
HAL Id: hal-03402696
https://amu.hal.science/hal-03402696

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Combining VSIDS and CHB Using Restarts in SAT
Mohamed Sami Cherif, Djamal Habet, Cyril Terrioux

To cite this version:
Mohamed Sami Cherif, Djamal Habet, Cyril Terrioux. Combining VSIDS and CHB Using Restarts
in SAT. 27th International Conference on Principles and Practice of Constraint Programming, Oct
2021, Montpellier, France. �10.4230/LIPIcs.CP.2021.20�. �hal-03402696�

https://amu.hal.science/hal-03402696
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Combining VSIDS and CHB Using Restarts in SAT
Mohamed Sami Cherif #

Aix-Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Djamal Habet #

Aix-Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Cyril Terrioux #

Aix-Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Abstract
Conflict Driven Clause Learning (CDCL) solvers are known to be efficient on structured instances
and manage to solve ones with a large number of variables and clauses. An important component in
such solvers is the branching heuristic which picks the next variable to branch on. In this paper, we
evaluate different strategies which combine two state-of-the-art heuristics, namely the Variable State
Independent Decaying Sum (VSIDS) and the Conflict History-Based (CHB) branching heuristic.
These strategies take advantage of the restart mechanism, which helps to deal with the heavy-tailed
phenomena in SAT, to switch between these heuristics thus ensuring a better and more diverse
exploration of the search space. Our experimental evaluation shows that combining VSIDS and
CHB using restarts achieves competitive results and even significantly outperforms both heuristics
for some chosen strategies.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence

Keywords and phrases Satisfiability, Branching Heuristic, Restarts

Digital Object Identifier 10.4230/LIPIcs.CP.2021.20

Funding Supported by the French National Research Agency, project ANR-16-CE40-0028.

1 Introduction

Given a CNF Boolean formula ϕ, solving the Satisfiability (SAT) problem consists in
determining whether there exists an assignment of the variables which satisfies ϕ. SAT is
at the heart of many applications in different fields and is used to model a large variety of
crafted and real-world problems [33, 17, 24]. It is the first decision problem proven to be
NP-complete [16]. Nevertheless, modern solvers based on Conflict Driven Clause Learning
(CDCL) [34] manage to solve instances involving a huge number of variables and clauses.
An important component in such solvers is the branching heuristic which picks the next
variable to branch on. The Variable State Independent Decaying Sum (VSIDS) [35] has
been the dominant heuristic since its introduction two decades ago. Recently, Liang and al.
devised a new heuristic for SAT, called Conflict History-Based (CHB) branching heuristic [29],
and showed that it is competitive with VSIDS. In the last years, VSIDS and CHB have
dominated the heuristics landscape as practically all the CDCL solvers presented in recent
SAT competitions and races incorporate a variant of one of them.

In recent years, combining VSIDS and CHB has shown promising results. For instance,
the MapleCOMSPS solver, which won several medals in the 2016 and 2017 SAT competitions,
switches from VSIDS to CHB after a set amount of time, or alternates between both heuristics
by allocating the same duration of restarts to each one [31, 28]. Yet, we still lack a thorough
analysis on such strategies in the state of art as well as a comparison with new promising
methods based on machine learning in the context of SAT solving. Indeed, recent research
has also shown the relevance of machine learning in designing efficient search heuristics for
SAT [29, 30, 25] as well as for other decision problems [42, 41, 36, 13]. One of the main

© Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 20; pp. 20:1–20:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohamedsami.cherif@lis-lab.fr
https://orcid.org/0000-0003-4646-9982
mailto:djamal.habet@lis-lab.fr
mailto:cyril.terrioux@lis-lab.fr
https://orcid.org/0000-0002-9779-9108
https://doi.org/10.4230/LIPIcs.CP.2021.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Combining VSIDS and CHB Using Restarts in SAT

challenges is defining a heuristic which can have high performance on any considered instance.
It is well known that a heuristic can perform very well on a family of instances while failing
drastically on another. To this end, several reinforcement learning techniques can be used,
specifically under the Multi-Armed Bandit (MAB) framework, to pick an adequate heuristic
among CHB and VSIDS for each instance. These strategies also take advantage of the restart
mechanism in modern CDCL algorithms to evaluate each heuristic and choose the best one
accordingly. The evaluation is usually achieved by a reward function, which has to estimate
the efficiency of a heuristic by relying on information acquired during the runs between
restarts. In this paper, we want to compare these different strategies and, in particular, we
want to know whether incorporating strategies which switch between VSIDS and CHB can
achieve a better result than both heuristics and bring further gains to practical SAT solving.

The paper is organized as follows. An overview of CDCL algorithms is given in Section 2.
The heuristics VSIDS and CHB as well as the Multi-Armed Bandit Problem are recalled in
Section 3. Different strategies to combine VSIDS and CHB through restarts are described in
Section 4 and experimentally evaluated and compared in Section 5. Finally, we conclude and
discuss future work in Section 6.

2 Preliminaries

Let X be the set of propositional variables. A literal l is a variable x ∈ X or its negation
x. A clause is a disjunction of literals. A formula in Conjunctive Normal Form (CNF)
is a conjunction of clauses. An assignment I : X → {true, false} maps each variable to
a Boolean value and can be represented as a set of literals. A literal l is satisfied by an
assignment I if l ∈ I, else it is falsified by I. A clause is satisfied by an assignment I if at least
one of its literals is satisfied by I, otherwise it is falsified by I. A CNF formula is satisfiable
if there exists an assignment I which satisfies all its clauses, else it is unsatisfiable. Solving
the Satisfiability (SAT) problem consists in determining whether a given CNF formula is
satisfiable.

Although SAT is NP-complete [16], Conflict Driven Clause Learning [34] (CDCL) solvers
are surprisingly efficient and manage to solve instances involving a huge number of variables
and clauses. Such solvers are based on backtracking algorithms which rely on powerful branch-
ing heuristics as well as several solving techniques, namely Boolean Constraint Propagation
(BCP), clause learning and restarts among others. In each step, BCP is applied to simplify
the formula by propagating literals in unit clauses, i.e. clauses with one literal. If BCP
is no longer possible, a branching heuristic picks a variable based on information acquired
throughout the search. More importantly, when a conflict is detected, i.e. a clause is falsified
by the current assignment, the steps of the algorithm are retraced and clauses involved in
the conflict are resolved until the First Unit Implication Point (FUIP) in the implication
graph [34]. The clause produced by this process is learnt, i.e. added to the formula. This
enables to avoid revisiting an explored subspace of the search tree. Restarts are also an
important component in CDCL solvers, initially introduced to deal with the heavy-tailed
phenomena in SAT [19]. At the beginning of each restart, the solver parameters and its data
structures are reinitialized in order to start the search somewhere else in the search space
without discarding learnt clauses. There are two main restart strategies namely geometric
restarts [40] and Luby restarts [32]. Most modern CDCL solvers use Luby restarts as it was
shown that this policy outperforms geometric restarts [20].

M. S. Cherif, D. Habet, and C. Terrioux 20:3

3 Related Work

3.1 Branching Heuristics for SAT
The branching heuristic is one of the most important components in modern CDCL solvers
and has a direct impact on their efficiency. It can be considered as a function that ranks
variables using a scoring function, updated throughout the search. In this section, we describe
two of the main state-of-the-art branching heuristics that we will consider in this work.

3.1.1 VSIDS
The Variable State Independent Decaying Sum (VSIDS) [35] has been the most used heuristic
since its introduction around two decades ago. This heuristic maintains a floating point
score for each variable, called activity and initially set to 0. When a conflict occurs, the
activity of some variables is bumped, i.e. increased by 1. Furthermore, the variable activities
are decayed periodically, usually after each conflict. More precisely, variable activities are
multiplied by a decaying factor in]0, 1[. There are several variants of VSIDS. For instance,
MiniSat [18] bumps the activities of variables appearing in the learnt clause while Chaff [35]
does it for all the variables involved in the conflict, i.e. the resolved variables including those
in the learnt clause.

