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CHAOS AND FREQUENT HYPERCYCLICITY FOR WEIGHTED
SHIFTS

STEPHANE CHARPENTIER, KARL GROSSE-ERDMANN, QUENTIN MENET

ABSTRACT. Bayart and Ruzsa [Ergodic Theory Dynam. Systems 35 (2015)] have recently
shown that every frequently hypercyclic weighted shift on ¢P is chaotic. This contrasts
with an earlier result of Bayart and Grivaux [Trans. Amer. Math. Soc. 358 (2006)] who
constructed a non-chaotic frequently hypercyclic weighted shift on ¢y. We first generalize
the Bayart-Ruzsa theorem to all Banach sequence spaces in which the unit sequences are a
boundedly complete unconditional basis. We then study the relationship between frequent
hypercyclicity and chaos for weighted shifts on Fréchet sequence spaces, in particular on
Kothe sequence spaces, and then on the special class of power series spaces. We obtain,
rather curiously, that every frequently hypercyclic weighted shift on H (D) is chaotic, while
H(C) admits a non-chaotic frequently hypercyclic weighted shift.

1. INTRODUCTION

Chaos and frequent hypercyclicity are two of the most important notions in linear dynam-
ics. An operator T' on a separable Fréchet space X is called chaotic if it admits a dense orbit
(i.e., it is hypercyclic) and if it has a dense set of periodic points. If one demands from an
orbit that it combines both aspects of chaos, i.e., that it is dense and that it returns often,
one arrives at the notion of frequent hypercyclicity: A vector x € X is called frequently
hypercyclic for T" if, for any non-empty open set U in X,

dens{n >0:T"z € U} > 0;

recall that, for a subset A C Ny, dens(A) = liminfy o ggcard{n < N :n € A} denotes
its lower (asymptotic) density. The operator T is called frequently hypercyclic if it admits
a frequently hypercyclic vector. This notion was introduced by Bayart and Grivaux [3], [4].
For more information on linear dynamics we refer to [6] and [14].

The precise relationship between chaos and frequent hypercyclicity has been intriguing
researchers for the last decade. Despite appearances, these notions have turned out to be
independent. First, Bayart and Grivaux [5] showed that a frequently hypercyclic operator
need not be chaotic. Indeed, they constructed a frequently hypercyclic weighted backward
shift on ¢y that does not even have a single non-trivial periodic point; see also [11]. Recently,
the third author [17] constructed operators on any of the spaces 7, 1 < p < 0o, and ¢, that
are chaotic but not frequently hypercyclic.

One of the best understood classes of operators in linear dynamics is that of weighted
(backward) shifts on sequence spaces. Given a sequence w = (w,,), of non-zero scalars, the
corresponding weighted shift operator is formally given by

Bw ($n)nzo == (wn+1xn+1)n20~

For these operators, under suitable assumptions, chaos does imply frequent hypercyclicity.
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Indeed, let X be a Fréchet sequence space, that is, a Fréchet space of (real or complex)
sequences & = (,)n>0 such that each coordinate functional z +— z,, n > 0, is continuous.
By the closed graph theorem, a weighted shift B,, defines a (continuous) operator on X as
soon as it maps the space X into itself. Let e,, n > 0, denote the unit sequences. Under
the assumption that (e, ), is an unconditional basis in the Fréchet sequence space X then a
weighted shift B, on X is known to be chaotic if and only if the series

(1.1) Z;wnen

w
n>0 b

converges in X; see [13]. It then follows from the Frequent Hypercyclicity Criterion that, in
this case, B, is also frequently hypercyclic; see [14, Corollary 9.14].

We know from the result of Bayart and Grivaux cited above that not every frequently
hypercyclic weighted shift on ¢y is chaotic. In light of this, the following recent result of
Bayart and Ruzsa [7] came as a surprise.

Theorem 1.1 (Bayart, Ruzsa). Let 1 < p < oo and let w = (w,), be a bounded sequence of
non-zero scalars. Then the weighted shift B, is frequently hypercyclic on (P if and only if it
15 chaotic.

