
HAL Id: hal-03412594
https://amu.hal.science/hal-03412594

Submitted on 3 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dimensionality reduction for k-distance applied to
persistent homology

Shreya Arya, Jean-Daniel Boissonnat, Kunal Dutta, Martin Lotz

To cite this version:
Shreya Arya, Jean-Daniel Boissonnat, Kunal Dutta, Martin Lotz. Dimensionality reduction for k-
distance applied to persistent homology. Journal of Applied and Computational Topology, 2021, 5,
pp.671-691. �10.1007/s41468-021-00079-x�. �hal-03412594�

https://amu.hal.science/hal-03412594
https://hal.archives-ouvertes.fr


Journal of Applied and Computational Topology (2021) 5:671–691
https://doi.org/10.1007/s41468-021-00079-x

Dimensionality reduction for k-distance applied to
persistent homology

Shreya Arya1 · Jean-Daniel Boissonnat2 · Kunal Dutta3 ·Martin Lotz4

Received: 11 May 2020 / Revised: 19 June 2021 / Accepted: 27 September 2021 /
Published online: 19 October 2021
© The Author(s) 2021

Abstract
Given a set P of n points and a constant k, we are interested in computing the persistent
homology of the Čech filtration of P for the k-distance, and investigate the effec-
tiveness of dimensionality reduction for this problem, answering an open question
of Sheehy (The persistent homology of distance functions under random projection.
In Cheng, Devillers (eds), 30th Annual Symposium on Computational Geometry,
SOCG’14, Kyoto, Japan, June 08–11, p 328, ACM, 2014). We show that any linear
transformation that preserves pairwise distances up to a (1 ± ε) multiplicative factor,
must preserve the persistent homology of the Čech filtration up to a factor of (1−ε)−1.
Our results also show that the Vietoris-Rips andDelaunay filtrations for the k-distance,
as well as the Čech filtration for the approximate k-distance of Buchet et al. [J Comput
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672 S. Arya et al.

Geom, 58:70–96, 2016] are preserved up to a (1± ε) factor. We also prove extensions
of our main theorem, for point sets (i) lying in a region of bounded Gaussian width or
(i i) on a low-dimensional submanifold, obtaining embeddings having the dimension
bounds of Lotz (Proc R Soc A Math Phys Eng Sci, 475(2230):20190081, 2019) and
Clarkson (Tighter bounds for random projections of manifolds. In Teillaud (ed) Pro-
ceedings of the 24th ACM Symposium on Computational Geom- etry, College Park,
MD, USA, June 9–11, pp 39–48, ACM, 2008) respectively. Our results also work in
the terminal dimensionality reduction setting, where the distance of any point in the
original ambient space, to any point in P , needs to be approximately preserved.

Keywords Dimensionality reduction · Johnson-Lindenstrauss lemma · Topological
data analysis · Persistent homology · k-distance · Distance to measure

Mathematics Subject Classification 55N31 · 68U05

1 Introduction

Persistent homology is one of the main tools to extract information from data in
topological data analysis. Given a data set as a point cloud in some ambient space, the
idea is to construct a filtration sequence of topological spaces from the point cloud,
and extract topological information from this sequence. The topological spaces are
usually constructed by considering balls around the data points, in somegivenmetric of
interest, as the open sets. However the usual distance function is highly sensitive to the
presence of outliers and noise. One approach is to use distance functions that are more
robust to outliers, such as the distance-to-a-measure and the related k-distance (for
finite data sets), proposed recently by Chazal et al. (2011) Although this is a promising
direction, an exact implementation can have significant cost in run-time. To overcome
this difficulty, approximations of the k-distance have been proposed recently that led
to certified approximations of persistent homology (Guibas et al. 2013; Buchet et al.
2016). Other approaches involve using kernels (Phillips et al. 2015) and de-noising
algorithms (Buchet et al. 2018; Zhang 2013).

In all the above settings, the sub-routines required for computing persistent homol-
ogy have exponential or worse dependence on the ambient dimension, and rapidly
become unusable in real-time once the dimension grows beyond a few dozens - which
is indeed the case in many applications, for example in image processing, neuro-
biological networks, and data mining (see e.g. Giraud 2014). This phenomenon is
often referred to as the curse of dimensionality.

The Johnson-Lindenstrauss Lemma. One of the simplest and most commonly used
mechanisms to mitigate this curse, is that of random projections, as applied in the
celebrated Johnson-Lindenstrauss lemma (JL Lemma for short) (Johnson and Linden-
strauss 1984). The JL Lemma states that any set of n points in Euclidean space can
be embedded into a space of dimension O(ε−2 log n) with (1 ± ε) distortion. Since
the initial non-constructive proof of this fact by Johnson and Lindenstrauss (1984),
several authors have given successive improvements, e.g., Indyk et al. (1997), Das-
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gupta and Gupta (2003), Achlioptas (2001), Ailon and Chazelle (2009), Matoušek
(2008), Krahmer and Ward (2011), and Kane and Nelson (2014). These address the
issues of efficient construction and implementation, using randommatrices that support
fast multiplication. Dirksen (2016) gave a unified theory for dimensionality reduction
using subgaussian matrices.

In a different direction, variants of the Johnson-Lindenstrauss lemma giving embed-
dings into spaces of lower dimension than the JL bound have been given under several
specific settings. For point sets lying in regions of bounded Gaussian width, a theorem
of Gordon (1988) implies that the dimension of the embedding can be reduced to a
function of the Gaussian width, independent of the number of points. Sarlós (2006)
showed that points lying on a d-flat can be mapped to O(d/ε2) dimensions indepen-
dently of the number of points. Baraniuk andWakin (2009) proved an analogous result
for points on a smooth submanifold of Euclidean space,whichwas subsequently sharp-
ened by Clarkson (2008) (see also Verma (2011)), whose version directly preserves
geodesic distances on the submanifold. Other related results include those of Clarkson
(2008) for sets of bounded doubling dimension and Alon and Klartag (2017) for gen-
eral inner products, with additive error only. Recently, Narayanan and Nelson (2019),
building on earlier results (Elkin et al. 2017; Mahabadi et al. 2018), showed that for
a given set of points or terminals, using just one extra dimension from the Johnson-
Lindenstrauss bound, it is possible to achieve dimensionality reduction in a way that
preserves not only inter-terminal distances, but also distances between any terminal
to any point in the ambient space.

