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Abstract  28 

S. Ray and A. Reddy recently anticipated the implication of circadian rhythm in severe acute 29 

respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of the coronavirus 30 

disease (Covid-19). In addition to its key role in the regulation of biological functions, the circadian 31 

rhythm has been suggested as a regulator of viral infections. Specifically, the time of day of infection 32 

was found critical for illness progression, as has been reported for influenza, respiratory syncytial 33 

and parainfluenza type 3 viruses. We analyzed circadian rhythm implication in SARS-CoV-2 virus 34 

infection of isolated human monocytes, key actor cells in Covid-19 disease, from healthy subjects. 35 

The circadian gene expression of BMAL1 and CLOCK genes was investigated with q-RTPCR. 36 

Monocytes were infected with SARS-CoV-2 virus strain and viral infection was investigated by 37 

One-Step qRT-PCR and immunofluorescence. Interleukin (IL)-6, IL-1β and IL-10 levels were also 38 

measured in supernatants of infected monocytes. Using Cosinor analysis, we showed that BMAL1 39 

and CLOCK transcripts exhibited circadian rhythm in monocytes with an acrophase and a 40 

bathyphase at Circadian Time (CT)6 and CT17. After forty-eight hours, the amount of SARS-CoV-2 41 

virus increased in the monocyte infected at CT6 compared to CT17. The high virus amount at CT6 42 

was associated with significant increased release in IL-6, IL-1β and IL-10 compared to CT17. Our 43 

results suggest that time day of SARS-CoV-2 infection affects viral infection and host immune 44 

response. They support consideration of circadian rhythm in SARS-CoV-2 disease progression and 45 

we propose circadian rhythm as a novel target for managing viral progression.  46 

 47 

Key words: Covid-19, circadian rhythm, monocytes, inflammatory cytokine  48 
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Introduction  49 

The implication of circadian rhythm (CR) in pathogenesis of Severe Acute Respiratory 50 

Syndrome Coronavirus 2 (SARS-CoV-2) has been recently anticipated (1). The CR regulates 51 

physiological processes in living organisms with a period of 24 hours (2). Rhythmicity depends on 52 

central and peripheral oscillators whose activity relies on two main feedback loops managed by a 53 

clock genes cascade under the regulation of the main clock gene BMAL1 (2). The host susceptibility 54 

to microorganism is likely under control of biological clocks (3). The time of day of infection is 55 

critical for illness progression as reported for influenza, respiratory syncytial and parainfluenza type 56 

3 viruses (4–6). We previously reported that CR is a key actor at the interface between infection 57 

susceptibility, clinical presentation and prognosis of infection (3, 7).  58 

There are some evidence that enable to anticipate the role of CR in SARS-CoV-2 infection. 59 

The absence of Bmal1 has an impact on intracellular replication of coronaviruses, especially 60 

vesicular trafficking, endoplasmic reticulum and protein biosynthesis (8). Knock-out of BMAL1 61 

markedly decreases the replication of several viruses such as Dengue or Zika (9). Finally, among key 62 

proteins involved in SARS-CoV-2 interaction with the host recently published (10), it has been 63 

identified 30% of them being associated with circadian pathway (1). Clearly, the evidence of an 64 

implication of CR in SARS-CoV-2 infection of human cells are lacking. In this study, we wondered 65 

if SARS-CoV-2 infection and cytokine production by human monocytes, innate immune cells 66 

affected by Covid-19, were regulated by CR.  67 
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Results and Discussion 68 

We first investigated circadian oscillations of resting monocytes. Every 3 hours during 24 69 

hours, total RNA was extracted and expression of BMAL1 and CLOCK genes was investigated in 70 

unstimulated monocytes. Expression of investigated genes exhibited CR in monocytes with an 71 

acrophase (peak of the rhythm) and a bathyphase (trough of the rhythm) at Circadian Time (CT)6 72 

and CT17, respectively (Fig.1A, Table 1). These two time points represent the beginning of the 73 

active and the resting periods in humans (11). To assess the involvement of CR in infection of 74 

monocytes with SARS-CoV-2, we incubated monocytes with SARS-CoV-2 at the bathyphase (CT6) 75 

or at the acrophase (CT17) during 48 hours. As illustrated in the Fig.1B, viral uptake by monocytes 76 

was higher at CT6 than at CT17. Additionally, we showed that the amounts of both SARS-CoV-2 77 

