicated that MEG3, a 
long non-coding RNA downregulated in OS, controlled 
the expression of several tumor suppressor genes and 
oncogenes including P53, RB, MYC and TGF-β; it also 
negatively regulated the expression of microRNA-184 
(miR-184) and down-stream effectors of the Wnt/β-
catenin pathway including β-catenin, TCF4 and c-MYC 
[148]. Therefore, downregulation of MEG3 attenuated 
its tumor suppressive effect and partly resulted in the 
upregulation of Wnt signaling. In this model, its impact 
on cell metabolism relied on mTORC1-mediated activa-
tion of the S6 kinase pathway and protein synthesis. In 
EWS, Wnt activation was also essential for the acquisi-
tion of a metastatic phenotype and controlled a proan-
giogenic switch via the secretion of specific extracellular 
matrix (ECM) proteins called angiomatrix in a TGF-β-
dependent context [47]. However, overexpression of 
sFRP2, a secreted Wnt antagonist, promoted osteosar-
coma invasion and metastatic potential [149]. Therefore, 
Wnt participates at various stages of STS progression.

Loss of tumor suppressors affects several metabolic 
pathways
Tumor suppressors interrupt cell cycle and growth in a 
stressed environment, in part by regulating access to 
trophic pathways. Patients and mice carrying a heredi-
tary defect in p53 (Li Fraumeni syndrome) or Rb1 (retin-
oblastoma) show a predisposition to sarcomas [49, 150]. 
In low/medium grade STS such as well-differentiated 
liposarcoma (WDLPS), the initial oncogenic event is the 
amplification of the p53 inhibitor MDM2. In DDLPS, 
MDM2 amplification synergizes with alterations affect-
ing genes that regulate growth such as CDK4 and FRS2 
[4], or that are required for adipocyte differentiation such 
as JUN, DDIT3, PTPRQ, YAP1 or CEBPA, or with altera-
tions of DNA methylation. More generally, in STS with 
complex genomes (LMS, UPS, MFS, LPS, MPNST), the 
accumulation of frequent somatic copy number altera-
tions (SCNAs) and/or focal mutations of TSGs leads to 
the deregulation of the PI3K/AKT/mTOR axis, mitosis 
and chromosomal maintenance [48]. As in most cancers, 
the timing of occurrence of p53 mutations affects tumor 
progression and prognosis [8, 151–153]. Similarly, in 
mice, the combined loss of p53 [154] or CDKN2A (Ink4/
Arf ) [66] TSGs with oncogenic RAS lead to the develop-
ment of undifferentiated STS. Conditional mutations in 
KRAS and p53 in muscle were sufficient to provoke high-
grade STS with myofibroblastic differentiation [155].

As highlighted in Fig. 2A, p53 and AKT exert a negative 
feedback loop on each other, through PTEN and MDM2 
regulation, respectively. Also, p53 indirectly counteracts 
AKT-dependent downstream effects on growth, apop-
tosis or metabolism [156, 157]. The tumor suppressive 
function of p53 depends on its role as transcription factor 
inducing cell cycle arrest or apoptosis via the CDKN1A 
(p21), or PUMA and NOXA effectors, respectively 
(Fig. 2A). However, in their absence, tumor suppression 
persists suggesting that additional mechanisms [158], 
including those with an impact on metabolism [156, 159] 
are also important (Fig. 3). Indeed, GLUT gene transcrip-
tion is enhanced in STS-bearing p53 mutations [160, 
161]. p53 is anti-glycolytic partly through the induction 
of the expression of TIGAR and PARK2 regulators [162, 
163]. TIGAR dephosphorylates fructose biphosphate 
(FBP) into fructose-6-phosphate (F6P), shifting glucose-
6-phosphate (G6P) back toward the pentose phosphate 
pathway (PPP). Furthermore, the cytosolic form of p53 
interacts with and inhibits G6P-dehydrogenase (G6PDH) 
by preventing the formation of the active dimer, there-
fore inhibiting PPP-dependent redox control and anabo-
lism [164] (Fig. 3). Since TIGAR expression is not strictly 
p53-dependent, the resulting p53 effect may be difficult 
to predict with regards the engagement of the PPP, but it 
globally interferes with glycolysis. In STS, deep deletions 
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or more frequently amplifications of TIGAR have been 
documented and high TIGAR expression correlates with 
a better outcome [50]. PARK2/Parkin is an E3 ubiquitin 
ligase regulating the degradation of mitochondrial pro-
teins. It cooperates with the mitochondrial serine/thre-
onine kinase PINK1 and contributes to mitochondrial 
fitness [163, 165]. p53-mediated mitochondrial homeo-
stasis also involves the quality control of mitochondrial 
DNA (mtDNA) and the expression of cell death regula-
tors [166]. Finally, p53 induces the expression of pyru-
vate decarboxylase (PDC) that regenerates mitochondrial 
oxaloacetate and reinitiates the TCA cycle, and that of 
isocitrate dehydrogenase 1 (IDH1) that converts cyto-
solic citrate into α-ketoglutarate. In a KRAS driven-
PDAC model, p53-dependent accumulation of cytosolic 
α-ketoglutarate activates aKGDD enzymes that regulate 
5-hydroxymethylcytosine-producing TET enzymes, 
allowing tumor cell differentiation and growth control 
[167] (Fig. 3).