Remark 1 Our results are based on the notion of weighted points, and as in most
applications of the JL lemma, give a reduced dimensionality typically of the order of
hundreds. This is very useful if the ambient dimensionality is much higher magnitude
(e.g. 106). Moreover, some of the above-mentioned variants and generalizations such
as for point sets having bounded Gaussian width or lying on a lower-dimensional
submanifold, the reduced dimensionality is independent of the number of input points,
which allows for still better reductions.

Dimension Reduction and Persistent Homology. The JL Lemma has also been used
by Sheehy (2014) and Lotz (2019) to reduce the complexity of computing persistent
homology. Both Sheehy and Lotz show that the persistent homology of a point cloud
is approximately preserved under random projections (Sheehy 2014; Lotz 2019), up
to a (1± ε) multiplicative factor, for any ε ∈ [0, 1]. Sheehy proves this for an n-point
set, whereas Lotz’s generalization applies to sets of bounded Gaussian width, and also
implies dimensionality reductions for sets of bounded doubling dimension, in terms
of the spread (ratio of the maximum to minimum interpoint distance). However, their
techniques involve only the usual distance to a point set and therefore remain sensitive
to outliers and noise as mentioned earlier. The question of adapting the method of
random projections in order to reduce the complexity of computing persistent homol-
ogy using the k-distance, is therefore a natural one, and has been raised by Sheehy
(2014), who observed that “One notable distance function that is missing from this
paper [i.e. (Sheehy 2014)] is the so-called distance to a measure or . . . k-distance
. . . it remains open whether the k-distance itself is (1 ± ε)-preserved under random
projection.”
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674 S. Arya et al.

Our Contribution In this paper, we combine the method of random projections
with the k-distance and show its applicability in computing persistent homology. It is
not very hard to see that for a given point set P , the random Johnson-Lindenstrauss
mapping preserves the pointwise k-distance to P (Theorem 17). However, this is not
enough to preserve intersections of balls at varying scales of the radius parameter,
and thus does not suffice to preserve the persistent homology of Čech filtrations, as
noted by Sheehy (2014) and Lotz (2019). We show how the squared radius of a set
of weighted points can be expressed as a convex combination of pairwise squared
distances. From this, it follows that the Čech filtration under the k-distance, will be
preserved by any linear mapping that preserves pairwise distances.

Extensions Further, as our main result applies to any linear mapping that approx-
imately preserves pairwise distances, the analogous versions for bounded Gaussian
width, points on submanifolds of R

D , terminal dimensionality reduction and others
apply immediately. Thus, we give several extensions of our results. The extensions
provide bounds which do not depend on the number of points in the sample. The first
one, analogous to Lotz (2019), shows that the persistent homology with respect to the
k-distance, of point sets contained in regions having bounded Gaussian width, can be
preserved via dimensionality reduction, using an embedding with dimension bounded
by a function of the Gaussian width. Another result is that for points lying in a low-
dimensional submanifold of a high-dimensional Euclidean space, the dimension of
the embedding preserving the persistent homology with k-distance depends linearly
on the dimension of the submanifold. Both these settings are commonly encoun-
tered in high-dimensional data analysis and machine learning (see, e.g., the manifold
hypothesis Fefferman et al. 2016). We mention that analogous to Narayanan and Nel-
son (2019), it is possible to preserve the k-distance based persistent homology while
also preserving the distance from any point in the ambient space to every point (i.e.,
terminal) in P (and therefore the k-distance to P), using just one extra dimension.

Run-time and Efficiency In many other applications of the Johnson-Lindenstrauss
dimensionality reduction, multiplying by a dense gaussian matrix is a significant over-
head, and can seriously affect any gains resulting fromworking in a lower dimensional
space. However, as is pointed out in Lotz (2019), in the computation of persistent
homology the dimensionality reduction step is carried out only once for the n data
points at the beginning of the construction. Having said that, it should still be observed
that most of the recent results on dimensionality reduction using sparse subgaussian
matrices (Ailon and Chazelle 2009; Kane and Nelson 2014; Krahmer andWard 2011)
can also be used to compute the k-distance persistent homology, with little to no extra
cost.

Remark 2 It should be noted that the approach of using dimensionality reduction for
the k-distance, is complementary to denoising techniques such as Buchet et al. (2018)
as we do not try to remove noise, only to be more robust to noise. Therefore, it can
be used in conjunction with denoising techniques, as a pre-processing tool when the
dimensionality is high.

Outline The rest of this paper is organized as follows. In Sect. 2, we briefly summarize
some basic definitions and background. Our theorems are stated and proven in Sect. 3.
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Some applications of our results are derived in Sect. 4.We endwith some final remarks
and open questions in Sect. 5.

2 Preliminaries

We need a well-known identity for the variance of bounded random variables, which
will be crucial in the proof of our main theorem. A short probabilistic proof of (1) is
given in the “Appendix”. Let A be a set of points p1, . . . , pl ∈ R

m . A point b ∈ R
m is a

convex combination of the points in A if there exist non-negative reals λ1, . . . , λl ≥ 0
such that b = ∑l

i=1 λi pi and
∑l

i=1 λi = 1.
Let b = ∑k

i=1 λi pi be a convex combination of points p1, . . . , pk ∈ R
D . Then for

any point x ∈ R
D ,

k∑

i=1

λi‖x − pi‖2 = ‖x − b‖2 +
k∑

i=1

λi‖b − pi‖2. (1)

In particular, if λi = 1/k for all i , we have

1

k

k∑

i=1

‖x − pi‖2 = ‖x − b‖2 +
k∑

i=1

1

k
‖b − pi‖2. (2)

2.1 The Johnson–Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma Johnson and Lindenstrauss (1984) states that any
subset of n points of Euclidean space can be embedded in a space of dimension
O(ε−2 log n) with (1 ± ε) distortion. We use the notion of an ε-distortion map with
respect to P (also commonly called a Johnson-Lindenstrauss map).

Definition 1 Given a point set P ⊂ R
D , and ε ∈ (0, 1), a mapping f : R

D → R
d for

some d ≤ D is an ε-distortion map with respect to P , if for all x, y ∈ P ,

(1 − ε)‖x − y‖ ≤ ‖ f (x) − f (y)‖ ≤ (1 + ε)‖x − y‖.

A random variable X with mean zero is said to be subgaussian with subgaussian
norm K if E

[
exp

(
X2/K 2

)] ≤ 2. In this case, the tails of the random variable satisfy

P [|X | ≥ t] ≤ 2 exp
(
−t2/2K 2

)
.

