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Time is running out to limit further devastating losses of biodiversity and nature's contributions to humans. Addressing this crisis requires accurate predictions about which species and ecosystems are most at risk to ensure efficient use of limited conservation and management resources. We review existing biodiversity projection models and discover problematic gaps. Current models usually cannot easily be reconfigured for other species or systems, omit key biological processes, and cannot accommodate feedbacks with Earth system dynamics. To fill these gaps, we envision an adaptable, accessible, and universal biodiversity modeling platform that can project essential biodiversity variables, explore the implications of divergent socioeconomic scenarios, and compare conservation and management strategies. We design a roadmap for implementing this vision and demonstrate that building this biodiversity forecasting platform is possible and practical.

A ccelerating threats from climate change, habitat degradation, overexploitation, and species invasions threaten biodiversity worldwide [START_REF] Ceballos | Accelerated modern human-induced species losses: Entering the sixth mass extinction[END_REF][START_REF] Urban | Accelerating extinction risk from climate change[END_REF]. These threats are reorganizing biological communities, threatening a million species with extinction, and altering ecosystems through loss of key species and altered nutrient and energy flows [START_REF] Ceballos | Accelerated modern human-induced species losses: Entering the sixth mass extinction[END_REF][START_REF] Urban | Accelerating extinction risk from climate change[END_REF], IPBES 2019). The resultant biodiversity loss and ecosystem collapse are reducing nature's contributions to human health, wellbeing, and economy [START_REF] Costanza | Changes in the global value of ecosystem services[END_REF]) and causing a growing sense that humankind has surpassed the planetary boundaries for maintaining life on Earth [START_REF] Rockström | A safe operating space for humanity[END_REF]. Therefore, protecting and restoring biodiversity constitutes one of the greatest challenges for science in the twenty-first century.

The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES 2019) recently issued a dire assessment of global biodiversity and the efforts required to protect it. The assessment concluded that efforts to conserve biodiversity are falling far short of international goals and needs. Furthermore, the IPBES expressed low confidence in the current capacity to project biodiversity changes and their responses to divergent future scenarios and mitigation strategies (IPBES 2019). Unlike climate science, biologists have not devoted substantial resources to developing shared and comprehensive modeling frameworks to project future biodiversity change (Urban 2019). Therefore, the world lacks the predictive infrastructure needed to address a rapidly accelerating biodiversity crisis.

An important action urgently needed to prevent further biodiversity loss entails developing accurate models to forecast future biodiversity change, highlight data needs, guide effective conservation strategies, and prioritize conservation of the most threatened species and ecosystems. Owing to the manifold, multiscale, and nonlinear ways humans disrupt nature [START_REF] Gilman | A framework for community interactions under climate change[END_REF], process-based modeling efforts are particularly needed to unravel the complex feedbacks between threats and biodiversity responses and reveal unrecognized threats to biodiversity. Such knowledge can inform effective conservation strategies and prevent wasting limited resources [START_REF] Barbier | How to pay for saving biodiversity[END_REF]) on otherwise resilient species and ecosystems [START_REF] Parmesan | Endangered butterflies under rapidly changing climate: Good news at last! Paper presented at Butterfly[END_REF]. Whereas most conservation efforts currently respond to short-term threats [START_REF] Baillie | IUCN Red List of Threatened Species: A Global Species Assessment[END_REF][START_REF] Pereira | Essential biodiversity variables[END_REF], conservation also needs to focus on evidence-based, proactive measures that prevent biodiversity from becoming critically endangered in the first place.

We review current efforts to model, project, and mitigate biodiversity loss and find critical deficiencies in modeling efforts and forecasting accuracy that increase uncertainty and contribute to inaction. To address these shortcomings, we design and present a comprehensive platform for predict-ing and preventing biodiversity loss, define essential stan-dards, and outline practical recommendations for effective implementation. We argue that investing in a biodiversity projection platform now would facilitate the design of strat-egies that protect most of the remaining biodiversity and critical ecosystem services despite accelerating threats.

Current efforts to predict nature To understand the current state of biodiversity prediction, we review models readily accessible to scientists, conservation professionals, managers, and policymakers for projecting future biodiversity change under different human distur-bance scenarios by gathering information via a systematic keyword literature search (see the supplemental material), expert knowledge, and published reviews [START_REF] Hoban | Computer simulations: Tools for population and evolutionary genetics[END_REF][START_REF] Evans | Predictive systems ecology[END_REF][START_REF] Lurgi | Modelling range dynamics under global change: Which framework and why?[END_REF][START_REF] Cabral | Mechanistic simulation models in macroecology and biogeography: State-of-art and prospects[END_REF][START_REF] Norberg | A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels[END_REF]. We define biodiversity projection models as algo-rithms that project biological responses to external drivers such as land use and greenhouse gas emissions. We include models that predict a wide range of biological responses, including genetics, traits, population abundances, species diversity, and ecosystem properties. These responses are modeled in ways that range from highly complex and mecha-nistic (e.g., physiological models) to simple and correlational (e.g., species distribution models), which are then altered to explore future outcomes. We exclude system-specific frame-works that inform particular questions or species but cannot be easily modified to address others, but acknowledge their important insights for individual questions.