RNA virus (Fig. 1C) and titer (Fig. 1D) were higher in supernatants of monocytes infected at CT6 78 

than at CT17 (Fig.1B). Our data showed for the first time that entry and multiplication of SARS-79 

CoV-2 in human monocytes varies with the time of day. This finding is reminiscent of what has been 80 

previously reported with herpes and influenza virus in murine models of infection (6). It is 81 

noteworthy that CRs are different in rodents and humans, thus limitating extrapolations to 82 

understand pathogenesis of SARS-CoV-2 infection.  83 

Covid-19 disease is characterized by runaway immune system leading to a cytokine storm 84 

consisting of high circulating levels of cytokines including IL-6, IL-1β and IL-10 (12). We wondered 85 

if the interaction of SARS-CoV-2 with monocytes affected cytokine production at two points of the 86 

CR. The amounts of IL-6, IL-1β and IL-10 were significantly increased at CT6 (Fig.1E) when the 87 

amount of infection is highest. Hence, the interaction of SARS-CoV-2 with monocytes resulted in 88 

distinct cytokine pattern according to daytime.  89 

We demonstrate here that the time day of SARS-CoV-2 infection determines consistently 90 

viral infection/replication and host immune response. It is likely that SARS-CoV-2 exploits clock 91 

pathway for its own gain. Our findings support consideration of CR in SARS-CoV-2 disease 92 

progression and suggest that CR represents a novel target for managing viral progression. This study 93 

also highlights the importance of the time of treatment administration to Covid-19 patients since CR 94 

was found regulating pharmacokinetics of several drugs (13). Several treatments are proposed to 95 

prevent the occurrence of severe forms in Covid-19. They include passive immunization, cytokines, 96 

anti-cytokine antibody or corticoids (14). All these candidates affect the immune response known to 97 

oscillate during the day and their administration according to CR of SARS-CoV-2. Finally, the well-98 

documented CR disturbance in intensive care units (15) should be considered in the clinical and 99 

therapeutic management of patients with severe Covid-19.   100 
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Methods 101 

Cells and virus 102 

SARS-CoV-2 strain MI6 was cultured in Vero E6 cells (American type culture collection ATCC® 103 

CRL-1586™) in Minimum Essential Media (Life Technologies, Carlsbad, CA, USA) supplemented 104 

with 4% fetal bovine serum (FBS). The viral titer was evaluated using the TCID50 method 105 

corresponding to the amount of virus inducing a cytopathic effect in 50% of infected Vero E6 cells. 106 

Blood from anonymous healthy donors (n=4, 1 men (38 year) and 3 women (28, 34 and 39 year) 107 

were collected from leukopacks (convention n°7828, Etablissement Français du Sang, Marseille, 108 

France) at one point and peripheral blood mononuclear cells (PBMCs) were retrieved and frozen. At 109 

the beginning of the experiment, human monocytes were isolated from PBMCs of each donors 110 

following CD14 selection using MACS magnetic beads (Miltenyi Biotec, Bergisch, Germany) as 111 

previously described (16). The purity of CD14 cells after selection was 98%. Monocytes (5.105 112 

cells/well) were cultured in Roswell Park Memorial Institute medium-1640 (Life Technologies) 113 

containing 10% of FBS, 100 U/mL penicillin and 50 µg/mL streptomycin (Life Technologies).  114 

After isolation, the cells were cultured for 12 hours and then were infected with 50 µl virus 115 

suspension (0.1 multiplicity of infection (MOI)) at the bathyphase (CT6) and acrophase (CT17) for 116 

48 hours at 37°C in the presence of 5% CO2.  117 

 118 

Circadian gene expression 119 

Isolated monocytes were cultured for 12 hours and then the circadian rhythm was assessed from 120 

midnight every 3 hours for 24 hours. Total RNA was extracted using the RNA Mini Kit (Qiagen) 121 

and a quantitative Real-Time PCR was performed according to the manufacturer's instructions 122 

(MMLV Kit, Life Technologies and Smart SYBRGreen kit, Roche Applied Science). Circadian gene 123 

expression was investigated using specific primers targeting BMAL1 (5’-124 

3’AAACCAACTTTTCTATCAGACGATGAA; 3’-5’ TCGGTCACATCCTACGACAAAC) and 125 

CLOCK (5’-3’ AAGTTAGGGCTGAAAGACGACG; 3’-5’ GAACTCCGAGAAGAGGCAGAAG) 126 

genes (7). Results were normalized using ACTB gene (β-actin) (5’-3’ 127 

GGAAATCGTGCGTGACATTA; 3’-5’ AGGAAGGAAGGCTGGAAGAG) as it was previously 128 

observed that this housekeeping endogenous gene did not oscillate over time (17, 18). The results are 129 

expressed according to the appropriate formula: gene expression = Log (2-ΔCt) relative expression, 130 

with Ct (Cycle threshold), ΔCt = Ct target gene - Ct β-actin. The Cosinor analysis based on an 131 

extrapolation from measurements of a few points over 24 hours was used to evaluate the CR of the 132 

clock genes BMAL1 and CLOCK. 133 
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 134 