3.1.2 CHB
The Conflict History-Based (CHB) branching heuristic was recently introduced in [29]. This
heuristic based on the Exponential Recency Weighted Average (ERWA) [38] favors the
variables involved in recent conflicts as in VSIDS. CHB maintains a score (or activity) Q(x)
for each variable x, initially set to 0. The score Q(x) is updated when a variable x is branched
on, propagated, or asserted using ERWA as follows:

Q(x) = (1 − α) × Q(x) + α × r(x).

The parameter 0 < α < 1 is the step-size, initially set to 0.4 and decayed by 10−6 after every
conflict to a minimum of 0.06. r(x) is the reward value for variable x which can decrease or
increase the likelihood of picking x. Higher rewards are given to variables involved in recent
conflicts according to the following formula:

r(x) = multiplier

Conflicts − lastConflict(x) + 1 .

Conflicts denotes the number of conflicts that occurred since the beginning of the search.
lastConflict(x) is updated to the current value of Conflicts whenever x is present in the
clauses used by conflict analysis. multiplier is set to 1.0 when branching, propagating or
asserting the variable that triggered the score update lead to a conflict, else it is set to 0.9.
The idea is to give extra rewards for variables producing a conflict.

3.2 Multi-Armed Bandit Problem
A Multi-Armed Bandit (MAB) is a reinforcement learning problem consisting of an agent
and a set of candidate arms from which the agent has to choose while maximizing the
expected gain. The agent relies on information in the form of rewards given to each arm
and collected through a sequence of trials. An important dilemma in MAB is the tradeoff
between exploitation and exploration as the agent needs to explore underused arms often

CP 2021

20:4 Combining VSIDS and CHB Using Restarts in SAT

enough to have a robust feedback while also exploiting good candidates which have the
best rewards. The first MAB model, stochastic MAB, was introduced in [26] then different
policies have been devised for MAB [1, 4, 6, 38, 39]. In recent years, there was a surge of
interest in applying reinforcement learning techniques and specifically those related to MAB
in the context of SAT solving. In particular, CHB [29] and LRB [30] (a variant of CHB) are
based on ERWA [38] which is used in non-stationary MAB problems to estimate the average
rewards for each arm. Furthermore, a new approach, called Bandit Ensemble for parallel
SAT Solving (BESS), was devised in [27] to control the cooperation topology in parallel
SAT solvers, i.e. pairs of units able to exchange clauses, by relying on a MAB formalization
of the cooperation choices. MAB frameworks were also extensively used in the context of
Constraint Satisfaction Problem (CSP) solving to choose a branching heuristic among a set
of candidate ones at each node of the search tree [42] or at each restart [41, 13]. Finally,
simple bandit-driven perturbation strategies to incorporate random choices in constraint
solving with restarts were also introduced and evaluated in [36]. The MAB framework we
introduce in the context of SAT in Section 4.2 is closely related to those introduced in
[41, 36] in the sense that we also pick an adequate heuristic at each restart. In particular,
our framework is closer to the one in [36] in terms of the number of candidate heuristics
and the chosen reward function and yet it is different in the sense that we consider two
efficient state-of-the-art heuristics instead of perturbing one through random choices which
may deteriorate the efficiency of highly competitive SAT solvers.

4 Strategies to Combine VSIDS and CHB Using Restarts

In this section, we describe different strategies which take advantage of the restart mechanism
in SAT solvers to combine VSIDS and CHB. First, we describe simple strategies which are
either static or random. Then, we describe reinforcement learning strategies, in the context
of a MAB framework, which rely on information acquired through the search to choose the
most relevant heuristic at each restart.

4.1 Static and Random Strategies

Hereafter, we describe three different strategies, one of which is random while the other two
are static. These strategies are defined as follows:

Random Strategy (RDR): This strategy randomly picks a heuristic among VSIDS and
CHB at each restart with equal probabilities, i.e. each heuristic is assigned a probability
of 1

2 . This strategy is denoted RDR in contrast with RDD which randomly picks a
heuristic at each decision.
Single Switch Strategy (SS): This strategy switches from VSIDS to CHB after a set
amount of time and was used in the 2016 version of MapleCOMSPS [31]. We maintain
the threshold time in which the heuristic is switched to t

2 where t is the timeout as in [31].
Round Robin Strategy (RR): This strategy alternates between VSIDS and CHB in
the form of a round robin. This is similar to the strategy used in the latest version of
MapleCOMSPS [28]. However, since we want to consider strategies which are independent
from the restart policy and which only focus on choosing the heuristics, we do not assign
equal amounts of restart duration (in terms of number of conflicts) to each heuristic and,
instead, let the duration of restarts augment naturally with respect to the restart policy
of the solver.

M. S. Cherif, D. Habet, and C. Terrioux 20:5

4.2 Multi-Armed Bandit Strategies

In order to use MAB strategies, we first introduce a MAB framework for SAT. Let A =
{a1, . . . , aK} be the set of arms for the MAB containing different candidate heuristics.
The trials are the runs, i.e. executions, of the backtracking algorithm between restarts.
The proposed framework selects a heuristic ai where i ∈ {1 . . . K} at each restart of the
backtracking algorithm according to two different strategies that we will describe below. To
choose an arm, MAB strategies generally rely on a reward function calculated during each
run to estimate the performance of the chosen arm. The reward function plays an important
role in the proposed framework and has a direct impact on its efficiency. We choose a reward
function that estimates the ability of a heuristic to reach conflicts quickly and efficiently. If t

denotes the current run, the reward of arm a ∈ A is calculated as follows:

rt(a) = log2(decisionst)
decidedV arst

.

decisionst and decidedV arst respectively denote the number of decisions and the number of
variables fixed by branching in the run t. Consequently, the earlier conflicts are encountered in
the search tree and the fewer variables are instantiated, the greater the assigned reward value
will be for the corresponding heuristic. rt(a) is clearly in [0, 1] since decisionst ≤ 2decidedV arst .
This reward function is adapted from the explored sub-tree measure introduced in [36].

Next, we describe strategies for MAB which belong to a family of well know strategies,
referred to as Upper Confidence Bound (UCB) [1, 5, 4]. For this family, the following
parameters are maintained for each candidate arm a ∈ A:

nt(a) is the number of times the arm a is selected during the t − 1 previous runs,
r̂t(a) is the empirical mean of the rewards of arm a over the t − 1 previous runs.

We consider two UCB strategies, UCB1 and MOSS (Minimax Optimal Strategy in the
Stochastic case). These strategies select the arm a ∈ A that respectively maximizes UCB1(a)
and MOSS(a) defined below. The left-side terms of UCB1(a) and MOSS(a) are identical
and aim to put emphasis on arms that received the highest rewards. Conversely, the right-side
terms ensure the exploration of underused arms. The main difference between UCB1 and
MOSS is that the latter also takes into account the number of arms K.

UCB1(a) = r̂t(a) +

√
4.ln(t)
nt(a)

MOSS(a) = r̂t(a) +

√
4

nt(a) ln

(
max

(
t

K.nt(a) , 1
))

Finally, a strategy for MAB is evaluated by its expected cumulative regret, i.e. the difference
between the cumulative expected value of the reward if the best arm is used at each restart
and its cumulative value for all the runs. The expected cumulative regret RT is formally
defined below, where at ∈ A denotes the arm chosen at run t and T denotes the total number
of runs. In particular, UCB1 and MOSS respectively guarantee an expected cumulative
regret no worse than O(

√
K.T. ln T) and O(

√
K.T) [5, 4].

RT = max
a∈A

T∑
t=1

E[rt(a)] −
T∑

t=1
E[rt(at)]

CP 2021

20:6 Combining VSIDS and CHB Using Restarts in SAT

5 Experimental Evaluation

In this section, we describe our experimental protocol and then we evaluate and compare the
different strategies presented in Section 4.