We found 50 models that met our search criteria (see the supplemental material). Two evaluators independently read pertinent publications and manuals on each model, catego-rized them along multiple dimensions, and then resolved any conflicts. We evaluated the degree to which models incorporated six key biological processes that enhance real-ism and predictive accuracy [START_REF] Gilman | A framework for community interactions under climate change[END_REF][START_REF] Hoffmann | Climate change and evolutionary adaptation[END_REF][START_REF] Urban | Improving the forecast for biodiversity under climate change[END_REF], including physiology, demography, dispersal, species interactions, evolution, and other responses to environmental variation [START_REF] Urban | Improving the forecast for biodiversity under climate change[END_REF]. We next evaluated if model outputs aligned with the essential biodiversity variables (EBVs) developed to define key measurements needed for global monitoring efforts [START_REF] Pereira | Essential biodiversity variables[END_REF]. We also evaluated the degree to which inexperienced users can adapt models to new species, systems, and questions.

We found that most biodiversity models omit key bio-logical processes (figure 1) such as species-specific disper-sal, biotic interactions, or adaptations that could mediate biodiversity responses to perturbations such as climate change [START_REF] Buckley | Contrasting correlative and mechanistic models of species ranges: Putting concepts into practice[END_REF][START_REF] Gilman | A framework for community interactions under climate change[END_REF][START_REF] Urban | Improving the forecast for biodiversity under climate change[END_REF]. However, models lacking these key processes are routinely used to inform decisionmaking. The most popular and accessible approaches apply species distribution models (e.g., Maxent-based approaches; [START_REF] Phillips | Maximum entropy modeling of species geographic distributions[END_REF], to extrapolate correlations between contemporary species distributions and environments to project future responses. Phenomenological models that use algorithms such as Maxent are simpler to fit with existing data and can perform sufficiently well for short time horizons or when little is known about an organism's biology. These simple models have been widely adopted by managers that need readily accessible tools to make conservation decisions. However, models that incorporate even limited biological information generally outperform correlative approaches over longer time horizons and as underlying mechanisms become more diverse or interactive [START_REF] Zurell | Benchmarking novel approaches for modelling species range dynamics[END_REF]. For example, mechanistic models consistently predicted species' range dynamics over longer horizons, whereas statistical models became increasingly inaccurate [START_REF] Pagel | Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics[END_REF].

Despite their many advantages, mechanistic models remain underused. Existing mechanistic models usually focus on one or a few key processes (figure 1), with a few exceptions incorporating multiple biological mechanisms, including sPEGG (Okamoto and Amarasekare 2017), Nemo [START_REF] Guillaume | Nemo: An evolutionary and population genetics programming framework[END_REF], and RangeShifter [START_REF] Bocedi | RangeShifter: a platform for modelling spatial eco-evolutionary dynamics and species' responses to environmental changes[END_REF][START_REF] Bocedi | RangeShifter 2.0: An extended and enhanced platform for modelling spatial eco-evolutionary dynamics and species' responses to environmental changes[END_REF]. Many mechanistic models cater to specific taxa (e.g., trees), include few essential processes, or require specialized programming skills to modify them (figure 1). General mechanistic models of biomass and energy have been created that depict ecosystem functioning [START_REF] Harfoot | Emergent Global Patterns of Ecosystem Structure and Function from a Mechanistic General Ecosystem Model[END_REF]), but their outputs cannot easily be resolved into finer biodiversity details, such as species abundances, diversity, and interactions.

Most biodiversity models address specific questions for particular species and ecosystems and do not interact with each other, nor are they easily modified to apply to other systems. Such models were not designed to interface with Earth system models. Consequently, existing biodiversity models cannot be applied effectively to investigate large-scale and dynamic interactions among biodiversity and drivers such as climate and land-use change [START_REF] Clark | Ecological forecasts: An emerging imperative[END_REF][START_REF] Gilman | A framework for community interactions under climate change[END_REF][START_REF] Hoffmann | Climate change and evolutionary adaptation[END_REF][START_REF] Urban | Improving the forecast for biodiversity under climate change[END_REF].

Most models predict only a subset of the EBVs expected to encapsulate the major dimensions of biodiversity change. For instance, genetic models project future genetic variation and adaptations, demographic models project population abundances of single species, and community models project community richness and composition. A few more sophisticated models predict a greater range of dimensions but are often restricted to particular taxa (e.g., trees in TreeMig, [START_REF] Lischke | TreeMig: A forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale[END_REF]. Understanding how humans shape the many layers of biodiversity currently requires multiple models, each with different data needs, modeling languages, and configurations, and substantial postprocessing of outputs.

If diverse users cannot access, adapt, integrate, and apply models to new problems, then even the best models are unlikely to be adopted widely to promote the best conservation and management solutions. We found that model platforms vary in their accessibility to nonexperts and adaptability for alternative species, ecosystems, and questions. For

Figure 1. Current biodiversity projection models and their characteristics. We assessed from left to right how models incorporated six important biological processes, the levels of biodiversity modeled, incorporation of spatial or and temporal components, essential biodiversity indicators returned as outputs, and model generality, modifiability, and open access. More sophisticated incorporation of mechanistic components and greater accessibility indicated by darker shading. Models are ordered from bottom to top on the basis of the number of components incorporated and their sophistication.

example, some species distribution and genetic models can be modified for any species or system and are applied widely. However, potentially more accurate mechanistic models are often specific to particular species or taxonomic groups, and modifying them to apply to new systems or circumstances is usually difficult. Therefore, the current penchant for phenomenological, correlative models likely reflects not just missing biological data for parameterization [START_REF] Urban | Improving the forecast for biodiversity under climate change[END_REF]) but also the limited availability of flexible and easily modified mechanistic models.

Overall, we find that current biodiversity models generally lack the biological realism, adaptability, interoperability, and integration needed to address the complexities of the biodiversity crisis. We propose one universal modeling platform that would facilitate seamless integration and application to a multitude of systems, species, and uses.