We focus on the case where the Johnson-Lindenstrauss embedding is carried out via
random subgaussian matrices, i.e., matrices where for some given K > 0, each entry
is an independent subgaussian random variable with subgaussian norm K . This case
is general enough to include the mappings of Achlioptas (2001), Ailon and Chazelle
(2009), Dasgupta and Gupta (2003), Indyk et al. (1997), and Matoušek (2008) (see
Dirksen for a unified treatment Dirksen 2016).
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Lemma 2 (JL Lemma) Given 0 < ε, δ < 1, and a finite point set P ⊂ R
D of size

|P| = n. Then a random linear mapping f : R
D → R

d where d = O(ε−2 log n)

given by f (v) =
√

D
d Gv where G is a d × D subgaussian random matrix, is an

ε-distortion map with respect to P, with probability at least 1 − δ.

Definition 3 For ease of recall, we shall refer to a random linear mapping f : R
D →

R
d given by f (v) =

√
D
d Gv where G is a d × D subgaussian random matrix, as a

subgaussian ε-distortion map.

While in the version given here the dimension of the embedding depends on the
number of points in P and subgaussian projections, the JL lemma has been general-
ized and extended in several different directions, some of which are briefly outlined
below. The generalization of the results of this paper to these more general settings is
straightforward.

Sets of Bounded Gaussian Width

Definition 4 Given a set S ⊂ R
D , the Gaussian width of S is

w(S) := E

[

sup
x∈S

〈x, g〉
]

,

where g ∈ R
D is a random standard D-dimensional Gaussian vector.

In several areas like geometric functional analysis, compressed sensing, machine
learning, etc. the Gaussian width is a very useful measure of the width of a set in
Euclidean space (see e.g. Foucart and Rauhut (2013) and the references therein). It
is also closely related to the statistical dimension of a set (see e.g. (Vershynin 2018,
Chapter 7). The following analogue of the Johnson Lindenstrauss lemma for sets of
bounded Gaussian width was given in Lotz (2019). It essentially follows from a result
of Gordon (1988).

Theorem 5 (Lotz 2019, Theorem 3.1) Given ε, δ ∈ (0, 1), P ⊂ R
D, let S :=

{(x− y)/‖x− y‖ : x, y ∈ P}. Then for any d ≥
(
w(S)+√

2 log(2/δ)
)2

ε2
+1, the function

f : R
D → R

d given by f (x) = (√
D/d

)
Gx, where G is a random d × D Gaussian

matrix G, is a subgaussian ε-distortion map with respect to P, with probability at
least 1 − δ.

The result extends to subgaussian matrices with slightly worse constants. One of
the benefits of this version is that the set P does not need to be finite. We refer to Lotz
(2019) for more on the Gaussian width in our context.

Submanifolds of Euclidean Space For point sets lying on a low-dimensional sub-
manifold of a high-dimensional Euclidean space, one can obtain an embedding with
a smaller dimension using the bounds of Baraniuk and Wakin (2009) or Clarkson
(2008), which will depend only on the parameters of the submanifold.

Clarkson’s theorem is summarised below.
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Theorem 6 (Clarkson 2008) There exists an absolute constant c > 0 such that, given a
connected, compact, orientable, differentiable μ-dimensional submanifold M ⊂ R

D,

and ε, δ ∈ (0, 1), a random projection map f : R
D → R

d , given by v �→
√

D
d Gv,

where G is a d × D subgaussian random matrix, is an ε-distortion map with respect
to P, with probability at least 1 − δ, for

d ≥ c

(
μ log(1/ε) + log(1/δ)

ε2
+ C(M)

ε2

)

,

where C(M) depends only on M.

Terminal Dimensionality Reduction In a recent breakthrough result, Narayanan and
Nelson (2019) showed that it is possible to (1 ± O(ε))-preserve distances from a set
of n terminals in a high-dimensional space to every point in the space, using only one
dimension more than the Johnson-Lindenstrauss bound.

A summarized version of their theorem is as follows. The derivation of the second
statement is given in the “Appendix”.

Theorem 7 (Narayanan and Nelson 2019, Theorem 3.2, Lemma 3.2) Given terminals
x1, . . . , xn ∈ R

D and ε ∈ (0, 1), there exists a non-linear map f : R
D → R

d ′
with

d ′ = d + 1, where d = O
(
log n
ε2

)
is the bound given in Lemma 2, such that f is an ε-

distortion map for any pairwise distance between xi , x j ∈ P, and an O(ε)-distortion
map for the distances between any pairs of points (x, u), where x ∈ P and u ∈ R

D.
Further, the projection of f to its first d − 1 coordinates is a subgaussian ε-distortion
map.

As noted in Narayanan and Nelson (2019), any such map must necessarily be non-
linear. Suppose not, then on translating the origin to be a terminal, it follows that the
Euclidean norm of each point on the unit sphere around the origin must be O(ε)-
preserved, which means that the dimension of any embedding given by a linear map
would not be any less than the original dimension.

2.2 k-distance

The distance to a finite point set P is usually taken to be the minimum distance to a
point in the set. For the computations involved in geometric and topological inference,
however, this distance is highly sensitive to outliers andnoise.Tohandle this problemof
sensitivity, Chazal et al. in Chazal et al. (2011) introduced the distance to a probability
measure which, in the case of a uniform probability on P , is called the k-distance.

Definition 8 (k-distance) For k ∈ {1, ..., n} and x ∈ R
D , the k-distance of x to P is

dP,k(x) = min
Sk∈(Pk )

√
√
√
√

1

k

∑

p∈Sk
‖x − p‖2 =

√
√
√
√

1

k

∑

p∈NNk
P (x)

‖x − p‖2 (3)

where NNk
P (x) ⊂ P denotes the k nearest neighbours in P to the point x ∈ R

D .
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It was shown in Aurenhammer (1990), that the k-distance can be expressed in terms
of weighted points and power distance. A weighted point p̂ is a point p ofR

D together
with a (not necessarily positive) real number called its weight and denoted by w(p).
The power distance between a point x ∈ R

D and a weighted point p̂ = (p, w(p)),
denoted by D(x, p̂) is ‖x − p‖2 − w(p), i.e. the power of x with respect to a ball
of radius