5.1 Experimental Protocol
We consider the benchmarks from the Main Track of the last three SAT Competitions/Races,
totalling to 1,200 instances. For our experiments, we use the state-of-the-art solver Kissat [10]
which won first place in the main track of the SAT Competition 2020. Note that this solver
is a condensed and improved reimplementation of the reference and competitive solver
CaDiCaL [9, 10] in C. Data provided by Armin Bierre and Marjin Heule1 show that Kissat is
highly competitive and outperforms all-time winners of SAT competitions/Races particularly
on the 2020 and 2019 Benchmarks. Kissat alternates between stable and non-stable phases as
is the case in Cadical [9], renamed to stable mode and focused mode in [10]. VSIDS is used
in stable phases which mainly target satisfiable instances. During non-stable phases targeting
unsatisfiable instances, the solver uses the Variable Move-To-Front (VMTF) heuristic [37, 12],
in which analyzed variables are moved to the front of the decision queue. It is important
to note that the only modified components of the solver are the decision component and
the restart component, i.e. all the other components as well as the default parameters of
the solver are left untouched. Even the changes to the restart component are as minimal
as possible, i.e. we maintain the phase alternation mechanism and the restart policies set
for each mode as described in [10]. Furthermore, we maintain the VSIDS variant already
implemented in Kissat, called Exponential VSIDS (EVSIDS) [8, 12], which is based on Chaff’s
where all analyzed variables are bumped after every conflict. Therefore, in the experimental
evaluation, V SIDS corresponds to default Kissat. Moreover, we augment the solver with the
heuristic CHB as specified in [29] except that we update the scores of the variables in the last
decision level after BCP. In addition, we have implemented the MAB framework specified in
Section 4 with A = {V SIDS, CHB}. The rewards for UCB1 and MOSS are both initialized
by launching each heuristic once during the first restarts. Finally, The experiments are
performed on Dell PowerEdge M620 servers with Intel Xeon Silver E5-2609 processors under
Ubuntu 18.04 with a timeout of 5,000 s for each instance.

5.2 Decisions vs Restarts
First, we would like to emphasize that taking advantage of the restart mechanism to combine
VSIDS and CHB was not an arbitrary choice. Indeed, we conducted an experiment to help us
choose the appropriate level, i.e. decisions or restarts, to combine VSIDS and CHB. To this
end, we implemented and tested the two random strategies RDD and RDR which randomly
chose a heuristic among VSIDS and CHB respectively in each decision and in each restart.
The average results (over 10 runs with different seeds) of RDD and RDR on the whole
benchmark are reported in Table 1 and indicate that RDR outperforms RDD with a gain of
more than 2% in terms of solved instances and 3.5% in terms of solving time with a penalty
of 10,000 s for unsolved instances. This is not surprising as the structures needed for VSIDS
and CHB need to be maintained and updated simultaneously which can be quite costly. On
the other hand, they are used independently in RDR during each restart, i.e. only the chosen
heuristic is used and its structures updated during the restart. Furthermore, combining both

1 Data available on http://fmv.jku.at/kissat/

http://fmv.jku.at/kissat/

M. S. Cherif, D. Habet, and C. Terrioux 20:7

Table 1 Comparison between VSIDS, CHB, the different strategies and the VBS (over VSIDS
and CHB) in terms of the number of solved instances in Kissat. For each row, the best results
without considering the VBS are written in bold.

VSIDS CHB RDD RDR SS RR UCB1 MOSS VBS

Competition 2018
(400 instances)

SAT 160 159 160 164 163 165 167 168 169
UNSAT 111 109 109 110 113 110 110 110 113
TOTAL 271 268 268 274 276 275 277 278 282

Race 2019
(400 instances)

SAT 158 149 155 158 154 162 161 162 162
UNSAT 97 95 95 96 96 96 96 97 99
TOTAL 255 244 250 254 250 258 257 259 261

Competition 2020
(400 instances)

SAT 131 146 146 151 147 152 154 156 157
UNSAT 121 119 117 120 118 120 120 122 123
TOTAL 252 265 263 271 265 272 274 278 280

TOTAL
(1,200 instances)

SAT 449 454 461 473 464 479 482 486 488
UNSAT 329 323 321 326 327 326 326 329 335
TOTAL 778 777 782 799 791 805 808 815 823

heuristics at the decision level can cause interference and may not allow each heuristic to
conduct robust learning since they are being constantly interchanged. Surprisingly, both
versions are competitive with CHB and VSIDS. In particular, RDR outperforms them and
solves, on average, 21 additional instances (+ 2.7%) compared to the best heuristic. This is
due to randomization and diversification which help to avoid heavy tail phenomena in SAT
and which can therefore improve the performance of SAT solvers [21, 19].

5.3 Comparison of Strategies

5.3.1 Number of Solved Instances
In Table 1, we present the results in terms of solved instances for CHB and VSIDS as
standalone heuristics and for the different strategies presented in Section 4. We also include
the results of the Virtual Best Solver (VBS) over VSIDS and CHB. Before discussing the
results, we recall that “improving SAT solvers is often a cruel world. To give an idea,
improving a solver by solving at least ten more instances (on a fixed set of benchmarks
of a competition) is generally showing a critical new feature. In general, the winner of a
competition is decided based on a couple of additional solved benchmarks” [3].

The results clearly indicate that MOSS outperforms VSIDS and CHB as well as all the
other strategies. Indeed, MOSS manages to solve 37 additional instances in total (+4.8%)
compared to the best heuristic (among VSIDS and CHB). The UCB1 (resp. RR) strategy
is also competitive and manages to solve 30 (resp. 27) additional instances in total which
corresponds to an increase of 3.9% (resp. 3.5%) in terms of solved instances compared to
the best heuristic. The strategies UCB1 and RR remain comparable with a difference of
3 instances in favor of UCB1. SS also outperforms VSIDS and CHB although to a lesser
degree as it solves 13 additional instances only which is worse than RDR. If we focus on
the individual yearly benchmarks, we observe that although the overall results obtained by
VSIDS and CHB are comparable, they have different behaviours on each benchmark and
yet MOSS, UCB1 and RR manage to capture the behaviour of the best heuristic and even
outperform it on each individual benchmark. In particular, MOSS maintains its top rank
on the individual benchmarks with an average of 8 (resp. 17) additional instances for each

CP 2021

20:8 Combining VSIDS and CHB Using Restarts in SAT

one compared to the best (resp. worst) heuristic. Moreover, the results achieved by MOSS
are very close to the VBS. Indeed it achieves 99% (resp. 99.6%) of the performance of the
VBS on the whole benchmark in terms of the number of solved instances (resp. satisfiable
instances) while the best heuristic does not exceed 95% (resp. 93%).

However, it is important to note that the gain is mainly in satisfiable instances whereas, for
unsatisfiable instances, all the strategies (except RDD) remain comparable to both heuristics
and slightly outperform CHB but not VSIDS. Nevertheless, they remain competitive with
VSIDS and particularly MOSS which solves the same number of unsatisfiable instances as
VSIDS. This shows that MOSS is a robust strategy as it is able to improve the performance
globally and on each individual benchmark without decreasing it for unsatisfiable instances.
Note that the observed behaviour of these different strategies on unsatisfiable instances may
be due to different factors. First, the results in terms of unsatisfiable instances seem very
homogeneous for each year and are very close to the results obtained by the VBS as both
heuristics (resp. the best heuristic) achieve more than 96% (resp. 98%) of its performance in
terms of the number of unsatisfiable instances. Since our motivation is to bridge the gap
between the heuristics and the VBS with these strategies, it is expected that this would be
very difficult for unsatisfiable instances, for which the gap is very small already. It is also
very difficult to simultaneously improve the performance on both satisfiable and unsatisfiable
instances. Notice how SS which seems to work better for unsatisfiable instances especially in
terms of solving time (refer to Section 5.3.2) fails on satisfiable instances compared to the
three top strategies. Another possible factor for this behaviour is Kissat’s restarting policy
which alternates between the stable mode and focused mode [10]. The heuristics VSIDS
and CHB are only used in the stable mode while the focused mode targets unsatisfiable
instances. This may also help to explain the homogeneity of the results obtained by the
solver for unsatisfiable instances with respect to the different heuristics and strategies.