Toward a universal biodiversity projection platform A universal biodiversity projection platform is needed to advance biodiversity understanding, prediction, conservation, management, assessment, and policy solutions (figure 2). Like the trusty Swiss Army knife and its diverse tools, this platform would harmonize existing modeling frameworks and enable projections that are both sophisticated and adaptable to the full range of fundamental and applied biodiversity questions. We envision that such a platform would be a quantum leap forward compared with our current toolbox of individual models. First, one is more likely to use an existing, comprehensive Swiss Army knife rather than cobble together various independent tools. Second, users can select from the most relevant tools to meet individual needs rather than always needing to recreate existing tools. Third, integrating tools into one platform promotes their interactions and feedbacks with each other and with external drivers. Fourth, differences among divergent modeling types (e.g., correlative and mechanistic) can suggest information about underlying process and inspire more sophisticated approaches. Fifth, combining the available model types into ensembles often increases predictive accuracy. Sixth, by having an open-access platform, a diverse community of developers and users can efficiently contribute to building and integrating models and sharing data, parameterizations, and intellectual developments.

We next define a set of objectives for this platform. A unified biodiversity projection platform should improve projection accuracy and certainty relative to existing approaches; flexibly adapt to any species, system, scale, or region; facilitate model optimization and comparison; prioritize data needs; integrate model validation and monitoring; facilitate transparency and collaboration; and enable cost-effective design and evaluation of management solutions. To support these seven objectives, we delineate 16 design principles found in bold throughout the text and outlined in table 1.

Improving accuracy and certainty. A biodiversity platform that integrates diverse modeling types, including statistical and mechanistic biological models and Earth systems models, can improve both accuracy and certainty, by which we mean high precision and confidence in projections. Therefore, our first design principle (table 1) is that biodiversity models should be made realistic by including biological mechanisms and understanding. We define realism as incorporating biological processes into models as opposed to using correlations. Incorporating realism is challenging when faced with model structural uncertainty and when biological parameters are scarce or uncertain [START_REF] Urban | Improving the forecast for biodiversity under climate change[END_REF]. We aim to advocate for mechanistic representations as much as possible but realize that, at times, correlative approaches will be useful and perhaps the only way forward when we do not yet know how to model key biological processes. The platform could address this issue, however, by combining insights from both statistical and mechanistic approaches [START_REF] Buckley | Contrasting correlative and mechanistic models of species ranges: Putting concepts into practice[END_REF][START_REF] Hartig | Statistical inference for stochastic simulation models: Theory and application[END_REF].

A biodiversity projection platform should also enable seamless integration with Earth system drivers, such as climate, land-use change, and socioeconomic models [START_REF] Clark | Ecological forecasts: An emerging imperative[END_REF], Rounsevell et al. 2014[START_REF] Adam | BioEarth: Envisioning and developing a new regional Earth system model to inform natural and agricultural resource management[END_REF]. Few biodiversity models currently account for such drivers even though these drivers interact strongly with biodiversity change [START_REF] Lovejoy | Amazon Tipping Point[END_REF]Nobre 2018, Newbold 2018). Figure 3 illustrates one example for how to couple models of land-use drivers and biodiversity, and how feedbacks between the two can generate substantially different outcomes than when modeled individually. This integrated model of climate change, land use, and a climate-sensitive crop pollinator produced stronger impacts from climate change on biodiversity relative to projections from uncoupled models. As climate change reduced pollinator abundances, crop yields decreased. Lower crop yields increased demand for agricultural land, prompting subsequent conversion of natural lands into agriculture and reduced biodiversity in natural areas. The takeaway from this exercise is that interactions between biodiversity and land-use decisions generate different outcomes than when modeled separately, but these interactions are usually ignored [START_REF] Albert | What ecologists should know before using land use/cover change projections for biodiversity and ecosystem service assessments[END_REF]. For example, although 35% of global food production depends on pollinators, most risk assessments neglect feedbacks between pollinator dynamics and agricultural land-use decisions [START_REF] Prestele | Large variability in response to projected climate and land-use changes among European bumblebee species[END_REF]. Even if these specific results require validation with future data, integrating drivers and biodiversity models will be necessary to project their joint dynamics accurately.

An integrated platform also can account for error propagation across all steps of the predictive process so as to represent uncertainties more faithfully [START_REF] Yates | Outstanding challenges in the transferability of ecological models[END_REF]. Otherwise, errors at one stage do not affect or interact with errors at later stages, often providing an overly optimistic and unrealistic interpretation of model certainty [START_REF] Nicol | Quantifying the impact of uncertainty on threat management for biodiversity[END_REF]. addresses this objective by providing users with a toolbox of modeling options to adapt to their individual needs and to facilitate intermodel comparisons (figure 2b; [START_REF] Golding | The zoon r package for reproducible and shareable species distribution modelling[END_REF]. For instance, one application might combine modules on land use, species interactions, and demography, whereas another application links statistical species distributions to a mechanistic dispersal module to project range dynamics during climate change [START_REF] Engler | Predicting future distributions of mountain plants under climate change: Does dispersal capacity matter?[END_REF]. A nested design further enhances flexibility by offering a hierarchy of modular choices (figure 2b). For example, within a biotic interaction module, users might also choose competition, predation, or mutualism. Within each interaction type, users might choose among different ways to model that interaction and whether the environment or genetics affects the interaction. Therefore, a biodiversity platform with nested modularity allows users to combine, exchange, expand, simplify, and exclude available modules and submodules to enable projections finely tuned to particular species, ecosystems, regions, and scenarios.