√
w(p) centered at p. The distance between two weighted points p̂i =

(pi , w(i)) and p̂ j = (p j , w( j)) is defined as D( p̂i , p̂ j ) = ‖pi − p j‖2−w(i)−w( j).
This definition encompasses the case where the two weights are 0, in which case we
have the squared Euclidean distance, and the case where one of the points has weight
0, in which case, we have the power distance of a point to a ball. We say that two
weighted points are orthogonal when their weighted distance is zero.
Let BP,k be the set of iso-barycentres of all subsets of k points in P . To each barycenter
b ∈ BP,k , b = (1/k)

∑
i pi , we associate the weight w(b) = − 1

k

∑
i ‖b− pi‖2. Note

that, despite the notation, this weight does not only depend on b, but also on the set of
points in P for which b is the barycenter. Writing B̂P,k = {b̂ = (b, w(b)), b ∈ BP,k},
we see from (2) that the k-distance is the square root of a power distance (Aurenhammer
1990)

dP,k(x) = min
b̂∈B̂P,k

√

D(x, b̂). (4)

Observe that in general the squared distance between a pair of weighted points can be
negative, but the above assignment of weights ensures that the k-distance dP,k is a real
function. Since dP,k is the square root of a non-negative power distance, the α-sublevel
set of dP,k , dP,k([−∞, α]), α ∈ R, is the union of

(n
k

)
balls B(b,

√
α2 + w(b)),

b ∈ BP,k . However, some of the balls may be included in the union of others and
be redundant. In fact, the number of barycenters (or equivalently of balls) required
to define a level set of dP,k is equal to the number of the non-empty cells in the kth-
order Voronoi diagram of P . Hence the number of non-empty cells is �

(
n�(D+1)/2�)

(Clarkson and Shor 1989) and computing them in high dimensions is intractable. It is
then natural to look for approximations of the k-distance, as proposed in Buchet et al.
(2016).

Definition 9 (Approximation) Let P ⊂ R
D and x ∈ R

D . The approximate k-distance
d̃P,k(x) is defined as

d̃P,k(x) := min
p∈P

√
D(x, p̂) (5)

where p̂ = (p, w(p)) with w(p) = −d2P,k(p), the negative of the squared k-distance
of p.

In other words, we replace the set of barycenters with P . As in the exact case,
d̃P,k is the square root of a power distance and its α-sublevel set, α ∈ R, is a union

of balls, specifically the balls B(p,
√

α2 − d2P,k(p)), p ∈ P . The major difference

with the exact case is that, since we consider only balls around the points of P , their
number is n instead of

(n
k

)
in the exact case (compare Eq. (5) and Eq. (4)). Still, d̃P,k(x)
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approximates the k-distance (Buchet et al. 2016):

1√
2
dP,k ≤ d̃P,k ≤ √

3 dP,k . (6)

We nowmake an observation for the case when the weighted points are barycenters,
which will be useful in proving our main theorem.

Lemma 10 If b1, b2 ∈ BP,k , and pi,1, . . . , pi,k ∈ P for i = 1, 2, such that bi =
1
k

∑k
l=1 pi,l , and w(bi ) = 1

k

∑k
l=1 ‖bi − pi,l‖2 for i = 1, 2, then

D(b̂1, b̂2) = 1

k2

k∑

l,s=1

‖p1,l − p2,s‖2.

Proof We have

D(b̂1, b̂2) = ‖b1 − b2‖2 − w(b1) − w(b2)

= ‖b1 − b2‖2 + 1

k

k∑

l=1

‖b1 − p1,l‖2 + 1

k

k∑

l=1

‖b2 − p2,l‖2.

Applying the identity (2), we get ‖b1 −b2‖2 + 1

k

∑k
l=1 ‖b2 − p2,l‖2 = 1

k

∑k
l=1 ‖b1 −

p2,l‖2, so that

D(b̂1, b̂2) = 1

k

k∑

l=1

‖b1 − p2,l‖2 + 1

k

k∑

l=1

‖b1 − p1,l‖2

= 1

k

k∑

l=1

‖b1 − p2,l‖2 + 1

k2

k∑

s=1

k∑

l=1

‖b1 − p1,l‖2

= 1

k

k∑

l=1

(

‖b1 − p2,l‖2 + 1

k

k∑

s=1

‖b1 − p1,s‖2
)

= 1

k

k∑

l=1

(
1

k

k∑

s=1

‖p1,s − p2,l‖2
)

= 1

k2

k∑

l,s=1

‖p1,s − p2,l‖2, (7)

where in (7), we again applied (2) to each of the points p2,s , with respect to the
barycenter b1. ��

2.3 Persistent homology

Simplicial Complexes and Filtrations Let V be a finite set. An (abstract) simplicial
complex with vertex set V is a set K of finite subsets of V such that if A ∈ K and
B ⊆ A,
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680 S. Arya et al.

then B ∈ K . The sets in K are called the simplices of K . A simplex F ∈ K that is
strictly contained in a simplex A ∈ K , is said to be a face of A.

A simplicial complex K with a function f : K → R such that f (σ ) ≤ f (τ )

whenever σ is a face of τ is a filtered simplicial complex. The sublevel set of f at
r ∈ R, f −1 (−∞, r ], is a subcomplex of K . By considering different values of r , we
get a nested sequence of subcomplexes (called a filtration) of K , ∅ = K 0 ⊆ K 1 ⊆
... ⊆ Km = K , where Ki is the sublevel set at value ri .

The Čech filtration associated to a finite set P of points in R
D plays an important

role in Topological Data Analysis.

Definition 11 (ČechComplex)The Čech complex Čα(P) is the set of simplicesσ ⊂ P
such that rad(σ ) ≤ α, where rad(σ ) is the radius of the smallest enclosing ball of σ ,
i.e.

rad(σ ) = min
x∈RD

max
pi∈σ

‖x − pi‖.

When the threshold α goes from 0 to +∞, we obtain the Čech filtration of P . Čα(P)

can be equivalently defined as the nerve of the closed balls B(p, α), centered at the
points in P and of radius α:

Čα(P) = {σ ⊂ P| ∩p∈σ B(p, α) �= ∅}.

By the nerve lemma, we know that the union of ballsUα = ∪p∈P B(p, α), and Čα(P)

have the same homotopy type.