5.3.2 Solving Time
In this section, we want to evaluate the different strategies in terms of solving time. In
Figure 1, we represent the number of solved instances as a function of the CPU time for
VSIDS, CHB, the static and MAB strategies and the VBS on the whole benchmark. One
would think that MAB based strategies in this regard would be worse than the considered
heuristics and/or other strategies as UCB1 and MOSS need to conduct continuous exploration
in order to ensure the selection of the most adequate arm. This does not seem to be the case.
In fact, conducting exploitation with the best arm and alternating the heuristics seems to
offset this disadvantage. We observe that MOSS is the best strategy as it achieves 6.1% gain
in terms of solving time on the whole benchmark compared to the best heuristic if we give a
penalty 10,000 s to unsolved instances while UCB1, RR and SS respectively achieve a gain
of 5.7%, 5.2% and 1.7%. This gain is substantial especially considering that we are working
on the solver Kissat which won the SAT competition 2020 with a remarkable performance.

We represent in Figure 2 the number of solved satisfiable and unsatisfiable instances
separately as a function of the CPU time for VSIDS, CHB, the static and MAB strategies
and the VBS on the whole benchmark. Notice how the gap between MOSS and the VBS
(and even UCB1 and RR) narrows if we consider the satisfiable instances only. On the other
hand, these top three strategies present a small gap in terms of solving time for unsatisfiable
instances compared to the best heuristic, i.e. VSIDS, while remaining comparable to CHB.
In particular, MOSS shows better results with respect to VSIDS and SS for instances whose
solving time exceeds 4,000 s. Surprisingly, although SS seems to be the worst strategy
overall and remains globally comparable to VSIDS and CHB while achieving a slight gain

M. S. Cherif, D. Habet, and C. Terrioux 20:9

in solving time especially on instances whose solving time exceeds 4,000 s, it achieves the
best results in terms of solving time for unsatisfiable instances and is comparable to VSIDS
and the VBS in this regard. On the other hand, RR and UCB1 achieve substantial gain
while remaining comparable to each other and with results slightly in favor of UCB1. To
provide more detailed results, we represent in Figures 3, 4 and 5 the runtime comparison
per instance with VSIDS, CHB and the VBS respectively for the top three best strategies,
i.e. MOSS, UCB1 and RR. These figures confirm the trends that we observed above. More
interesting, we can note that, for a noticeable number of instances, MOSS, UCB1 or RR lead
to a more efficient solving than the VBS. In Figure 6, we represent the runtime comparison
per instance betwenn MOSS, UCB1 and RR. These figures show that MOSS performs better
than UCB1 and RR. Surprisingly, MOSS’s results are closer to RR than UCB1. However,
we will show in Section 5.3.4 that this is consistent with the observed behaviour of MOSS.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600 700 800

ti
m

e
 (

s)

solved instances

VSIDS
CHB

SS
RR

UCB1
MOSS

VBS

1

Figure 1 Number of solved instances as a function of CPU time for VSIDS, CHB, static and
MAB strategies and the VBS with respect to the whole benchmark.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500

ti
m

e
 (

s)

solved satisfiable instances

VSIDS
CHB

SS
RR

UCB1
MOSS

VBS

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250 300 350

ti
m

e
 (

s)

solved unsatisfiable instances

VSIDS
CHB

SS
RR

UCB1
MOSS

VBS

(a) (b)

Figure 2 Number of solved satisfiable (a) and unsatisfiable (b) instances as a function of CPU
time for VSIDS, CHB, static and MAB strategies and the VBS w.r.t the whole benchmark.

CP 2021

20:10 Combining VSIDS and CHB Using Restarts in SAT

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

V
S

ID
S

MOSS

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

C
H

B

MOSS

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

V
B

S

MOSS

(a) (b) (c)
Figure 3 Runtime comparison (in seconds) of MOSS w.r.t. VSIDS (a), CHB (b) and VBS (c) in

logarithmic scale.

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

V
S

ID
S

UCB1

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

C
H

B

UCB1

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

V
B

S

UCB1

(a) (b) (c)
Figure 4 Runtime comparison (in seconds) of UCB1 w.r.t. VSIDS (a), CHB (b) and VBS (c) in

logarithmic scale.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

V
S

ID
S

RR

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

C
H

B

RR f
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

V
B

S

RR

(a) (b) (c)
Figure 5 Runtime comparison (in seconds) of RR w.r.t. VSIDS (a), CHB (b) and VBS (c) in

logarithmic scale.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

U
C

B
1

MOSS

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

R
R

MOSS

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

R
R

UCB1

(a) (b) (c)
Figure 6 Runtime comparison (in seconds) of MOSS w.r.t. UCB1 (a) and RR (b) and of UCB1

w.r.t. RR (c) in logarithmic scale.

M. S. Cherif, D. Habet, and C. Terrioux 20:11

Ta
bl

e
2

C
om

pa
ris

on
be

tw
ee

n
V

SI
D

S,
C

H
B

,s
ta

tic
an

d
M

A
B

st
ra

te
gi

es
an

d
th

e
V

B
S

(o
ve

r
V

SI
D

S
an

d
C

H
B

)
in

te
rm

s
of

th
e

nu
m

be
r

of
so

lv
ed

in
st

an
ce

s
(#

I)
an

d
cu

m
ul

at
iv

e
so

lv
in

g
tim

e
(f

or
so

lv
ed

in
st

an
ce

s
in

se
co

nd
s)

in
K

iss
at

fo
r

in
st

an
ce

fa
m

ili
es

in
th

e
be

nc
hm

ar
k.

T
he

re
su

lts
of

fa
m

ili
es

m
ar

ke
d

w
ith

†
ar

e
jo

in
t

fr
om

tw
o

di
ffe

re
nt

ye
ar

ly
be

nc
hm

ar
ks

.
Fo

r
ea

ch
ro

w
,t

he
be

st
re

su
lts

w
ith

ou
t

co
ns

id
er

in
g

th
e

V
B

S
ar

e
w

rit
te

n
in

bo
ld

,b
re

ak
in

g
tie

s
w

ith
m

ill
ise

co
nd

s
if

ne
ce

ss
ar

y.

Fa
m

ily
V

SI
D

S
C

H
B

SS
R

R
U

C
B

1
M

O
SS

V
B

S
na

m
e

#
I

#
I

ti
m

e
#

I
ti

m
e

#
I

ti
m

e
#

I
ti

m
e

#
I

ti
m

e
#

I
ti

m
e

#
I

ti
m

e
An

ti
ba

nd
wi

dt
h

14
2

1,
01

0
7

9,
80

4
7

21
,3

81
8

11
,4

69
9

15
,6

51
9

14
,3

70
7

9,
62

8
Al

mo
st

Pe
rf

ec
t

No
n-

Li
ne

ar
S-

bo
x

Fi
nd

er
20

11
15

,3
24

7
14

,3
86

11
18

,8
15

10
18

,9
74

11
19

,6
59

11
15

,9
69

12
16

,1
38

Ar
it

hm
et

ic
Ve

ri
fi

ca
ti

on
38

13
11

,0
10

14
12

,2
68

8
6,

65
7

9
12

,1
60

13
13

,3
49

9
11

,8
11

14
10

,8
01

Ba
se

ba
ll

-l
in

eu
p

13
12

3,
31

7
12

2,
94

9
12

3,
19

2
12

2,
64

5
12

2,
94

7
12

2,
54

0
12

2,
90

6
Bi

tc
oi

n
17

8
1,

97
2

7
47

9
8

2,
00

1
8

1,
90

7
8

2,
19

9
8

1,
90

1
8

1,
78

4
Co

lo
ri

ng
14

6
7,

50
1

5
7,

32
7

7
12

,0
97

5
3,

10
1

5
2,

75
3

6
7,

55
6

6
5,

87
6

Co
re

-b
as

ed
14

13
8,

43
8

13
10

,8
60

13
8,

73
7

13
7,

43
1

14
14

,1
65

14
14

,8
61

13
7,

23
9

Co
ur

se
Sc

he
du

li
ng

20
14

14
,4

39
14

15
,3

63
13

11
,2

05
14

11
,8

04
15

9,
32

3
15

10
,8

01
14

9,
65

4
Co

ve
r

13
4

9
4

10
4

9
4

10
4

10
4

11
4

9
Ch

ro
ma

ti
c

Nu
mb

er
(C

NP
)