Figure 2. A universal biodiversity projection platform would project changes in species abundances, traits, genetics, and associated environmental impacts. The basic model begins with the environment, which varies in space (the bottom orange to yellow heat map) and can change through time naturally but also through human impacts and management actions with bottom layers indicating human impacts (e.g., urbanization) and management strategies (e.g., reserve design). The environmental layers interact with the genome (the blue funnel) to determine traits from the yellow ring (e.g., physiology and phenology) as shown by arrows. These traits in turn combine (the green funnel) to determine demographic inputs (births, immigration) and outputs (deaths, emigration). Each species is embedded in an interaction network (a). Arrows inside the funnel indicate how changes in species abundances feed back to alter genetics and the environment. Managers can design mitigation measures and test them with the modeling framework (e.g., corridors linking green habitats). Essential biodiversity variables are entered from monitoring and recorded in a data cube (light blue). The platform would follow a nested modular design (b), such that users can choose from multiple options that then reveal additional options and ultimately input parameters. An example nested set of options is presented here to inform the death rate of a focal species. In this case, a user selected the green-highlighted nodes to model a species with a death rate that depended on an enemy species. This interaction was also determined by trait variation in the prey species that was underlain by quantitative genetic variation, which has the potential to evolve through a nonzero heritability (h 2 ).

Biological processes operate at divergent spatial and temporal scales, and data are often available at different temporal and spatial resolutions. A universal biodiversity platform should feature scalability so that it can accommodate these scale mismatches via downscaling or upscaling of data layers.

Facilitating optimization and comparison. By providing diverse models, a universal platform facilitates model optimization. An optimal model depends on the question of interest but is generally the one that best predicts out-of-sample observations from different regions or time periods and therefore relies on causal mechanisms rather than correlations [START_REF] Dietze | Iterative near-term ecological forecasting: Needs, opportunities, and challenges[END_REF], Urban 2019). Model projections become more accurate and precise when the modeling process includes dynamic feedbacks among the processes of model development, validation, and revision [START_REF] Urban | Improving the forecast for biodiversity under climate change[END_REF][START_REF] Dietze | Iterative near-term ecological forecasting: Needs, opportunities, and challenges[END_REF]. Therefore, the initial model reveals data needs, scientists improve estimates of sensitive or poorly defined parameters, models are reparameterized or revised and rerun, and the cycle continues as new observations challenge model outcomes, much the same way as weather forecasting proceeds every day. Although forecasts might initially be highly uncertain, this dynamic modeling feedback can rapidly improve projections.

Ready access to diverse models also can promote a more accurate solution to predicting biodiversity change than relying on a single model alone. By combining projections from multiple models, so-called ensemble projections have become standard in weather and climate forecasting given their forecasting advantages [START_REF] Murphy | Quantification of modelling uncertainties in a large ensemble of climate change simulations[END_REF]. For example, the United States predicts the track and intensity of hurricanes using an ensemble of 20 model outcomes [START_REF] Hamill | NOAA's future ensemble-based hurricane forecast products[END_REF]). However, biologists lag behind in adopting ensemble modeling, particularly for process-based models, largely owing to the difficulties in developing multiple models simultaneously [START_REF] Araújo | Ensemble forecasting of species distributions[END_REF]. By allowing many models to be developed at once, a universal platform would facilitate multimodel development and potentially more accurate ensemble projections from divergent model types [START_REF] Leroux | Structural uncertainty in models projecting the consequences of habitat loss and fragmentation on biodiversity[END_REF].

Given the high price of collecting or refining model parameters (e.g., through costly experiments and measurements), users often want simpler models that can still generate accurate and certain outcomes. One way to reduce model complexity while retaining predictive capacity is to assess the sensitivity of model outcomes to parameters and remove those that do not enhance accuracy or precision during validation and prioritize those that do [START_REF] Canessa | When do we need more data? A primer on calculating the value of information for applied ecologists[END_REF]. Forecasters can then simplify models to facilitate cost-effective projections that provide similarly reliable projections while also gaining insights about the complexity needed to model biodiversity dynamics.

A comprehensive biodiversity projection platform is needed for all these objectives because we cannot optimize, combine, or simplify models to their essential ingredients without first beginning with all the potentially important ingredients.

Prioritizing data needs. Despite increasing efforts to collect biodiversity data and make them accessible through synthetic databases [START_REF] Meyer | Global priorities for an effective information basis of biodiversity distributions[END_REF][START_REF] Kattge | TRY plant trait database-enhanced coverage and open access[END_REF], we still lack 

Figure 3. Uniting biodiversity and Earth system models. We coupled the RangeShifter (Bocedi et al. 2014) and CRAFTY (Murray-Rust et al. 2014) biodiversity and land-use models (a) to represent feedbacks between climate-induced changes in habitat quality, land use, and a simulated pollinator species in the French countryside surrounding Clermont-Ferand, classified by habitat type, including crops that do or do not support the pollinator (b). In panel (c), we demonstrate changes in habitat types from the uncoupled to the coupled model with arrows and icon size proportional to habitat area. The coupled model predicts higher conversion rates of pasture and natural areas to cropland (c) than uncoupled models because fewer pollinators (d) reduce crop yields, increasing demand for agricultural land and decreasing crop supply (e). For details, see the supplemental material.