Persistence Diagrams Persistent homology is a means to compute and record the
changes in the topology of the filtered complexes as the parameter α increases from
zero to infinity. Edelsbrunner et al. (2002) gave an algorithm to compute the persistent
homology, which takes a filtered simplicial complex as input, and outputs a sequence
(αbir th, αdeath) of pairs of real numbers. Each such pair corresponds to a topological
feature, and records the values of α at which the feature appears and disappears,
respectively, in the filtration. Thus the topological features of the filtration can be
represented using this sequence of pairs, which can be represented either as points
in the extended plane R̄

2 = (R ∪ {−∞,∞})2, called the persistence diagram, or as
a sequence of barcodes (the persistence barcode) (see, e.g., Edelsbrunner and Harer
(2010)). A pair of persistence diagrams G and H corresponding to the filtrations
(Gα) and (Hα) respectively, are multiplicatively β-interleaved, (β ≥ 1), if for all
α, we have that Gα/β ⊆ Hα ⊆ Gαβ . We shall crucially rely on the fact that a given
persistence diagram is closely approximated by another one if they aremultiplicatively
c-interleaved, with c close to 1 (see e.g. Chazal et al. (2016)).

The Persistent Nerve Lemma (Chazal and Oudot 2008) shows that the persistent
homology of the Čech complex is the same as the homology of the α-sublevel filtration
of the distance function.

TheWeighted CaseOur goal is to extend the above definitions and results to the case of
the k-distance. As we observed earlier, the k-distance is a power distance in disguise.
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Accordingly, we need to extend the definition of the Čech complex to sets of weighted
points.

Definition 12 (Weighted Čech Complex) Let P̂ = { p̂1, ..., p̂n} be a set of weighted
points, where p̂i = (pi , w(i)). The α-Čech complex of P̂ , Čα(P̂), is the set of all
simplices σ satisfying

∃x, ∀pi ∈ σ, ‖x − pi‖2 ≤ w(i) + α2 ⇔ ∃x, ∀pi ∈ σ, D(x, p̂i ) ≤ α2.

In other words, the α-Čech complex of P̂ is the nerve of the closed balls B(pi , r2i =
w(i) + α2), centered at the pi and of squared radius w(i) + α2 (if negative, B(pi , r2i )

is imaginary).

The notions of weighted Čech filtrations and their persistent homology now follow
naturally. Moreover, it follows from (4) that the Čech complex Čα(P) for the k-
distance is identical to the weighted Čech complex Čα(B̂P,k), where B̂P,k is, as above,
the set of iso-barycenters of all subsets of k points in P .

In the Euclidean case, we equivalently defined theα-Čech complex as the collection
of simplices whose smallest enclosing balls have radius at most α. We can proceed
similarly in the weighted case. Let X̂ ⊆ P̂ . We define the squared radius of X̂ as

rad2(X̂) = min
x∈RD

max
p̂i∈X̂

D(x, p̂i ),

and the weighted center or simply the center of X̂ as the point, noted c(X̂), where the
minimum is reached.

Our goal is to show that preserving smallest enclosing balls in theweighted scenario
under a given mapping, also preserves the persistent homology. Sheehy (2014) and
Lotz (2019), proved this for the unweighted case. Their proofs also work for the
weighted case but only under the assumption that the weights stay unchanged under
the mapping. In our case however, the weights need to be recomputed in f (P̂). We
therefore need a version of (Lotz 2019, Lemma 2.2) for the weighted case which
does not assume that the weights stay the same under f . This is Lemma 16, which
follows at the end of this section. The following lemmaswill be instrumental in proving
Lemma 16 and in proving our main result. Let X̂ ⊆ P̂ and assume without loss of
generality that X̂ = { p̂1, ..., p̂m}, where p̂i = (pi , w(i)).

Lemma 13 c(X̂) and rad(X̂) are uniquely defined.

Proof of Lemma 13 The proof follows from the convexity of D (see Lemma 10).
Assume, for a contradiction, that there exists two centers c0 and c1 �= c0 for X̂ .
For convenience, write r = rad(X̂). By the definition of the center of X̂ , we have

∃ p̂0,∀ p̂i : D(c0, p̂i ) ≤ D(c0, p̂0) = ‖c0 − p0‖2 − w(0) = r2

∃ p̂1,∀ p̂i : D(c1, p̂i ) ≤ D(c1, p̂1) = ‖c1 − p1‖2 − w(1) = r2.

Consider Dλ( p̂i ) = (1− λ)D(c0, p̂i ) + λD(c1, p̂i ) and write cλ = (1− λ)c0 + λc1.
For any λ ∈ (0, 1), we have
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Dλ( p̂i ) = (1 − λ)D(c0, p̂i ) + λD(c1, p̂i )

= (1 − λ)(c0 − pi )
2 + λ(c1 − pi )

2 − w(i)

= D(cλ, p̂i ) − c2λ + (1 − λ)c20 + λc21
= D(cλ, p̂i ) + λ(1 − λ)(c0 − c1)

2

> D(cλ, p̂i ).

Moreover, for any i ,

Dλ( p̂i ) = (1 − λ)D(c0, p̂i ) + λD(c1, p̂i ) ≤ r2.

Thus, for any i and any λ ∈ (0, 1), D(cλ, p̂i ) < r2. Hence cλ is a better center
than c0 and c1, and r is not the minimal possible value for rad(X̂). We have obtained
a contradiction. ��
Lemma 14 Let I be the set of indices for which D(c, p̂i ) = rad2(X̂) and let X̂ I =
{ p̂i , i ∈ I }. Then there exist (λi > 0)i∈I such that c(X̂) = ∑

i∈I λi pi with
∑

i∈I λi =
1.

Proof of Lemma 14 Wewrite for convenience c = c(X̂) and r = rad(X̂) and prove that
c ∈ conv(XI ) by contradiction. Let c′ �= c be the point of conv(XI ) closest to c, and
c̃ �= c be a point on [cc′]. Since ‖c̃− pi‖ < ‖c− pi‖ for all i ∈ I , D(c̃, p̂i ) < D(c, p̂i )
for all i ∈ I . For c̃ sufficiently close to c, c̃ remains closer to the weighted points p̂ j ,
j /∈ I , than to the p̂i , i ∈ I . We thus have

D(c̃, p̂ j ) < D(c̃, p̂i ) < D(c, p̂i ) = r2.

It follows that c is not the center of X̂ , a contradiction. ��
Combining the above results with (Lotz 2019, Lemma 4.2) gives the following

lemma.

Lemma 15 Let I , (λi )i∈I be as in Lemma 14. Then the following holds.

rad2(X̂) = 1

2

∑

i∈I

∑

j∈I
λiλ j D( p̂i , p̂ j ).