Metabolic fluxes and mitochondrial fitness in STS
Metabolite fluxes between organelles regulate the effi-
ciency of various metabolic pathways in cells, but also 
contribute to the plasticity of metabolic adaptation.

Metabolic imbalances in STS
Through their evolution, most tumors tend to acquire 
metabolic features including an increase in nucleotide 
synthesis [168]. Investigations using PET-FDG uptake 
in STS patients confirmed the strong glycolytic bias 
documented in metastasized and poor prognosis STS 
[169, 170] such as ARMS [171] or ES [172]. However, 
these studies also revealed the considerable heterogene-
ity within a given tumor and between different tumor 
types, suggesting that the Warburg phenotype might 
be unstable and amenable to pharmacologic control 
[173]. Whereas the level of oxidative phosphorylation 
(OXPHOS) varies between tumors (Fig. 1), there is a gen-
eral correlation between reduced mitochondrial activ-
ity, an epithelial-to-mesenchymal transition (EMT) gene 
signature and a poor prognosis [168]. Some STS tend 
to exhibit high levels of mitochondrial respiration com-
pared to carcinomas (Fig. 1) [55, 174]. In vitro analysis of 
OS and RMS cell lines showed differences in the reliance 
on glycolysis versus respiration of tumors, with ARMS 
being in general less oxidative than OS or ERMS [175]. 
The equilibrium between glycolysis and mitochondrial 
respiration can be affected by various oncogenic altera-
tions and/or metabolic requirements. Accordingly, the 
receptor tyrosine kinase Her4/ErbB4, an EGFR fam-
ily member, is upregulated in several cancers including 
OS [176]. Exploration of xenograft models using untar-
geted metabolomics and 18F-FDG microPET/CT scan 

approaches showed that Her4 overexpression boosted 
glycolysis, glutaminolysis and OXPHOS in tumors. This 
hypermetabolic phenotype contributed to sustained 
growth and ATP production while conferring chemore-
sistance, as also shown in PDAC [177].

The crosstalk between metabolic pathways can also 
be altered in cancer as discussed in the following exam-
ples. Firstly, the upstream reaction committing glucose 
to glycolysis is catalyzed by phosphofructokinase-1 (PFK-
1), itself allosterically inhibited by high ATP levels [178] 
(Fig.  3). Cancer cells express various PFK isoenzymes 
[179] such as the bifunctional 6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase (PFKFB) that produces 
F2,6-BP, thereby overriding ATP-dependent inhibition 
of PFK1 [180, 181] (Fig. 3). Reciprocally, an activation of 
a F1,6-biphosphatase such as FBP1 enhances the gluco-
neogenic flow and restrains glycolysis [174]. The FBP2 
isoform is frequently lost in STS including LPS, FS, LMS 
and UPS and lower FBP2 mRNA levels correlated with 
poor survival in LPS [55]. In the latter study, increasing 
FBP2 expression impaired sarcoma cell growth, through 
glycolysis inhibition and induction of mitochondrial bio-
genesis. The latter effect was due to FBP2 nuclear trans-
location where, independently of its enzymatic activity, 
it interacted with and inhibited c-Myc-driven transcrip-
tional activation of TFAM, an inducer of mitochondrial 
biogenesis [182].