critical biological data for most species [START_REF] Urban | Improving the forecast for biodiversity under climate change[END_REF] We recommend explicitly incorporating the EBV frame-work within the biodiversity modeling platform to harmo-nize observations and predictions and form a more coherent system of, and adaptive feedbacks among, biodiversity pro-jection, validation, monitoring, and assessment. A standard-ized data hypercube of EBVs would form the core outputs of a universal platform (figure 2). This standardized and consistent output matrix with agreed up on naming con-ventions would provide ready-made interconnections with external models and promote validation with data stream-ing in from global monitoring networks [START_REF] Fer | Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological data-model integration[END_REF]. As monitored input variables change, model predictions would change, enabling real-time assessments of biodiversity change. Coordinating the joint development of measurable biodiversity indicators between projection and monitoring efforts to assess progress toward biodiversity and sustainable development targets would thereby provide early warnings of impending catastrophic changes [START_REF] Mace | Aiming higher to bend the curve of biodiversity loss[END_REF]).

Open forecasting. A biodiversity projection platform should support the creation of open-access, reproducible, and trace-able code; promote user contributions; and facilitate an interconnected and diverse community of modelers.

In short, we support the call for building the communitybased cyber infrastructure needed for biodiversity science [START_REF] Fer | Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological data-model integration[END_REF]. Open access ensures that anyone can acquire model code without paying fees or awaiting author permis-sion. Specifically, the platform should adhere to the copyleft license standards, which guarantees that users can run, share, modify, and contribute their code to software. Moreover, these standards require that code cannot be used in propri-etary software and must stay under the same license to pro-mote collaboration. By facilitating user-contributed code, the platform could tap into the global expertise, knowledge, and innovation needed to expand the platform; keep it relevant in the face of changing knowledge; and build an interactive community of biodiversity forecasters. This active commu-nity of software developers would efficiently distribute the massive workload of this complex global project. For exam-ple, the open-access R software environment has become a universal platform for statistical modeling, which has been expanded and kept relevant by a large user community. The LANDIS-II forest landscape model also exemplifies these open-source principles for biology. LANDIS-II comprises a large community of users and developers and includes customizable libraries that allow exploration of climate, land use, and forestry changes (www.landis-ii.org).

The platform should adopt version control practices that require the inclusion of structural metadata and build a repository to maintain future access to the entire version history. This repository ensures reproducibility because analyses can be repeated from the original model version [START_REF] Golding | The zoon r package for reproducible and shareable species distribution modelling[END_REF]. Any altered code would receive a unique version number, and each model run would record version numbers for subsequent use.

A universal biodiversity platform should support a globally connected community of biodiversity and Earth system mod-elers, not unlike that facilitated by the climate and ecosystem modeling communities [START_REF] Harfoot | Emergent Global Patterns of Ecosystem Structure and Function from a Mechanistic General Ecosystem Model[END_REF], Urban 2019). The platform could act as a community portal to capitalize on the extensive but all too often unconnected expertise required to create biodiversity forecasting models. This platform would not only integrate biologists, but also mathematicians, statisticians, computational scientists, software engineers, geographers, and atmospheric scientists, to name a few. The Inter-Sectoral Impact Model Intercomparison Project already brings together scientists to compare diverse impacts from the same climate change and socioeconomic scenarios [START_REF] Warszawski | The inter-sectoral impact model intercomparison project (ISI-MIP): Project framework[END_REF]) but often lacks contributions from biologists.

Purpose built for solutions. We suggest that any biodiver-sity projection platform should be codesigned with users, including land managers, policymakers, and stakeholders. Therefore, the platform should support an interactive pro-cess among stakeholders, modelers, and monitoring net-works to codesign analyses that solve real-world problems [START_REF] Clark | Ecological forecasts: An emerging imperative[END_REF][START_REF] Land | A five-step approach for stakeholder engagement in prioritisation and planning of environmental evidence syntheses[END_REF]. This way the platform can be conceptualized as a modeling environment within a human decision-making process. An important part of this process will be conveying both outcomes and uncertainties so that policymakers can make decisions that hedge against uncertain and undesirable outcomes.

A universal platform should facilitate global assessments of biodiversity impacts of shared socioeconomic scenarios [START_REF] Rosa | Multiscale scenarios for nature futures[END_REF] to enable accurate, targeted, and agile assessments by international agencies (e.g., IPBES, the Intergovernmental Panel on Climate Change) tasked with recommending global political and economic strategies for mitigating global changes in climate, biodiversity, and ecosystem services. A biodiversity platform should also contribute to cross-sectoral syntheses of global impacts for assessment purposes. Such a platform can also help define new scenarios focused on biodiversity that more strongly link to local social-ecological dynamics [START_REF] Kok | Biodiversity and ecosystem services require IPBES to take novel approach to scenarios[END_REF]. For example, although replacing natural, nonforested ecosystems with tree monocultures might seem an efficient approach to climate mitigation, it can negatively affect biodiversity [START_REF] Seddon | Grounding nature-based climate solutions in sound biodiversity science[END_REF]. By jointly evaluating climate and biodiversity impacts, better nature-based solutions can be found that optimize both climate and biodiversity solutions.