Viral RNA extraction and PCR 135 

Viral RNA was extracted from the supernatant of infected cells using NucleoSpin® Viral RNA 136 

Isolation kit (Macherey-Nagel) and Covid-19 virus detection was performed using One-Step qRT-137 

PCR SuperScript™ III Platinum™ (Life Technologies) targeting the gene E. 138 

 139 

Immunofluorescence 140 

Infected cells (5. 105 cells/well) were fixed and incubated with phalloidin-555 and 4',6-diamidino-2-141 

phenylindole (DAPI) to labelled F-actin and nucleus respectively. SARS-CoV-2 virus was labelled 142 

using first an anti-SARS-CoV-2 antibody (Spike protein, Thermo Fisher) and then a secondary anti-143 

rabbit Alexa 647 (Thermo Fisher). 144 

Pictures were acquired using confocal microscopy (LSM 8000 Airyscan confocal microscope, x 63, 145 

oil objective) and the phagocytosis activity of monocytes was determined as the phagocytosis index 146 

according to the following formula (evaluating 100 cells for each donor): percentage of phagocytosis 147 

(((average number of infected cells x 100)/total number of counted cells) x average number of 148 

particles or viruses/cells). 149 

 150 

Immunoassays 151 

Levels of interleukin (IL)-6, IL-1β and IL-10 were measured in cell supernatants using an enzyme-152 

linked immunosorbent assay technique (R&D systems). The sensitivity of the assays was (pg/ml) 153 

15.4 for IL-6, 0.125 for IL-1β and 3.9 for IL-10. 154 

 155 

Statistical analysis  156 

Statistical analyses were performed with GraphPad Prism (7.0, La Jolla, CA) and R studio v3.4.0. 157 

Continuous variables were expressed as medians ± interquartile, and comparisons between two 158 

groups were made using the Mann-Whitney non-parametric test for unmatched data and the Student 159 

t-test for matched data.  160 

For CR analysis, we used the Cosinor transformation to estimate for a given variable its variations 161 

over a 24-hour period. CR parameters were investigated including the acrophase (time elapsed until a 162 

maximum activity) and its inverse the batyphase, the amplitude (half of the maximum variation of 163 

the considered rhythm) and the mesor (average gene expression). A significant CR is defined when 164 

the three circadian parameters are statistically significant. Statistical significance was defined as 165 

P≤0.05.  166 

  167 
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Figure legends  248 

Figure 1. SARS-CoV-2 infection is link to circadian rhythm 249 

(A) Circadian rhythm of BMAL1 and CLOCK genes in monocytes using Cosinor model from 4 250 

different donors. (B) Virus load (n=4) and titers (n=3) at CT6 and CT17 time from experiments that 251 

were repeated 3 times using at least 3 different donors. (C) Representative pictures and phagocytosis 252 

activity of monocytes (F-actin in green and nucleus in blue) infected by SARS-CoV-2 virus (red). 253 

Results are expressed as the mean ± SEM of 4 donors with 3 independent experiments. (D) Level of 254 

IL-6, IL-1β and IL-10 of unstimulated (red) and infected cells at CT6 and CT17. Results are 255 

expressed as the mean of 4 donors from 3 independent experiments.  256 

 257 

Table. 258 

Table 1. Rhythmic parameters (mesor, amplitude and acrophase) for BMAL1 and CLOCK 259 

genes 260 

Gene Donors Mesor P-value Amplitude P-value Acrophase P-value 

BMAL1 

1 -2.33 <0.001 0.23 0.05 16.37 0.03 

2 -2.40 <0.001 0.20 0.003 16.91 <0.001 

3 -2.64 <0.001 0.28 0.008 17.12 0.02 

CLOCK 

1 -2.92 <0.001 0.16 <0.001 17.20 <0.001 

2 -2.90 <0.001 0.09 0.03 15.29 0.007 

3 -2.96 <0.001 0.33 0.03 17.83 0.001 

 261 