Proof of Lemma 15 From Lemma 14, and writing c = c(X̂) for convenience, we have

rad2(X̂) =
∑

i∈I
λi

(‖c − pi‖2 − w(i)
)
.

We use the following simple fact from (Lotz 2019, Lemma 4.5) (a probabilistic proof
is included in the “Appendix”, Lemma 25).

∑

i∈I
λi‖c − pi‖2 = 1

2

∑

i∈I

∑

j∈I
λiλ j‖pi − p j‖2.
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Substituting in the expression for rad2(X̂),

rad2(X̂) = 1

2

∑

j∈I

∑

i∈I
λ jλi‖pi − p j‖2 − 1

2

∑

i∈I
2λiw(i)

= 1

2

∑

i, j∈I
λ jλi‖pi − p j‖2 − 1

2

∑

i, j∈I
2λiλ jw(i) (since

∑

j∈I
λ j = 1)

= 1

2

∑

i, j∈I
λ jλi‖pi − p j‖2 − 1

2

∑

i, j∈I
λiλ j (w(i) + w( j))

= 1

2

∑

i, j∈I
λiλ j

(
‖pi − p j‖2 − w(i) − w( j)

)
= 1

2

∑

i, j∈I
λiλ j D( p̂i , p̂ j ).

��
Let X ∈ R

D be a finite set of points and X̂ be the associated weighted points
where the weights are computed according to a weighting function w : X → R

−.
Given a mapping f : R

D → R
d , we define f̂ (X) as the set of weighted points

{( f (x), w( f (x))), x ∈ X}. Note that the weights are recomputed in the image space
R
d .

Lemma 16 In the above setting, if f is such that for some ε ∈ (0, 1) and for all subsets
Ŝ ⊆ X̂ we have

(1 − ε)rad2(Ŝ) ≤ rad2( f̂ (S)) ≤ (1 + ε)rad2(Ŝ),

then the weighted Čech filtrations of X̂ and f (X̂) are multiplicatively (1 − ε)−1/2

interleaved.

3 "-distortionmaps preserve k-distance Čech filtrations

For the subsequent theorems, we denote by P a set of n points in R
D .

Our first theorem shows that for the points in P , the pointwise k-distance dP,k is
approximately preserved by a random subgaussian matrix satisfying Lemma 2.

Theorem 17 Given ε ∈ (0, 1], any ε-distortion map with respect to P f : R
D → R

d ,
where d = O(ε−2 log n) satisfies for all points x ∈ P:

(1 − ε)d2P,k(x) ≤ d2f (P),k( f (x)) ≤ (1 + ε)d2P,k(x).

Proof of Theorem 17 The proof follows from the observation that the squared k-
distance from any point p ∈ P to the set P , is a convex combination of the squares
of the Euclidean distances to the k nearest neighbours of p. Since the mapping in the
JL Lemma 2 is linear and (1 ± ε)-preserves squared pairwise distances, their convex
combinations also get (1 ± ε)-preserved. ��
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As mentioned previously, the preservation of the pointwise k-distance does not
imply the preservation of the Čech complex formedusing the points in P . Nevertheless,
the following theorem shows that this can always be done in dimension O(log n/ε2).

Let B̂P,k be the set of iso-barycenters of every k-subset of P , weighted as in
Sect. 2.2. Recall from Sect. 2.3 that the weighted Čech complex Čα(B̂P,k) is identical
to the Čech complex Čα(P) for the k-distance. We now want to apply Lemma 16, for
which the following theorem will be needed.

Theorem 18 (k-distance) Let σ̂ ⊆ B̂P,k be a simplex in the weighted Čech complex
Čα(B̂P,k). Then, given d ≤ D such that there exists a ε-distortion map f : R

D → R
d

with respect to P, it holds that

(1 − ε)rad2(σ̂ ) ≤ rad2( f̂ (σ )) ≤ (1 + ε)rad2(σ̂ ).

Proof of Theorem 18 Let σ̂ = {b̂1, b̂2, ..., b̂m}, where b̂i is the weighted point defined
in Sect. 2.3, i.e. b̂i = (bi , w(bi )) with bi ∈ BP,k and w(bi ) = − 1

k

∑k
l=1 ‖bi − pil‖2,

where pi,1, . . . , pi,k ∈ P are such that bi = 1
k

∑k
j=1 pi, j . Applying Lemma 15 to σ̂ ,

we have that

rad2(σ̂ ) = 1

2

∑

i, j∈I
λiλ j D(b̂i , b̂ j ). (8)

ByLemma10, the distance between b̂i and b̂ j is D(b̂i , b̂ j ) = 1
k2

∑k
l,s=1 ‖pi,l− p j,s‖2.

As this last expression is a convex combination of squared pairwise distances of points
in P , it is (1± ε)-preserved by any ε-distortion map with respect to P , which implies
that the convex combination rad2(σ̂ ) = 1

2

∑
i, j∈I λiλ j D( p̂i , p̂ j ) corresponding to

the squared radius of σ in R
D , will be (1 ± ε)-preserved.

Let f : R
D → R

d be an ε-distortion map with respect to P , from R
D to R

d , where
d will be chosen later. By Lemma 15, the centre of f̂ (σ ) is a convex combination of the
points ( f (bi ))mi=1. Let the centre c( f̂ (σ )) be given by c( f̂ (σ )) = ∑

i∈I νi D( f̂ (bi )).
where for i ∈ I , νi ≥ 0,

∑
i νi = 1. Consider the convex combination of power

distances
∑

i, j∈I νiν j D(b̂i , b̂ j ). Since f is an ε-distortion map with respect to P , by
Lemmas 10 and 2 we get

1

2
(1 − ε)

∑

i, j∈I
νiν j D(b̂i , b̂ j ) ≤ 1

2

∑

i, j∈I
νiν j D( f̂ (bi ), f̂ (b j )) = rad2( f̂ (σ )).

(9)

On the other hand, since the squared radius is a minimizing function by definition, we
get that

rad2(σ̂ ) = 1

2

∑

i, j∈I
λiλ j D(b̂i , b̂ j ) ≤ 1

2

∑

i, j∈I
νiν j D(b̂i , b̂ j ) (10)

≤ 1

(1 − ε)
rad2( f (σ )), by (9).
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rad2( f̂ (σ )) = 1

2

∑

i, j∈I
νiν j D( f̂ (bi ), f̂ (b j )) ≤ 1

2

∑

i, j∈I
λiλ j D( f̂ (bi ), f̂ (b j )).