Just as importantly, this platform should inform the design and testing of specific management strategies-for example, by using corridor and reserve design to promote climate change resilience [START_REF] Albert | Applying network theory to prioritize multi-species habitat networks that are robust to climate and land-use change[END_REF]. The platform should promote joint adaptive modeling and adaptive management (learn by doing while reducing uncertainty), by including an adaptive management cycle, whereby management interventions are designed to maximize model outcomes. These management actions then can be incorporated into model projections to reduce uncertainty and update observations, thus informing subsequent actions [START_REF] Walters | Adaptive management of renewable resources[END_REF]). In addition to facilitating advanced simulations, an integrated biodiversity platform should allow for scenario testing and the identification of optimal management approaches. These optimization approaches should permit users to ask sophisticated questions and to identify solutions that concurrently maximize biodiversity, climate change mitigation, and

Figure 4. Real-world and computer-aided adaptive management using Markov decision processes and artificial intelligence. A human manager (outer box; (1) develops a biodiversity projection (e.g., for an endangered species) and defines (2) management objectives (maximize abundances with lowest cost) and (3) potential management actions (specific habitats to restore). The computer agent or manager (the inner box) evaluates biodiversity outputs from divergent management actions by receiving information on model states (landscape distribution of abundances) and rewards translated from management objectives (total abundance). The computer manager maximizes rewards relative to management actions. Methods for optimization include stochastic dynamic programming or reinforcement learning. The optimal management strategy (restore habitat at certain locations) would be applied in nature and its effects monitored. Monitoring then informs the original management model and validates the parameters and structure of the biodiversity projection platform.

socioeconomic benefits [START_REF] Alagador | Revisiting the minimum set cover, the maximal coverage problems and a maximum benefit area selection problem to make climate-change-concerned conservation plans effective[END_REF]. For instance, models might use real estate values to guide reserve design during climate change, thus minimizing both financial and biodiversity losses.

Although we view biodiversity modeling as becoming more mechanistic, artificial intelligence technologies could help design mitigation strategies that optimize management criteria, including socioeconomic outcomes, on the basis of outputs from biodiversity models (figure 4). Artificial intelligence solves problems through adaptive algorithms that optimize target criteria and is increasingly applied to natural resource management and conservation decision-making [START_REF] Pichancourt | Simple rules to contain an invasive species with a complex life cycle and high dispersal capacity[END_REF][START_REF] Chadès | Optimization methods to solve adaptive management problems[END_REF]. Recent advances such as deep reinforcement learning are enhancing its wider application [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF]. For example, artificial intelligence could optimize the spatial design of land-use patterns across complicated socioecological landscapes to maximize both benefits and practicality, where complex socioecological dynamics (e.g., figure 3) can generate millions of alternative management strategies that surpass human intuition. By incorporating artificial intelligence techniques, the platform can identify globally optimal and feasible management solutions more readily.

Implementing the vision

One of the greatest challenges of the twenty-first century is to make informed predictions that will enable us to design strategies to protect life on Earth, despite historic threats [START_REF] Mace | Aiming higher to bend the curve of biodiversity loss[END_REF]. Forty years ago, atmospheric scientists also faced a similar task of predicting climate and weather, but lacked a cohesive modeling platform (US National Academy of Sciences 1975). Rising to the challenge, scientists created multiple dynamic and mechanistic climate models, established shared socioeconomic scenarios, and developed a framework to integrate and compare model outcomes. These collaborative modeling platforms enabled more cohesive and evidence-based assessment for climate and enhanced confidence in projections of future climate change to support policy decisions [START_REF] Edwards | History of climate modeling[END_REF]. Biology needs such a tool if we hope to bend the curve of biodiversity loss upward in coming years.

Predicting biodiversity is not easy on the best of days, and even the most sophisticated model projections are likely to be frustrated by high uncertainty and ecological surprises (Doak et al. 2008, Berger and[START_REF] Berger | On the statistical formalism of uncertainty quantification[END_REF]. Given the many complexities of biology, prediction might not ever reach the accuracy levels attained for weather or physical particles. However, we argue that substantial gains in predictive accuracy are possible even with modest gains in model development, given the current state of the field. The scientific community has not developed many mechanistic biodiversity predictions, and even fewer have been validated with monitoring data. But those that have been tested demonstrate considerable promise. For instance, mechanistic models have successfully been used to predict population declines, pest population dynamics, species distributions from phenological traits, forest carbon dioxide exchanges, and fire dynamics in nature [START_REF] Wilder | A predictive model for gypsy moth population dynamics with model validation[END_REF][START_REF] Brook | Predictive accuracy of population viability analysis in conservation biology[END_REF][START_REF] Amthor | Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodel comparisons and relationships to field measurements[END_REF][START_REF] Chuine | Phenology is a major determinant of tree species range[END_REF][START_REF] Emmett | Adapting a dynamic vegetation model for regional biomass, plant biogeography, and fire modeling in the Greater Yellowstone Ecosystem: Evaluating LPJ-GUESS-LMfireCF[END_REF]. These examples suggest that accurate predictions for biodiversity and ecosystems are possible especially when more mechanistic models and data are available. Finally, even if only modest gains are possible, we will still have gained fundamental insights about the limits to predictability in biology.

Although we still too often lack the basic biological data needed to inform biodiversity models, new data efforts are rapidly filling these data gaps. Governments, organizations, and scientists are collecting and compiling these data at an accelerating rate and storing them in repositories, including species distributions (e.g., the Global Biodiversity Information Facility and Ocean Biodiversity Information System), historical abundances (e.g., the Global Population Dynamics Database, Projecting Responses of Ecological Diversity in Changing Terrestrial Systems [PREDICTS] project, and the BioTIME database), and traits (e.g., TraitBank, TRY database). A biodiversity projection platform could begin using these resources immediately and also facilitate the further sharing and integration of data. Even where data gaps continue to exist, models will be crucial in directing efforts toward more efficient data collection [START_REF] Ficetola | Optimizing monitoring schemes to detect trends in abundance over broad scales[END_REF]. Waiting until we collect all relevant data would prove too late for such models to be useful. Therefore, we need a comprehensive platform both to make use of the increasing big data of biodiversity [START_REF] Wüest | Macroecology in the age of Big Data: Where to go from here?[END_REF]), but also to guide and streamline the monumental effort of collecting relevant data to support model development and parameterization.