20
20

1,
70

8
20

1,
97

2
20

1,
74

3
20

1,
40

2
20

1,
18

0
20

1,
41

5
20

1,
19

4
Di

vi
de

an
d

Un
iq

ue
In

ve
rs

e
20

16
18

,4
56

16
22

,5
37

16
19

,6
15

16
20

,8
64

16
23

,5
43

16
20

,9
31

16
18

,1
09

Di
sc

re
te

-L
og

ar
it

hm
7

4
3,

64
0

4
7,

62
3

4
3,

34
4

4
4,

71
8

4
4,

89
4

4
5,

88
3

4
3,

62
7

Ed
ge

-M
at

ch
in

g
Pu

zz
le

†
14

3
4,

47
6

3
6,

20
1

2
1,

43
0

4
5,

54
6

4
8,

67
4

4
6,

61
5

4
8,

82
3

Fa
ct

or
in

g
†

32
30

17
,2

24
27

12
,4

97
30

16
,5

54
27

10
,2

97
28

20
,5

28
28

20
,1

06
30

12
,5

46
Fl

oa
ti

ng
-P

oi
nt

Pr
og

ra
m

Ve
ri

fi
ca

ti
on

15
12

97
2

12
87

4
12

1,
02

4
12

1,
05

0
12

1,
07

6
12

99
1

12
77

5
Gr

an
d

To
ur

Pu
zz

le
19

9
1,

83
4

9
2,

03
7

9
1,

77
1

9
2,

04
2

9
2,

06
1

9
2,

15
3

9
1,

78
3

H
ar

d
3-

SA
T

20
18

5,
48

6
19

8,
88

8
18

6,
42

4
19

3,
65

4
18

3,
64

3
19

4,
04

2
19

7,
23

8
Hg

en
13

12
3,

16
8

12
2,

42
3

12
3,

13
4

12
1,

78
3

12
78

3
12

2,
59

0
12

2,
36

5
In

fl
ue

nc
e

Ma
xi

mi
za

ti
on

14
12

9,
61

7
12

7,
42

4
12

9,
47

2
12

10
,0

37
12

9,
98

9
12

10
,1

52
12

6,
86

5
Ka

ku
ro

Pu
zz

le
14

12
15

,7
05

11
13

,9
42

11
10

,3
12

12
16

,3
65

12
16

,2
69

12
16

,2
16

12
14

,5
82

CP 2021

20:12 Combining VSIDS and CHB Using Restarts in SAT

Ta
bl

e
3

C
om

pa
ris

on
be

tw
ee

n
V

SI
D

S,
C

H
B

,s
ta

tic
an

d
M

A
B

st
ra

te
gi

es
an

d
th

e
V

B
S

(o
ve

r
V

SI
D

S
an

d
C

H
B

)
in

te
rm

s
of

th
e

nu
m

be
r

of
so

lv
ed

in
st

an
ce

s
(#

I)
an

d
cu

m
ul

at
iv

e
so

lv
in

g
ti

m
e

(f
or

so
lv

ed
in

st
an

ce
s

in
se

co
nd

s)
in

K
is

sa
t

fo
r

so
m

e
in

st
an

ce
fa

m
ili

es
in

th
e

be
nc

hm
ar

k
(T

ab
le

2
co

nt
in

ue
d)

.
T

he
re

su
lt

s
of

fa
m

ili
es

m
ar

ke
d

w
it

h
†

ar
e

jo
in

t
fr

om
tw

o
di

ffe
re

nt
ye

ar
ly

be
nc

hm
ar

ks
.

Fo
r

ea
ch

ro
w

,t
he

be
st

re
su

lt
s

w
it

ho
ut

co
ns

id
er

in
g

th
e

V
B

S
ar

e
w

ri
tt

en
in

bo
ld

,
br

ea
ki

ng
tie

s
w

ith
m

ill
is

ec
on

ds
if

ne
ce

ss
ar

y.

Fa
m

ily
V

SI
D

S
C

H
B

SS
R

R
U

C
B

1
M

O
SS

V
B

S
na

m
e

#
I

#
I

ti
m

e
#

I
ti

m
e

#
I

ti
m

e
#

I
ti

m
e

#
I

ti
m

e
#

I
ti

m
e

#
I

ti
m

e
k-

Co
lo

ra
bi

li
ty

15
5

7,
92

3
5

6,
52

8
6

12
,3

38
5

5,
16

7
5

6,
99

8
5

5,
54

0
6

10
,6

60
Ke

ys
tr

ea
m

Ge
ne

ra
to

r
Cr

yp
ta

na
ly

si
s

18
18

14
,4

94
14

15
,1

04
18

14
,7

31
18

19
,4

33
18

13
,1

18
18

16
,8

28
18

13
,2

40
La

m-
Di

sc
re

te
-G

eo
me

tr
y

9
7

4,
75

6
7

7,
10

6
7

4,
89

9
7

7,
14

7
7

6,
85

6
7

6,
95

3
7

4,
68

0
Lo

gi
ca

l
Cr

yp
ta

na
ly

si
s

20
20

5,
60

6
20

10
,4

76
20

6,
74

8
20

5,
51

8
20

4,
24

1
20

4,
20

8
20

4,
94

6
Po

ly
no

mi
al

Mu
lt

ip
li

ca
ti

on
†

27
20

28
,8

84
21

27
,8

80
21

33
,0

16
21

27
,1

07
20

23
,6

53
22

30
,5

35
25

41
,3

31
Po

pu
la

ti
on

Sa
fe

ty
15

13
2,

18
8

14
1,

99
1

13
2,

42
3

12
1,

62
4

13
3,

14
8

13
2,

41
7

14
1,

80
9

Pr
ei

ma
ge

11
6

11
,8

65
4

7,
99

8
7

13
,0

70
6

16
,2

01
5

9,
25

5
5

5,
85

2
8

15
,4

35
Re

la
ti

vi
ze

d
Pi

ge
on

ho
le

Pr
in

ci
pl

e
(R

PH
P)