(11)

Combining the inequalities (9), (10), (11) gives

(1 − ε)rad2(σ̂ ) ≤ rad2( f̂ (σ )) ≤ 1

2

∑

i, j∈I
λiλ j D( f̂ (bi ), f̂ (b j )) ≤ (1 + ε)rad2(σ̂ ).

where the final inequality follows by Lemma 2, since f is an ε-distortion map with
respect to P . Thus, we have that

(1 − ε)rad2(σ̂ ) ≤ rad2( f̂ (σ )) ≤ (1 + ε)rad2(σ̂ ),

which completes the proof of the theorem. ��
Theorem 19 (Approximate k-distance) Let P̂ be the weighted points associated with
P, introduced in Definition 9 (Equ. 5). Let, in addition, σ̂ ⊆ P̂ be a simplex in the
associated weighted Čech complex Čα(P̂). Then an ε-distortion mapping with respect
to P, f : R

D → R
d satisfies: (1 − ε)rad2(σ̂ ) ≤ rad2( f̂ (σ )) ≤ (1 + ε)rad2(σ̂ ).

Proof of Theorem 19 Recall that, in Sect. 2.2, we defined the approximate k-distance to
be d̃P,k(x) := minp∈P

√
D(x, p̂), where p̂ = (p, w(p)) is a weighted point, having

weightw(p) = −d2P,k(p). So, the Čech complexwould be formed by the intersections
of the balls around the weighted points in P . The proof follows on the lines of the proof
of Theorem 18. Let σ̂ = { p̂1, p̂2, ..., p̂m}, where p̂1, . . . , p̂m are weighted points in
P̂ , and let c(σ̂ ) be the center of σ̂ . Applying again Lemma 15, we get

rad2(σ̂ ) = 1

2

∑

i, j∈I
λiλ j‖pi − p j‖2 +

∑

i∈I
λiw(pi ) =

∑

i, j∈I ;i< j

λiλ j‖pi − p j‖2 +
∑

i∈I
λiw(pi ),

where w(p) = d2P,k(p). In the second equality, we used the fact that the summand
corresponding to a fixed pair of distinct indices i < j is being counted twice and that
the contribution of the terms corresponding to indices i = j is zero. An ε-distortion
map with respect to P preserves pairwise distances and the k-distance in dimension
O(ε−2 log n). The result then follows as in the proof of Theorem 18. ��

Applying Lemma 16 to the theorems 18 and 19, we get the following corollary.

Corollary 20 The persistent homology for the Čech filtrations of P and its image f (P)

under any ε-distortion mapping with respect to P, using the (i) exact k-distance, as
well as the (i i) approximate k-distance, are preserved upto a multiplicative factor of
(1 − ε)−1/2.

However, note that the approximation in Corollary 20 (i i) is with respect to the
approximate k-distance, which is itself an approximation of the k-distance by a dis-
tortion factor 3

√
2, (i.e. bounded away from 1 – see (6)).
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4 Extensions

As Theorem 18 applies to arbitrary ε-distortion maps, it naturally follows that many
of the extensions and variants of the JL Lemma, e.g. discussed in Sect. 2.1, have their
corresponding versions for the k-distance as well. In this section we elucidate some
of the corresponding extensions of Theorem 18.

These can yield better bounds for the dimension of the embedding, stronger
dimensionality reduction results, or easier to implement reductions in their respec-
tive settings.

The first result in this section, is for point sets contained in a region of bounded
Gaussian width.

Theorem 21 Let P ⊂ R
D be a finite set of points, and define S := {(x− y)/‖x− y‖ :

x, y ∈ P}. Let w(S) denote the Gaussian width of S. Then, given any ε, δ ∈ (0, 1),
any subgaussian ε-distortion map from R

D to R
d preserves the persistent homology

of the k-distance based Čech filtration associated to P, up to a multiplicative factor
of (1 − ε)−1/2, given that

d ≥
(
w(S) + √

2 log(2/δ)
)2

ε2
+ 1.

Note that the above theorem is not stated for an arbitrary ε-distortion map. Also,
since the Gaussian width of an n-point set is at most O(log n) (using e.g. the Gaussian
concentration inequality, see e.g. (Boucheron et al. 2013, Sect. 2.5), Theorem 21
strictly generalizes Corollary 20.

Proof of Theorem 21 By Theorem 5, the scaled random Gaussian matrix f : x �→(√
D/d

)
Gx is an ε-distortion map with respect to P , having dimension d ≥

(
w(S)+√

2 log(2/δ)
)2

ε2
+1. Now applying Theorem 18 to the point set P with themapping

f , immediately gives us that for any simplex σ̂ ∈ Čα(B̂P,k), where Čα(B̂P,k) is the
weighted Čech complex with parameter α, the squared radius rad2(σ̂ ) is preserved
up to a multiplicative factor of (1± ε). By Lemma 16, this implies that the persistent
homology for the Čech filtration is (1 − ε)−1/2-multiplicatively interleaved. ��

For point sets lying on a low-dimensional submanifold of a high-dimensional
Euclidean space, one can obtain an embedding having smaller dimension, using the
bounds of Baraniuk andWakin (2009) or Clarkson (2008), which will depend only on
the parameters of the submanifold.

Theorem 22 There exists an absolute constant c > 0 such that, given a finite point
set P lying on a connected, compact, orientable, differentiable μ-dimensional sub-
manifold M ⊂ R

D, and ε, δ ∈ (0, 1), an ε-distortion map f : R
D → R

d preserves
the persistent homology of the Čech filtration computed on P, using the k-distance,
provided

d ≥ c

(
μ log(1/ε) + log(1/δ)

ε2
+ C(M)

ε2

)

,
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where C(M) depends only on M.

Proof of Theorem. The proof follows directly, by applying themap inClarkson’s bound
(Theorem 6) as the ε-distortion map in Theorem 18. ��

Next, we state the terminal dimensionality reduction version of Theorem 18. This
is a useful result when we wish to preserve the distance (or k-distance) from any point
in the ambient space, to the original point set.