A universal modeling platform could develop either by building from basic principles (figure 2) or by tethering together existing models (figure 3). Building a new platform would be desirable from the standpoint of consistency and ensuring rapid operation and integration. However, limited resources for biodiversity science might make this approach impractical. The alternative is to link existing programs, such as those listed in figure 1. This alternative approach would prove efficient from the standpoint of using existing, error-checked models, and we illustrated the feasibility and usefulness of this approach in figure 3. Moreover, multimodel integration could enable substantial gains with relatively little effort by normally ignored model interactions. However, substantial work is needed to ensure that coupled models correctly interpret inputs and outputs from one another and include appropriate linking functions across spatial and temporal scales. Moreover, these Frankenstein models usually run slowly given the computing overhead of cross-program communication and translation. Likely the best course of action is to link existing models now, while working toward recoding models in a common language and framework to speed up future analyses.

Several options exist for integrating models and building a modular system for coupling code into a biodiversity projection platform. One option is to create a package that acts as a wrapper for submodules written within the popular R programming environment. For instance, the zoon R package allows users to choose species distribution modules from those contributed to an open, versioncontrolled online repository and then generate reproducible workflows that combine results from the chosen modules [START_REF] Golding | The zoon r package for reproducible and shareable species distribution modelling[END_REF]. A complementary approach is to take advantage of software containers, such as the Docker virtualization platform (www.docker.com), that create standalone packages that can integrate multiple applications that require different data and computational environments and encapsulate all software dependencies that might otherwise change through time [START_REF] Huang | Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1. 0) into models[END_REF][START_REF] White | Developing an automated iterative near-term forecasting system for an ecological study[END_REF]). Already this system has been used to automate ecological forecasting, including processing new data, fitting, calibrating, and running multiple different process-based models, analyzing the outputs, and creating an ensemble forecast. For instance, Docker has been used to create periodically updated and interactive projection platforms for both rodent abundances and forest carbon sinks [START_REF] Huang | Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1. 0) into models[END_REF][START_REF] White | Developing an automated iterative near-term forecasting system for an ecological study[END_REF]. Docker also can create interfaces between biodiversity and land use or Earth system models that often operate on different platforms [START_REF] Robinson | Modelling feedbacks between human and natural processes in the land system[END_REF][START_REF] Millington | Modelling drivers of Brazilian agricultural change in a telecoupled world[END_REF].

Building on the design principles outlined in table 1, the next step is to form a governing board of global scientists, modelers, and biodiversity professionals to coordinate platform development and explore financing options. Once a version is available, the next phase would be to demonstrate its abilities on simulated and real data sets. Simulated data sets with known drivers and outcomes provide effective tools to test and refine projection tools because validation is immediate [START_REF] Zurell | The virtual ecologist approach: Simulating data and observers[END_REF]. Providing a common set of real and simulated benchmark data sets with the platform could enable standardized tests of performance for new and revised models in order to support model quality control and comparison [START_REF] Fer | Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological data-model integration[END_REF]. Monitoring data are also needed for future validation. During this stage, the platform can be improved and enhanced on the basis of the feedbacks with monitoring data and end users. Another objective at this stage would be to demonstrate and teach its applications to potential users, including in academia, governments, nongovernmental organizations, and businesses.

If designed properly and of demonstrable utility, the platform will grow in accordance with the changes implemented by the global community, similarly to other open-access platforms. The governance council can update the platform according to changing norms and to take advantage of computing advancements.

Although developing this platform is likely beyond funding available from traditional national scientific grants, a consortium of science foundations or a public-private funding scheme could prove sufficient. Funding this platform requires only a minor shift in global scientific funding priorities. The International Space Station costs approximately $4 billion dollars yearly, governments fund climate change modeling at approximately $4 billion per year [START_REF] Stanhill | The growth of climate change science: A scientometric study[END_REF], Urban 2019), and the Large Hadron Collider, which has greatly advanced physics theory, cost $4.75 billion to build and $1 billion to run annually. We estimate that less than 0.2% of the costs of these projects ($15 million per year) would support an international team of professors, researchers, programmers, and students to build a comprehensive biodiversity projection platform over the next 10 years (see assumptions in supplemental table S4). These outlays would quickly be recouped through the savings reaped from improved biodiversity forecasts and mitigation efforts. For instance, we lose an estimated $20 trillion dollars per year in ecosystem services from land-use change alone [START_REF] Costanza | Changes in the global value of ecosystem services[END_REF]). Preventing just one-millionth of these losses would pay for the program.

Conclusions

Most biodiversity forecasters either rely on more generalizable, but less accurate, models or undergo the time-consuming and costly process of developing process-based models specific to particular questions. Consequently, biodiversity science is less efficient, accurate, integrated, and equitable than it could be with a universal platform. We now find ourselves in the middle of the Anthropocene and ill equipped to predict and prevent biodiversity and ecosystem change. However, advances in biology, computer science, artificial intelligence, and computing power now exist to address this challenge quickly. Scientists now have the capacity to recreate the complexities of diverse interacting species within the silicon brain of the computer, replicate it in servers throughout the world, and implement artificial intelligence to find optimal management schemes. Such tools will allow us to decrease uncertainties and develop better evidence-based mitigation and adaptation strategies. With bold innovation coupled with appropriate coordination and support, this grand deficiency in global science can and should be solved this decade.