20
11

14
,8

90
10

11
,3

44
11

15
,2

29
10

9,
86

9
11

14
,0

65
11

13
,9

67
11

14
,8

90
Re

ve
rs

in
g

El
em

en
ta

ry
Ce

ll
ul

ar
Au

to
ma

ta
11

11
4,

04
6

11
4,

06
5

11
3,

92
3

11
4,

73
8

11
5,

15
1

11
4,

47
6

11
3,

66
4

Sc
ra

mb
le

d
20

19
7,

02
2

18
9,

27
8

20
11

,4
41

19
8,

11
4

19
14

,5
19

20
15

,1
41

20
6,

08
9

SH
A-

1
Pr

e-
im

ag
e

At
ta

ck
20

20
14

,5
09

20
23

,4
29

20
14

,0
85

19
21

,9
75

20
25

,2
06

20
20

,2
55

20
12

,2
14

So
ci

al
Go

lf
er

14
2

3,
00

8
1

3,
79

1
1

41
0

2
1,

20
2

3
6,

04
6

2
1,

53
0

2
3,

00
8

So
ft

wa
re

Bo
un

de
d

Mo
de

l
Ch

ec
ki

ng
19

18
7,

08
2

18
8,

95
9

18
7,

21
9

18
7,

96
6

18
8,

30
8

18
8,

43
5

18
6,

96
9

St
at

io
n

Re
pa

ck
in

g
12

6
15

,2
86

12
10

,6
56

11
29

,6
69

12
13

,7
52

12
8,

76
6

12
6,

85
5

12
10

,6
56

St
ed

ma
n

Tr
ip

le
s

†
27

10
8,

76
6

11
11

,5
08

11
11

,3
94

12
8,

21
5

12
7,

39
9

13
12

,3
29

11
6,

94
7

SV
Co

mp
et

it
io

n
18

18
7,

52
2

17
3,

35
0

17
4,

22
7

18
7,

25
1

18
7,

93
5

18
7,

82
9

18
5,

57
7

Ti
me

ta
bl

e
†

26
1

15
65

10
50

82
10

28
,4

17
11

5,
60

7
11

6,
24

7
11

5,
15

7
10

5,
08

2
Tr

ee
De

co
mp

os
it

io
n

20
11

12
,0

49
10

6,
87

0
10

7,
94

7
11

4,
70

0
10

3,
96

5
11

5,
67

4
11

7,
87

4
Vl

sa
t

14
3

10
3

7
4,

45
7

4
3,

40
4

7
52

9
7

50
0

7
54

7
7

3,
93

4

M. S. Cherif, D. Habet, and C. Terrioux 20:13

5.3.3 Instance Families
In order to provide a more thorough analysis, we describe in Tables 2 and 3 the results
obtained by VSIDS, CHB, static and MAB strategies and the VBS on instance families
within the benchmark [23, 22, 7]. The best strategy, i.e. MOSS, manages to rank first
in 9 different families over 39 in total (23%), e.g. Antibandwidth, Bitcoin and Stedman
Triples. Interestingly, this strategy achieves remarkable results, which are better than those
of the VBS over VSIDS and CHB, for certain families such as Logical cryptanalysis,
RPHP and Station Repacking. SS also achieves the top performance on several different
families such as Factoring, Scrambled and SHA-1 Pre-image Attack. More precisely, SS
also manages to rank on top for 9 different families which shows the interest of this strategy
even though it ranks last overall compared to RR, UCB1 and MOSS. As for UCB1, it
achieves top rank in 6 different families. In particular, its performance on the families
Hgen, CNP and Keystream Generator Cryptanalysis is noteworthy since it manages to
outperform the VBS. On the other hand, RR ranks top in only 4 instance families but this
does not necessarily reflect its overall performance since it falls slightly behind the top ranked
heuristic/strategy in other families, yet this is clearly another point in favor of UCB1 as
a comparable strategy. Finally, VSIDS and CHB are ranked first in several families which
shows that these heuristics remain robust as standalone heuristics.

5.3.4 MAB Behaviour
In this section, we focus on the behaviour of MAB strategies and particularly the use of arms.
In Figures 7 and 8, we represent the percentage of use, i.e. percentage of restarts where each
arm gets chosen respectively by UCB1 and MOSS. We observe that both strategies alternate
between the heuristics but the percentages are mainly within the interval [40%, 60%] and
are often close to 50%. MOSS seems to choose in a more balanced way between VSIDS
and CHB in comparison to UCB1 which introduces more variations in its choices. This
behaviour is consistent with the observations made in Section 5.3.1 concerning Figure 6. The
fact that the percentages are mostly within a tight interval is not surprising considering
that the number of stable restarts in Kissat, during which heuristics are used, is usually
very low. To give an idea, the average number of stable restarts performed by Kissat for
instances solved with MOSS (resp. UCB1) is 765 (resp. 771) while the median value is much
lower and amounts to 313 (resp. 338). Therefore, the obtained percentages seem adequate
especially taking into account that these strategies need to achieve a good trade-off between
exploration and exploitation. Notice the consecutive dents and bumps in Figures 7 and
8 which correspond to an homogeneous behaviour within the same instance family in the
benchmark. It is important to note that, although the behaviour of MAB strategies may
seem close to RR, this is not exactly the case. Indeed, these strategies rely on the computed
reward to choose the most relevant arm during exploitation and especially when there is a
large gap between the performance of the heuristics, whereas RR is a static strategy and
cannot adapt its choices. This helps to explain the better results of the MAB strategies not
only in terms of solved instances but also in terms of solving time and particularly in the
case of MOSS. In fact, the remarkable performance of MOSS is also due to the fact that it
takes into account the number of arms and has better regret than UCB1.

5.4 On MAB strategies and Branching Heuristics
In this section, we discuss the relevance of choosing Upper Confidence Bound strategies in the
Multi-Armed Bandit framework and VSIDS and CHB as candidate heuristics. As mentioned
in Section 3.2, many strategies were divised and theoretically studied in the context of

CP 2021

20:14 Combining VSIDS and CHB Using Restarts in SAT

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200

%
 o

f
re

st
ar

ts

instances

VSIDS CHB

Figure 7 Percentages of use of each arm in UCB1 w.r.t the whole benchmark. The instances
are reported consecutively for each yearly benchmark (from 2018 to 2020) and are alphabetically
ordered. For unsolved instances, the percentages of use at the timeout are provided.

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200

%
 o

f
re

st
ar

ts

instances

VSIDS CHB

Figure 8 Percentages of use of each arm in MOSS w.r.t the whole benchmark. The instances
are reported consecutively for each yearly benchmark (from 2018 to 2020) and are alphabetically
ordered. For unsolved instances, the percentages of use at the timeout are provided.

MAB and can therefore be used in our framework. For instance, we can mention two other
well-know strategies for MAB: ϵ-greedy [38] and EXP3 [6]. However, these strategies are
not deterministic, i.e. there is a factor of uncertainty or probability. Therefore, unlike UCB
strategies, they cannot always guarantee top performance and may produce different results
on the same benchmark. Furthermore, UCB strategies were shown relevant and more efficient
for similar MAB frameworks in the context of CSP [36, 41, 13]. This remains true in Kissat
as we observed, through extensive experimentation, that ϵ-greedy and EXP3 perform poorly
compared to UCB strategies and remain comparable to VSIDS and CHB.

In addition, notice that the MAB framework enables the use of several heuristics. In fact,
one would argue that adding more heuristics may enable to reach more families and instances
through diversification. However, recall that modern SAT solvers, and in particular Kissat,
are highly competitive and rely on powerful heuristics to achieve impressive results. A bad
heuristic or tuning of the parameters (e.g. the restart policy settings) can greatly deteriorate
the performance of a solver. Furthermore, practically all heuristics used in modern SAT
solvers are variants of VSIDS, which has been the dominant heuristic since its introduction
in 2001 [35]. Only recently CHB has been introduced and shown competitive with VSIDS
[29]. CHB has only one variant called LRB [30] but, through extensive experimentation,
CHB turned out to be more robust with respect to different solvers and settings. The results

M. S. Cherif, D. Habet, and C. Terrioux 20:15

reported in Table 1 also show that CHB can reach new instances (the VBS achieves a gain of
more than 5.8% in terms of solved instances) while remaining competitive and comparable
overall with respect to VSIDS in the context of a highly competitive solver such as Kissat.

5.4.1 Kissat_MAB at the SAT Competition 2021

We submitted the solver Kissat augmented with a MAB framework relying on the UCB1
strategy to the SAT competition 20212 under the name Kissat_MAB [14]. This solver won
the Main Track of the competition and managed to solve 296 instances over 400 with a gap
of 8 instances compared to the second ranked solver. Kissat_MAB also placed first in the
Main SAT and NoLimits tracks. Compared to default Kissat, which also participated in the
competition under the name Kissat_sc2021_default with several new improvements over its
last version [11], Kissat_MAB achieves better results with 9 (resp. 11) additional solved (resp.
satisfiable) instances. Furthermore, Kissat_MAB remains highly competitive on unsatisfiable
instances and comparable to default Kissat as it managed to solve 148, only 2 instances less
than Kissat_sc2021_default. Notice that this gap can clearly be narrowed or even turned in
favor of Kissat_MAB if the MOSS strategy is used as shown in our experimental evaluation.
To summarize, the results of the SAT competition 2021 seem to corroborate our experimental
study and to confirm the relevance of combining VSIDS and CHB using restarts in improving
the performance of highly competitive SAT solvers.