So what do the spaces /P possess that ¢y does not? This question was the starting point
of our present investigation. In Section 2 we will show that the result of Bayart and Ruzsa
extends to all Banach sequence spaces for which (e, ),, is a boundedly complete unconditional
basis. Going beyond the class of Banach spaces we then turned our attention to Kothe
sequence spaces, which are important generalizations of the spaces /7 and ¢y. The Kothe
sequence space of order p is defined as

NP (A) = {x = (Tp)n>o : for all m > 1, Z |z [P, < oo},

n>0

while the Kothe sequence space of order 0 is given by
co(A) = {x = (Tp)n>o : for all m > 1, lim |z,|am, = 0},
- n—oo

where A = (@mn)m>10>0 1S @ matrix of strictly positive numbers such that, for all m > 1,
n >0, ann < Gui1n. In particular, if a,,, = 1 for every m,n then M(A) = ¢’ and
co(A) = ¢g. Thus one could naively imagine that on Kothe sequence spaces of order p each
frequently hypercyclic weighted shift is chaotic, while on Kothe sequence spaces of order 0
there exists a frequently hypercyclic weighted shift that is not chaotic. However, it is not
seldom that AP(A) = ¢o(A) for any 1 < p < oo. This is, for instance, the case for the
space H(C) of entire functions and for the space H(ID) of holomorphic functions on the unit
disk. The link between chaotic and frequently hypercyclic weighted shifts on these spaces is
therefore particularly intriguing.

In order to be able to deal with these spaces, the main part of the paper is devoted
to Fréchet sequence spaces, in varying degrees of generality. Two interesting phenomena
arise. First, as we will see in Section 3, there are simple Fréchet sequence spaces that do not
support any weighted shift, and there are natural Kothe sequence spaces that do not support
any hypercyclic weighted shift, so that our study may become vacuous. Secondly, bounded
completeness is no longer sufficient for ensuring that frequent hypercyclicity implies chaos.
Still, in Section 2 we obtain a version of the Bayart-Ruzsa theorem for a class of Fréchet
sequence spaces. In Section 3 we spell out this result in the case of Kothe sequence spaces,
and we state sufficient conditions for the existence of a frequently hypercyclic weighted shift
that is not chaotic. This will allow us to obtain the puzzling result that every frequently
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hypercyclic weighted shift on H (D) is chaotic, while there exists a frequently hypercyclic
weighted shift on H(C) that is not chaotic.

Finally, in Section 4, we generalize these two examples by studying the particularly impor-
tant class of power series spaces (of finite or infinite type). We will obtain a full characteriza-
tion of when every frequently hypercyclic weighted shift is chaotic on a class of power series
spaces that satisfy some regularity assumption. In particular, it will appear that, on the one
hand, there are Kothe sequence spaces co(A), different from any A?(A), 1 < p < oo, on which
any frequently hypercyclic weighted shift is chaotic; on the other hand, there are Kothe se-
quence spaces AP(A), different from co(A), on which there exists a non-chaotic frequently
hypercyclic weighted shift.

2. WHEN FREQUENT HYPERCYCLICITY IMPLIES CHAOS FOR WEIGHTED SHIFTS

2.1. The Bayart-Ruzsa theorem on Banach sequence spaces. The purpose of this
subsection is to extend Theorem 1.1 to a large class of Banach sequence spaces. Before
stating this result we remark that Bayart and Ruzsa obtained a stronger version of their
result: even U-frequent hypercyclicity implies chaos (see [7, Theorem 4]). An operator T
on a Fréchet space X is called U-frequently hypercyclic if there is vector x € X, also called
U-frequently hypercyclic, such that, for any non-empty open set U in X,

dens{n >0:T"z € U} > 0,

where, for a subset A C Ny, dens(A) = limsupy_, ., wgcard{n < N : n € A} denotes its
upper (asymptotic) density. This notion is obviously weaker than frequent hypercyclicity.