Theorem 23 Let P ∈ R
D be a set of n points. Then, given any ε ∈ (0, 1], there exists

a map f : R
D → R

d , where d = O
(
log n
ε2

)
, such that the persistent homology of the

k-distance based Čech filtration associated to P is preserved up to a multiplicative
factor of (1 − ε)−1/2, and the k-distance of any point in R

D to P, is preserved up to
a (1 ± O(ε)) factor. ��

Proof The second part of the theorem follows immediately by applying Theorem 7,
with the point set P as the set of terminals. By Theorem 7 (i i), the dimensionality
reduction map of Narayanan and Nelson (2019) is an outer extension of a subgaussian
ε-distortion map � : R

D → R
d−1. Now applying Theorem 18 to � gives the first

part of the theorem. ��

5 Conclusion and future work

k-Distance Vietoris-Rips and Delaunay filtrations Since the Vietoris-Rips filtra-
tion (Oudot 2015, Chapter 4) depends only on pairwise distances, it follows from
Theorem 17 that this filtration with k-distances, is preserved upto a multiplicative
factor of (1 − ε)−1/2, under a Johnson-Lindenstrauss mapping. Furthermore, the k-
distance Delaunay and the Čech filtrations (Oudot 2015, Chapter 4) have the same
persistent homology. Corollary 20 (i) therefore implies that the k-distance Delaunay
filtration of a given finite point set P is also (1−ε)−1/2-preserved under an ε-distortion
mapwith respect to P . Thus, Corollary 20 (i i) apply also to the approximate k-distance
Vietoris-Rips and k-distance Delaunay filtrations.
Kernels. Other distance functions defined using kernels have proved successful in
overcoming issues due to outliers. Using a result analogous to Theorem 17, we can
show that random projections preserve the persistent homology for kernels up to a
C(1 − ε)−1/2 factor where C is a constant. We don’t know if we can make C = 1 as
for the k-distance.
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Appendix

The following elementary lemma gives identity (1).

Lemma 24 Let b = ∑k
i=1 λi pi be a convex combination of points p1, . . . , pk. Then

for any point x ∈ R
D,

k∑

i=1

λi‖x − pi‖2 = ‖x − b‖2 +
k∑

i=1

λi‖b − pi‖2. (12)

Proof Recall the following fundamental relation between the variance and expectation
of a random variable.

Let X ∈ R
D be a random variable bounded in �2. Then, by one characterization of

the variance,

E

[
‖X‖2

]
=

∑

i

Var(X) + ‖E [X ] ‖2. (13)

Consider a point x ∈ R
D , a set P ⊂ R

D of k points, and a probability distribution
{λi }ki=1, along with a weighted sum b = ∑k

i=1 λi pi . The random vector Y supported
on P , with probability P [Y = pi ] = λi , then satisfies E [Y ] = b. Define X := x −Y ,
so that E [X ] = x − b. Then

E

[
‖X‖2

]
=

k∑

i=1

λi‖x − pi‖2, and

∑

i

Var(X) = E

[
‖X − E [X ] ‖2

]
= E

[
‖Y − b‖2

]
=

k∑

i=1

λi‖b − pi‖2.

Substituting in (13), the claim follows. ��
Lemma 25 (Lotz 2019, Lemma 4.2) Given a set P = {p1, . . . , pl} ⊂ R

D of points,
and a point c ∈ R

D such that c = ∑
i∈I λi pi , where I is a subset of indices from [l],

and λi ≥ 0, with
∑

i∈I λi = 1. Then

∑

i∈I
λi‖c − pi‖2 = 1

2

∑

i, j∈I
λiλ j‖pi − p j‖2.
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Consequently,

rad2(P) =
∑

i∈I
λi‖c − pi‖2 = 1

2

∑

i, j∈I
λiλ j‖pi − p j‖2.

where rad2(P) is the squared radius of the minimum enclosing ball of the set P of
points.

Proof Theproof again followsdirectly fromEqn. (13). Supposewe choose two random
points X1, X2 independently from P , with the point pi being chosen with probability
λi . Then,

E

[
‖X1 − X2‖2

]
= ‖E [X1 − X2] ‖2 + Var(X1 − X2).

Evaluating, we get that

E

[
‖X1 − X2‖2

]
=

∑

i, j∈I
λiλ j‖pi − p j‖2,

‖E [X1 − X2] ‖2 = ‖E [X1] − E [X2] ‖2 = 0, and

Var(X1 − X2) = 2 · Var(X1) = 2
∑

i∈I
λi‖c − pi‖2,

where in the last line, we used the fact that X1 and X2 are independent. Substituting
the above values in the variance identity (13), completes the proof. ��

A probabilistic proof of Lemma 10 is also provided below.
Lemma 10 - a probabilistic proof. Consider the following random experiment: pick
a random point X from p1, . . . , pk according to the distribution (λi )

k
i=1 and another

independently random point Y from q1, . . . , qk according to (μi )
k
i=1.

Using the law of total variance on the variable X − Y , conditioning on Y , we get
that

Var(X − Y ) = VarY (EX (X − Y |Y )) + EY [VarX (X − Y |Y )] or,
E

[
‖X − Y‖2

]
= ‖E [X − Y ] ‖2 + VarY (EX (X − Y |Y )) + EY [VarX (X − Y |Y )]

(14)

Let us consider the terms in the above equation one by one.

1. The LHS has E
[‖X − Y‖2], which by the independence of X and Y is clearly

equal to
∑k

i, j=1 λiμ j‖pi − q j‖2.
2. In the RHS, the first term is ‖E [X − Y ] ‖2 = ‖b1 − b2‖2.
3. The second term is VarY (EX (X − Y )|Y ), which is equal to VarY (b1 − Y ) =

Var(Y ) = ∑k
i=1 μi‖b2 − qi‖2, where the last expression was evaluated directly

from the definition of variance, i.e. Var(Z) = E
[
(Z − E [Z ])2

]
, and that for

constant a, Var(a − Z) = Var(Z).
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4. The final term isEY (VarX (X−Y |Y )). Conditioning onY , the variance VarX (X−
Y |Y ) = Var(X), i.e.

∑k
i=1 λi‖b1 − pi‖2. Since this holds for each value of Y ,

we get that EY [VarX (X − Y |Y )] = EY [Var(X)] = ∑k
i=1 λi‖b1 − pi‖2.

Substituting the above expressions for the terms in (14), we get
k∑

i, j=1

λiμ j‖pi − q j‖2 = ‖b1 − b2‖2 +
k∑

i=1

μi‖b2 − qi‖2 +
k∑

i=1

λi‖b1 − pi‖2.

��
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