  

Table 1 . Design principles for a global biodiversity projection platform.

 1 

	Design principle Design objectives	Description	Enables	Requires
	Biological realism Accuracy and certainty,	Incorporates key biological	Projections that include	Mechanistic sub-models
		flexibility, optimization and	processes that shape how	biological processes, and	that can be used when
		comparison	biodiversity responds to	therefore capture causation,	data is available; should
			environmental variation	rather than relying on	interact with statistical
				correlations which might	models to provide
				be specific to current	enhanced flexibility
				observations	
	Error propagation Accuracy and certainty,	Errors often interact with other	An accurate representation of	Platform that propagates
		transparency and	errors during model runs,	uncertainty	errors across submodules
		collaboration, solutions	and therefore, models should		
			propagate errors appropriately,		
			which might not be possible		
			when combining standalone		
			model outputs		
	Cointegration	Accuracy and certainty,	Models feedbacks with	Modeling of feedbacks	Common input and output
	with Earth system	flexibility, transparency and	major Earth-systems models,	between biodiversity, Earth-	currencies and other
	drivers	collaboration, solutions	including climate, land use,	system, and socioeconomic	coordinated features (e.g.,
			and other ecosystem models	models and broad-based	spatial/temporal scales)
				optimization and feasibility	
				assessments	
	Nested modularity Accuracy and certainty,	Submodels can be easily	Model comparison and	Hierarchical submodels
		flexibility, optimization and	added, exchanged, expanded,	ensemble-forecasting	that can be turned on
		comparison, transparency and	simplified, or removed		or off according to user
		collaboration			needs
	Scalability	Accuracy and certainty,	Data and processes that	Input of data and processes	Procedures to upscale and
		flexibility, validation	are available or operate at	of varying resolutions	downscale state variables
			different scales can be scaled		
			appropriately to operate within		
			the modeling framework		
	Optimization	Accuracy and certainty,	Optimal model structure	Finding the model and	Platform that produces
		optimization and comparison,	and parameterization for	parameters that produce the	models of varying
		validation, solutions	maximal accuracy and	most accurate and certain	structure and complexity.
			minimal uncertainty based on	projections	Might include adaptive
			validation with observed data;		management and artificial
			it might include procedures to		intelligence.
			optimize unknown parameters		
	Ensemble	Accuracy and certainty,	By enabling models of varying	Ensemble projections that	Platform that easily
	projections	validation, transparency and	structure and complexity, a	often demonstrate enhanced	produces models of
		collaboration	platform can produce multiple	performance over independent	varying structure and
			models that can be compared	models	complexity
			and combined to improve		
			accuracy		
	Simplification	Optimization and comparison,	Model structure is simplified	Sensitivity, cost-benefit, and	Multi-model system and
		solutions	on the basis of user-defined	validation analyses	techniques to assign costs
			criteria, including performance,		to additional complexity
			parameter or structural		
			sensitivity or uncertainty, and		
			costs of parameter estimation		
	Prioritizing data	Supporting and informing data	Model sensitivity and	Cost-effective data collection	Multiple parameterizations
	needs	collection	uncertainty is used to		to assess model
			prioritize which parameters		sensitivity
			should be collected or		
			improved		
	Essential	Optimization and comparison,	A standardized data hyper-	Standardized model inputs	Standardized "data hyper-
	biodiversity	validation, transparency and	cube of biodiversity state	and outputs and adaptive	cube" of predictions that
	variables	collaboration, solutions	variables developed in tandem	feedbacks with validation from	are designed for inter-
			with monitoring outputs	global monitoring networks	model interoperability
	Open access	Transparency and	Users can run, share, modify,	Widespread use, coordinated	Open use standards
		collaboration	and contribute their own	enhancement of modeling	
			subroutines	effort, efficient development	
				by users, and transparent	
				understanding of model	
				outcomes	
	Reproducibility	Accuracy and certainty,	Version control practices	Outcomes can be repeated	Version control
		optimization and comparison,	implemented such that the	and traced back to model	
		transparency and collaboration	same code can be run and	structure	
			re-run and obtain the same		
			outcomes		
	Community	Optimization and comparison,	An organizing structure for	Collaboration and synthetic	Platform and organization
		transparency and	biodiversity projections and	understanding of global	that unites research and
		collaboration, solutions	the scientists that contribute	impacts and intersectoral	researchers
			them	impacts	
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	Design principle Design objectives	Description	Enables	Requires
	Codesigned with	Transparency and	Platform is codeveloped with	Rapid adoption by	Co-development of
	users	collaboration, solutions	land managers, policymakers,	conservation practitioners	platform structure,
			and stakeholders from		outputs, and user-enabled
			the start to promote its		features
			usefulness for finding		
			biodiversity solutions		
	Facilitate global	Optimization and comparison,	Enables standardized	A more cohesive and accurate	Standardized use and
	assessments	transparency and	comparisons across scenarios	assessment of global trends	development of scenarios
		collaboration, solutions	and joint biodiversity-	and policies	
			socioeconomic scenario		
			development		
	Design and test	Solutions	Modules allow for creating	Effective, efficient, and	Ability to construct
	conservation		and comparing different	less costly exploration of	conservation strategies
	strategies		conservation strategies in	conservation solutions	within the modeling
			silica		framework; use decision
					theory and artificial
					intelligence for particularly
					complex problems
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