Secondly, the maintenance of glycolytic flow requires 
the regeneration of NAD+ which originates from cyto-
solic lactate dehydrogenase (LDH) activity and from 
the malate aspartate shuttle between mitochondria and 
cytosol [183] (Fig. 2). By regulating NAD+ levels, mito-
chondrial activity limits glycolysis and consequently the 
Warburg effect [184]. This suggests that the persistence 
of mitochondrial activity can be beneficial to tumors. 
In addition, an LDH activity has been identified in the 
mitochondria where it catalyzes the aerobic oxidation 
of lactate into pyruvate. It is thought to contribute to the 
maintenance or enhancement of OXPHOS in glycolytic 
cells [185, 186]. Pyruvate oxidation in the mitochondria 
depends on PDH activity, itself inhibited by PDK. The 
inhibition of PDK by dichloroacetate (DCA) shifts metab-
olism from glycolysis to glucose oxidation and boosts 
ROS production as well as mitochondria-dependent 
apoptosis in tumors [187]. This effect is exploited in EWS 
and other tumors where DCA synergizes with apoptosis-
inducing drugs such as cisplatin. Manipulating ROS lev-
els appears to be a promising therapeutic approach [188]. 
Indeed, scavenging mitochondrial ROS (mtROS) induces 
p53, reduces the cell transforming potential of oncogenic 
RAS and in some fibrosarcoma (FS) and RMS model cell 
lines suppresses tumor growth [17, 189].
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Thirdly, the level of mitochondrial activity depends 
on the availability of coenzyme A (CoA) and the acety-
lated form, AcCoA. CoA synthesis requires the intracel-
lular phosphorylation of pantothenate (or vitamin B5) 
by pantothenate kinases [190]. Reciprocally, pantoth-
enate derives from the recycling of food-derived or cel-
lular CoA through an extracellular degradative process 
involving the vanin pantetheinases [191, 192]. Interest-
ingly, a high vanin1 (VNN1) level correlates with a better 
prognosis in STS patients [66]. Lack of Vnn1 in CDKN2A 
deficient mice enhanced the proportion of fibrosarco-
mas compared to that of other cancers. In RAS-driven 
mouse STS lines, Vnn1 exerted an anti-Warburg effect 
by enhancing CoA levels and mitochondrial activity 
to the detriment of glycolysis, and by maintaining cell 
differentiation.

Mitochondrial abnormalities disrupt the TCA cycle
Mitochondrial biogenesis depends on the transcrip-
tional coactivator PGC1α [193]. This process regulates 
the transition from myoblast growth to differentiation 
and requires a switch from the classical to the alterna-
tive NF-kB activation pathway. The latter controls PGC1α 
transcription [194], in cooperation with MyoD [195]. In 
RMS and OS models, an alteration in this switch leads to 
the induction of the pro-glycolytic HK2 isoform through 
the persistent activation of the classical NF-kB pathway 
[196] (Fig.  3). This might also contribute to the incom-
plete mitochondrial biogenesis observed in a rat RMS 
model featuring a deficiency in respiratory potential and 
poor mtROS control, thereby enhancing tumorigenesis 
[197].

Mutations in TCA enzymes SDH [198] and FH [95], 
found in STS [57], are frequent in wild-type GIST with-
out KIT or PDGFRA mutations [152]. They provoke an 
interruption of the TCA cycle, uncoupled from ATP pro-
duction. Consequently, excess succinate diffuses in the 
cytoplasm where it inhibits aKGDD enzymes involved in 
the regulation of epigenetic modifications, DNA repair 
[199] or HIF degradation, rewiring cells toward glycolysis 
[200]. In a mouse ovarian cancer model, targeted knock-
down of Sdhb resulted in enhanced proliferation and 
lead to a hypermethylated epigenome promoting EMT 
[198]. Using metabolic tracing and SeaHorse analysis, the 
authors documented an increased reliance on glutamine 
for cell survival and a reduced mitochondrial reserve 
capacity, rendering cells highly sensitive to the complex I 
inhibitor metformin.

Mutations in IDH1 and 2 lead to the production of 
2-hydroxyglutarate [201], an inducer of HIF1α stabiliza-
tion. HIF1a expression and hypoxia are associated with 
poor survival of sarcoma patients [68–70, 202–204]. 

Hypoxia regulates apoptosis resistance, cancer stemness, 
metastatic properties in RMS [71, 205] and is involved in 
ES, GIST and LPS progression [69, 70, 203, 204]. Uncou-
pling of electron transport chain (ETC) complexes from 
ATP production does not impede anaplerotic mitochon-
drial uptake of glutamine, transformed into glutamate 
via the activity of GLS to feed the reverse metabolic flow 
toward citrate production and anabolism [206] (Fig.  3). 
Accordingly, the growth of STS subtypes overexpressing 
GLS is sensitive to glutamine depletion in vitro and glu-
taminase inhibition in vivo [59].