6 Conclusion and Future Work

In this paper, we evaluated different strategies which take advantage of the restart mechanism
to combine two state of the art heuristics, namely VSIDS and CHB. In particular, we
introduced a MAB framework for SAT and chose two known Upper Confidence Bound
strategies, called UCB1 and MOSS. These strategies rely on a reward function which
evaluates the capacity of the heuristics to reach conflicts quickly and efficiently. Our
experimental evaluation shows that VSIDS and CHB are compatible since their combination
through different strategies taking advantage of the restart mechanism is able to substantially
increase the performance of the competitive solver Kissat. In particular, the MOSS strategy
outperforms not only VSIDS and CHB but also all the other strategies. The strategies UCB1
and RR have also shown competitive results. These three strategies achieve substantial gain
in terms of solved instances, mainly satisfiable ones, and in terms of solving time. Moreover,
these strategies achieve results which are very close to the VBS over VSIDS and CHB. Our
solver Kissat_MAB won the Main track of the SAT competition 2021 and placed first in the
Main SAT and NoLimits tracks thus showing the relevance of combining VISDS and CHB
using restarts and its ability to improve the performance of highly competitive SAT solvers.

As future work, it would be interesting to refine the reward function used in MAB
strategies by relying on a combination of different criteria [15] so as to improve the MAB
framework especially with respect to unsatisfiable instances. It would also be interesting to
focus on one heuristic and try to refine it using a similar MAB framework, an approach which
was shown relevant in the context of the Constraint Satisfaction Problem (CSP) [13]. Finally,
it would be interesting to use these strategies to improve other components in modern SAT
solvers such as clause deletion [2].

2 Results and source code available on https://satcompetition.github.io/2021/.

CP 2021

https://satcompetition.github.io/2021/

20:16 Combining VSIDS and CHB Using Restarts in SAT

References
1 Rajeev Agrawal. Sample mean based index policies by O(log n) regret for the multi-armed

bandit problem. Advances in Applied Probability, 27(4):1054–1078, 1995. doi:10.2307/
1427934.

2 Gilles Audemard and Laurent Simon. Predicting Learnt Clauses Quality in Modern SAT
Solvers. In Craig Boutilier, editor, Proceedings of the 21st International Joint Conference
on Artifical Intelligence, IJCAI’09, page 399–404, San Francisco, CA, USA, 2009. Morgan
Kaufmann Publishers Inc. URL: https://www.ijcai.org/Proceedings/09/Papers/074.pdf.

3 Gilles Audemard and Laurent Simon. Refining Restarts Strategies for SAT and UNSAT. In
Michela Milano, editor, Principles and Practice of Constraint Programming - 18th International
Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012. Proceedings, volume
7514 of Lecture Notes in Computer Science, pages 118–126. Springer, 2012. doi:10.1007/
978-3-642-33558-7_11.

4 Jean-Yves Audibert and Sébastien Bubeck. Minimax Policies for Adversarial and Stochastic
Bandits. In COLT 2009 - The 22nd Conference on Learning Theory, Montreal, Quebec, Canada,
June 18-21, 2009, 2009. URL: http://www.cs.mcgill.ca/%7Ecolt2009/papers/022.pdf.

5 Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the Multiarmed
Bandit Problem. Mach. Learn., 47(2-3):235–256, 2002. doi:10.1023/A:1013689704352.

6 Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002. doi:10.1137/
S0097539701398375.

7 Tomáš Balyo, Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda,
editors. Proceedings of SAT Competition 2020: Solver and Benchmark Descriptions, volume B-
2020-1 of Department of Computer Science Series of Publications B. Department of Computer
Science, University of Helsinki, 2020. URL: https://helda.helsinki.fi/bitstream/handle/
10138/318450/sc2020_proceedings.pdf.

8 Armin Biere. Adaptive Restart Strategies for Conflict Driven SAT Solvers. In Hans Kleine
Büning and Xishun Zhao, editors, Theory and Applications of Satisfiability Testing - SAT 2008,
11th International Conference, SAT 2008, Guangzhou, China, May 12-15, 2008. Proceedings,
volume 4996 of Lecture Notes in Computer Science, pages 28–33. Springer, 2008. doi:
10.1007/978-3-540-79719-7_4.

9 Armin Biere. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Com-
petition 2017. In Tomáš Balyo, Marijn Heule, and Matti Järvisalo, editors, Proc. of SAT
Competition 2017 – Solver and Benchmark Descriptions, volume B-2017-1 of Department of
Computer Science Series of Publications B, pages 14–15. University of Helsinki, 2017.

10 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki, 2020.

11 Armin Biere, Mathias Fleury, and Maximillian Heisinger. CADICAL, KISSAT, PARACOOBA
Entering the SAT Competition 2021. In Proceedings of SAT Competition 2021: Solver and
Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of
Publications B, pages 10–13. University of Helsinki, 2021 .

12 Armin Biere and Andreas Fröhlich. Evaluating CDCL Variable Scoring Schemes. In Marijn
Heule and Sean A. Weaver, editors, Theory and Applications of Satisfiability Testing - SAT
2015 - 18th International Conference, Austin, TX, USA, September 24-27, 2015, Proceedings,
volume 9340 of Lecture Notes in Computer Science, pages 405–422. Springer, 2015. doi:
10.1007/978-3-319-24318-4_29.

13 Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux. On the Refinement of Conflict
History Search Through Multi-Armed Bandit. In 32nd IEEE International Conference on
Tools with Artificial Intelligence, ICTAI 2020, Baltimore, MD, USA, November 9-11, 2020,
pages 264–271. IEEE, 2020. doi:10.1109/ICTAI50040.2020.00050.

https://doi.org/10.2307/1427934
https://doi.org/10.2307/1427934
https://www.ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1007/978-3-642-33558-7_11
https://doi.org/10.1007/978-3-642-33558-7_11
http://www.cs.mcgill.ca/%7Ecolt2009/papers/022.pdf
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1137/S0097539701398375
https://doi.org/10.1137/S0097539701398375
https://helda.helsinki.fi/bitstream/handle/10138/318450/sc2020_proceedings.pdf
https://helda.helsinki.fi/bitstream/handle/10138/318450/sc2020_proceedings.pdf
https://doi.org/10.1007/978-3-540-79719-7_4
https://doi.org/10.1007/978-3-540-79719-7_4
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1109/ICTAI50040.2020.00050

M. S. Cherif, D. Habet, and C. Terrioux 20:17

14 Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux. Kissat_MAB: Combining VSIDS
and CHB through Multi-Armed Bandit. In Proceedings of SAT Competition 2021: Solver
and Benchmark Descriptions, volume B-2021-1 of Department of Computer Science Series of
Publications B, pages 15–16. University of Helsinki, 2021.

15 Wei Chu, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual Bandits with Linear
Payoff Functions. In Geoffrey J. Gordon, David B. Dunson, and Miroslav Dudík, editors,
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, volume 15 of JMLR Proceedings,
pages 208–214. JMLR.org, 2011. URL: http://proceedings.mlr.press/v15/chu11a/chu11a.
pdf.

16 Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC ’71, page 151–158, New York,
NY, USA, 1971. Association for Computing Machinery. doi:10.1145/800157.805047.

17 Todd Deshane, Wenjin Hu, Patty Jablonski, Hai Lin, Christopher Lynch, and Ralph Eric
McGregor. Encoding First Order Proofs in SAT. In Frank Pfenning, editor, Automated
Deduction - CADE-21, 21st International Conference on Automated Deduction, Bremen,
Germany, July 17-20, 2007, Proceedings, volume 4603 of Lecture Notes in Computer Science,
pages 476–491. Springer, 2007. doi:10.1007/978-3-540-73595-3_35.

18 Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, Theory and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.
doi:10.1007/978-3-540-24605-3_37.

19 Carla P Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. Journal of automated reasoning, 24(1-2):67–
100, 2000. doi:10.1023/A:1006314320276.