Some components of the ETC are encoded by mtDNA. 
Therefore, alterations in mtDNA may lead to respiratory 
defects. In OS, insufficient or altered mtDNA is associ-
ated with stressed mitochondria and enhanced tumor 
invasiveness [207]. In an OS cell line, ethidium bromide 
induced-mtDNA depletion provoked a deficiency in 
cytochrome oxidase and OXPHOS, leading to enhanced 
glycolysis and EMT [208, 209]. Furthermore, mitochon-
drial dysfunction and loss of transmembrane potential 
provoked high cytosolic  Ca2+ levels, triggering calcineu-
rin-dependent mitochondria-to-nucleus retrograde sign-
aling that resulted in AKT activation and glycolysis [210]. 
In a tunable model of mitochondrial dysfunction using 
cytoplasmic hybrids [57], impairment of respiration lead 
to NADH accumulation and cytosolic recycling into 
NAD+ by the malate deshydrogenase pathway. NAD+ 
boosted glycolysis and ATP-dependent cell migration. 
This suggests that glycolysis-derived ATP might be pref-
erentially used during cell migration [211]. In conclusion, 
there is a high intra- and inter-tumor heterogeneity in 
mitochondrial activity, which can be enhanced or lost, 
depending on the tumor context.

Tumor metabolome impacts STS progression
Metastasis
Aerobic glycolysis induced by oncogenic or hypoxic 
signaling provokes changes in the tumor metabolome. 
Lactate excretion, hypoxia-associated hypercapnia and 
acidification of the extracellular milieu accelerate the deg-
radation of the extracellular matrix and facilitate metas-
tasis [212, 213]. Reciprocally, as shown in STS [214, 215], 
cancer-associated fibroblasts can produce lactate and 
3-hydroxybutyrate that boost cell growth, metastasis and 
angiogenesis when administered to tumor-bearing mice 
[216–218]. Lactate uptake by tumors feeds their oxidative 
metabolism [212, 216, 219] and requires the importer 
MCT1, a marker of mitochondrial activity and stemness 
in cancer and a target gene of the fusion protein ASP-
SCR1/TFE3 in alveolar soft part sarcoma (ASPS) [220]. 
The persistence of mitochondrial activity can enhance 
metabolic plasticity [221], mtROS-driven anoikis, metas-
tasis [222, 223] or resistance to therapy as shown for LPS 
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[224]. Metabolic plasticity, required during EMT transi-
tion [225], is still incompletely documented in poorly 
polarized and migration-prone mesenchymal tumor 
cells such as sarcoma cells [226]. Indeed, hybrid epithe-
lial/mesenchymal (E/M) phenotypes or switching from 
E- to N-cadherin and vimentin expression contribute to 
aggressiveness, metastatic properties and drug resist-
ance [226–229]. In addition, fusion protein events and 
translocations, frequent in childhood STS, can regu-
late epithelial differentiation [230, 231]. EMT is induced 
by cytokines such as FGFs, PDGF, TGF-β that enhance 
glycolysis and TCA activity [232]. TGF-β signaling syn-
ergizes with the AKT and NF-kB pathways, both potent 
drivers of glycolysis [233], but also antagonizes PDK4, 
thereby allowing pyruvate entry into the TCA. YB-1, an 
enhancer of HIF1α translation, is overexpressed in high-
risk human sarcomas and promotes EMT and metastasis 
[234]. Hypoxia regulates the expression of several intra-
cellular collagen-modifying enzymes, particularly OGDH 
enzymes that hydroxylate proline and lysine residues, 
contributing to the quality of collagen folding and the 
stiffness of the tissue, and thereby affecting cell migration 
[235]. In a UPS model, HIF1α enhances the expression 
of the intracellular enzyme procollagen-lysine, 2-oxoglu-
tarate 5-dioxygenase 2 (PLOD2). Loss or overexpression 
of PLOD2 abrogates or restores, respectively, the meta-
static potential of HIF1α-deficient tumors and human 
sarcomas show elevated HIF1α and PLOD2 expression 
in metastatic primary lesions [236]. Finally, HIF can 
enhance ECM degradation through the induction of vari-
ous metalloproteases such as MMP or PLAUR, facilitat-
ing invasiveness.

Immunoreactivity
Several features including the level of infiltration of cyto-
toxic CD8+T cells or of myeloid cells, the expression of 
markers of immune-stimulation or -depression and the 
localization of these cells within the tumor, emerge as 
landmarks of tumor immunogenicity [8, 237–240]. STS 
display low mutational burden as compared to other 
cancer types and are generally considered to be poorly 
immunogenic and poorly responsive to immune check-
point blockade [8, 241]. Synovial sarcoma, soft tissue 
and undifferentiated LMS are the three subtypes with 
the lowest CNV [8, 237] and display reduced immune 
infiltration, virtually devoid of lymphocytes [242–245]. 
In contrast, STS with several SCNAs, nucleotide and 
chromosome instabilities, such as undifferentiated LPS, 
MPNST [246–248], AS and GIST [243] and OS [244] 
can present high levels of lymphoid infiltration includ-
ing CD8+ T cells. Consequently, STS display a wide 
range of immunophenotypes [238, 249, 250]. The meta-
bolic rewiring imposed by tumors generates a situation 

of competition for essential energetic resources. This 
concerns glucose, vitamins and essential amino acids 
(serine, leucine, methionine, etc.) leading to impairment 
of immune cell functions and memory [19, 251, 252]. 
The exchange of fatty acids is required for the survival of 
immunosuppressive myeloid cells [253] or Tregs [254], 
particularly under conditions of activation of the PI3K/
AKT/mTOR axis that boosts lipogenesis [255]. Other 
metabolites such as extracellular nucleotides released 
upon cell death can induce immunosuppression via vari-
ous mechanisms [256–258]. Altogether, metabolic dis-
turbances imposed by tumor cells directly contributes 
to the reorganization of the microenvironment but an 
exhaustive analysis of the immune landscape in STS is 
still lacking. Techniques such as Met-Flow [31] or SCEN-
ITH [32] should help dissecting the metabolic status of 
immunocytes.

Conclusions
Unraveling the complexity of sarcoma genetics has 
benefited from the development and improvement of 
multi-omics strategies. The phenotypic and molecular 
description of genomic alterations can now be comple-
mented with the identification of prognostic mechanis-
tic signatures in patients. The heterogeneity and scarcity 
of STS originally limited the description of their meta-
bolic landscapes but PET-FDG analysis has contributed 
to their staging, prognostication and evaluation of their 
response to therapy. Several cell-autonomous pathways 
or environmental factors influence the degree of con-
version toward aerobic glycolysis, justifying the use of 
drugs that antagonize these processes. Nevertheless, 
the classic distinctions between glycolytic and oxidative 
tumors must be carefully reconsidered; hybrid pheno-
types may confer more adaptable behaviors to STS cells. 
Several important metabolic pathways associated with 
STS progression such as those of one carbon and argi-
nine metabolisms, or the PGI pathway might provide 
novel therapeutic options in combination with conven-
tional therapies. In addition, the development of novel 
animal models or 2D/3D culture systems has highlighted 
the metabolic plasticity of these tumors that may impact 
their energetic resources. However, these adaptations 
may have a price, rendering tumor cells more sensitive to 
combined therapies.

Oncogenic signals can lead to the expression of iso-
forms of glycolytic enzymes that display new functions 
tilting the balance between glycolysis and mitochon-
drial activity. Similarly, p53 can also act as a regulator of 
G6PDH activity, impacting biosynthetic pathways. Some 
metabolites such as α-ketoglutarate have emerged as key 
effectors of p53 action, whereas others behave as onco-
metabolites leading to alterations of genome integrity, 
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metastatic behavior and therapeutic response. The bal-
ance between glycolysis, glutaminolysis and OXPHOS 
depends on the respective availability of key metabolites, 
such as amino acids, NAD+/NADH, lactate or VitB5, 
that regulate STS progression or differentiation. Metabo-
lomic studies have already shown that novel metabolite 
signatures will complement conventional biomarkers 
and help stratifying prognosis and therapeutic options. 
The stability of the glycolytic phenotype also depends 
on mitochondrial activity. Alterations of mitochondrial 
fitness observed in STS upon alterations of mtDNA or 
TCA enzymes aggravate the prognostic of tumors or can 
affect their chemoresistance. An unstable tumor metabo-
lome has tumor-intrinsic or extrinsic effects causing it to 
be pro-metastatic or immunosuppressive. Therefore, the 
combination of drugs targeting different metabolic path-
ways should impact both tumor and immune cells in a 
concerted manner to reinvigorate anti-tumor immunity 
while tilting the balance toward cell differentiation over 
growth.
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