20 Shai Haim and Marijn Heule. Towards Ultra Rapid Restarts. CoRR, abs/1402.4413, 2014.
arXiv:1402.4413.

21 William D. Harvey and Matthew L. Ginsberg. Limited Discrepancy Search. In Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal
Québec, Canada, August 20-25 1995, 2 Volumes, pages 607–615. Morgan Kaufmann, 1995.
URL: http://ijcai.org/Proceedings/95-1/Papers/080.pdf.

22 Marijn Heule, Matti Järvisalo, and Martin Suda, editors. Proceedings of SAT Race 2019:
Solver and Benchmark Descriptions, volume B-2019-1 of Department of Computer Science
Series of Publications B. Department of Computer Science, University of Helsinki, 2019. URL:
https://helda.helsinki.fi/bitstream/handle/10138/306988/sr2019_proceedings.pdf.

23 Marijn Heule, Matti Juhani Järvisalo, Martin Suda, et al., editors. Proceedings of SAT
Competition 2018: Solver and Benchmark Descriptions, volume B-2018-1 of Department of
Computer Science Series of Publications B. Department of Computer Science, University of Hel-
sinki, 2018. URL: https://helda.helsinki.fi/bitstream/handle/10138/237063/sc2018_
proceedings.pdf.

24 Ted Hong, Yanjing Li, Sung-Boem Park, Diana Mui, David Lin, Ziyad Abdel Kaleq, Nagib
Hakim, Helia Naeimi, Donald S. Gardner, and Subhasish Mitra. QED: Quick Error Detection
tests for effective post-silicon validation. In Ron Press and Erik H. Volkerink, editors, 2011
IEEE International Test Conference, ITC 2010, Austin, TX, USA, November 2-4, 2010, pages
154–163. IEEE Computer Society, 2010. doi:10.1109/TEST.2010.5699215.

25 Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Improving SAT Solver
Heuristics with Graph Networks and Reinforcement Learning. CoRR, abs/1909.11830, 2019.
arXiv:1909.11830.

26 Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules.
Advances in applied mathematics, 6(1):4–22, 1985. doi:10.1016/0196-8858(85)90002-8.

CP 2021

http://proceedings.mlr.press/v15/chu11a/chu11a.pdf
http://proceedings.mlr.press/v15/chu11a/chu11a.pdf
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-540-73595-3_35
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1023/A:1006314320276
http://arxiv.org/abs/1402.4413
http://ijcai.org/Proceedings/95-1/Papers/080.pdf
https://helda.helsinki.fi/bitstream/handle/10138/306988/sr2019_proceedings.pdf
https://helda.helsinki.fi/bitstream/handle/10138/237063/sc2018_proceedings.pdf
https://helda.helsinki.fi/bitstream/handle/10138/237063/sc2018_proceedings.pdf
https://doi.org/10.1109/TEST.2010.5699215
http://arxiv.org/abs/1909.11830
https://doi.org/10.1016/0196-8858(85)90002-8

20:18 Combining VSIDS and CHB Using Restarts in SAT

27 Nadjib Lazaar, Youssef Hamadi, Said Jabbour, and Michèle Sebag. Cooperation control in
Parallel SAT Solving: a Multi-armed Bandit Approach. Research Report RR-8070, INRIA,
2012.

28 Jia Hui Liang, Chanseok, Vijay Ganesh, Krzysztof Czarnecki, and Pascal Poupart. Maple-
COMSPS, MapleCOMSPS_LRB, MapleCOMSPS_CHB. In Proceedings of SAT Competition
2017: Solver and Benchmark Descriptions, page 20–21, 2017.

29 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Exponential Recency
Weighted Average Branching Heuristic for SAT Solvers. In Dale Schuurmans and Michael P.
Wellman, editors, Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA, pages 3434–3440. AAAI Press, 2016. URL:
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12451.

30 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning Rate Based
Branching Heuristic for SAT Solvers. In Nadia Creignou and Daniel Le Berre, editors, Theory
and Applications of Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux,
France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages
123–140. Springer, 2016. doi:10.1007/978-3-319-40970-2_9.

31 Jia Hui Liang, Chanseok Oh, Vijay Ganesh, Krzysztof Czarnecki, and Pascal Poupart. Maple-
COMSPS, MapleCOMSPS_LRB, MapleCOMSPS_CHB. In Proceedings of SAT Competition
2016: Solver and Benchmark Descriptions, page 52–53, 2016.

32 Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of Las Vegas
algorithms. Information Processing Letters, pages 128–133, 1993. doi:10.1109/ISTCS.1993.
253477.

33 Inês Lynce and João Marques-Silva. SAT in Bioinformatics: Making the Case with Haplotype
Inference. In Armin Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability
Testing - SAT 2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006,
Proceedings, volume 4121 of Lecture Notes in Computer Science, pages 136–141. Springer,
2006. doi:10.1007/11814948_16.

34 J.P. Marques-Silva and K.A. Sakallah. GRASP: a search algorithm for propositional satisfiab-
ility. IEEE Transactions on Computers, 48(5):506–521, 1999. doi:10.1109/12.769433.

35 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 530–535. ACM, 2001.
doi:10.1145/378239.379017.

36 Anastasia Paparrizou and Hugues Wattez. Perturbing Branching Heuristics in Constraint
Solving. In Helmut Simonis, editor, Principles and Practice of Constraint Programming -
26th International Conference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020,
Proceedings, volume 12333 of Lecture Notes in Computer Science, pages 496–513. Springer,
2020. doi:10.1007/978-3-030-58475-7_29.

37 Lawrence Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Simon
Fraser University, 2004.

38 Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press, Cambridge, MA, USA, 1998. URL: https:
//www.worldcat.org/oclc/37293240.

39 William R. Thompson. On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25(3-4):285–294, December 1933. doi:
10.1093/biomet/25.3-4.285.

40 Toby Walsh. Search in a Small World. In Proceedings of the 16th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI’99, page 1172–1177, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc. URL: https://www.ijcai.org/Proceedings/99-2/
Papers/071.pdf.

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12451
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1109/ISTCS.1993.253477
https://doi.org/10.1109/ISTCS.1993.253477
https://doi.org/10.1007/11814948_16
https://doi.org/10.1109/12.769433
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-030-58475-7_29
https://www.worldcat.org/oclc/37293240
https://www.worldcat.org/oclc/37293240
https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.1093/biomet/25.3-4.285
https://www.ijcai.org/Proceedings/99-2/Papers/071.pdf
https://www.ijcai.org/Proceedings/99-2/Papers/071.pdf

M. S. Cherif, D. Habet, and C. Terrioux 20:19

41 Hugues Wattez, Frédéric Koriche, Christophe Lecoutre, Anastasia Paparrizou, and Sébastien
Tabary. Learning Variable Ordering Heuristics with Multi-Armed Bandits and Restarts.
In Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro,
Alberto Bugarín, and Jérôme Lang, editors, ECAI 2020 - 24th European Conference on
Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain, volume
325 of Frontiers in Artificial Intelligence and Applications, pages 371–378. IOS Press, 2020.
doi:10.3233/FAIA200115.

42 Wei Xia and Roland H. C. Yap. Learning Robust Search Strategies Using a Bandit-Based
Approach. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, pages 6657–6665. AAAI Press, 2018. URL: https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/17192.

CP 2021

https://doi.org/10.3233/FAIA200115
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17192
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17192

	1 Introduction
	2 Preliminaries
	3 Related Work
	3.1 Branching Heuristics for SAT
	3.1.1 VSIDS
	3.1.2 CHB

	3.2 Multi-Armed Bandit Problem

	4 Strategies to Combine VSIDS and CHB Using Restarts
	4.1 Static and Random Strategies
	4.2 Multi-Armed Bandit Strategies

	5 Experimental Evaluation
	5.1 Experimental Protocol
	5.2 Decisions vs Restarts
	5.3 Comparison of Strategies
	5.3.1 Number of Solved Instances
	5.3.2 Solving Time
	5.3.3 Instance Families
	5.3.4 MAB Behaviour

	5.4 On MAB strategies and Branching Heuristics
	5.4.1 Kissat_MAB at the SAT Competition 2021

	6 Conclusion and Future Work