In our result, as is usual in the context of weighted shifts, we will demand that (e,), is
an unconditional basis, which is the case both for ¢y and the spaces /#. What distinguishes
these spaces, however, is that (e, ), is boundedly complete in ¢” but not in ¢y. Recall that a
basis (f,), in a Fréchet space X is called boundedly complete if, for any sequence of scalars
xr = (x,)n, whenever the sequence

N
< ; x"f") N>0

is bounded in X then it converges in X; see [2].

Theorem 2.1. Let X be a Banach sequence space for which (e,), is a boundedly complete
unconditional basis. Let B, be a weighted shift on X. Then the following assertions are
equivalent:

(i) By is U-frequently hypercyclic on X ;
i) B, is frequently hypercyclic on X;
(iii) By s chaotic on X;
(iv) the series »_, - men is convergent in X.

As we have mentioned in the introduction, the implications (iv)==-(iii)==-(ii) hold in
all Banach sequence spaces in which (e,), is an unconditional basis, while the implication
(ii)==(i) is trivial. It remains therefore to show that (i) implies (iv) under bounded com-
pleteness.

The following lemma will be crucial in the proof. A subset A C Ny is called syndetic if it
is infinite and of bounded gaps, that is, sup,,c 4 inf,ea msn(m —n) < oo.

Lemma 2.2. Let X be a Banach space with an unconditional basis (fy)n>0- Let (on)n>o0
be a sequence of scalars and A C Ny a subset of positive upper density such that, for some
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R > 0, the family

n<N n<m<n+M
15 bounded in X. Then there is a syndetic set F' C Ny such that the sequence

1s bounded in X.

The proof is based on Theorem 2.3 below, which is an improvement of a result due to
Erdés and Sarkozy that was implicitly obtained by Bayart and Ruzsa in order to prove
Theorem 1.1. Note that these authors only state a weaker version [7, Theorem 8].

Theorem 2.3 (Bayart, Ruzsa). Let A C Ny be a set of upper density 6 := dens(A) > 0,
and let 0 < & < 6%. Then there exists a strictly increasing sequence (N;); of positive integers
such that the set

<N, : AN(A -
{k‘ €N, lim card{n < N;:ne AN k)}
J—0 Nj—|—1

>52—5}

18 syndetic.

Proof of Lemma 2.2. Let (o), and A C Ny be as in the statement of the lemma, with
§ := dens(A) > 0, and fix 0 < € < ¢%. By Theorem 2.3 there exists a strictly increasing
sequence (N;); of positive integers such that the set

d{n < N, : AN(A—-k
F::{kGNO: hmcar {n<Njine€ ( >}>52—5}
Jj—o0 N;+1
is syndetic. For N, M > 0 we set
1
YN.M = N——i-l Z Z Om—n frm—n-
neA meA
n<N n<m<n+M
Reordering the (finite) sum, we get
M M
1 card{n < N:ne€ AN(A—-k)}
2.1 = — = — .
(21)  ynwm N+1Z Y =) Nl S
k=0 n€A, neA—k k=0

n<N

Since (f,), is an unconditional basis there exists a constant C' > 0 such that, whenever
xr = ano Tnfn € X and b = (b,), is a bounded sequence of scalars, then ano bptnfn € X
and

(2.2) | S buwafu]| < Cloll]| Yo 2t
n>0 n>0

see [2, Proposition 3.1.3]. Taking for b a suitable 0-1-sequence we obtain from (2.1) and (2.2)
that

)

1 Z card{n < N:ne AN(A—k

2. > _H
( 3) ||?JN,MH =0 N+1

)}Oékka‘

kEF, k<M

By definition of F' and another application of unconditionality we have that, for any M > 0
and for all sufficiently large 7,

(2.4) H Z Card{nSNj:nEAﬂ(A—k:)}akka252_5H Z akka.

N:+1
keF, k<M it ¢ keF, k<M
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It then follows from (2.3) and (2.4) that for any M > 0 and all sufficiently large j,

02
H Z Oékka< lyn; arl]-

— 02 —¢
kEF, k<M

The hypothesis now implies that

is bounded in X. O

Remark 2.4. (a) Obviously, the hypothesis of the lemma holds in particular if the family

< § amfnfmfn)
neA,M>0

meA
n<m<n+M
is bounded in X. This is the condition that will be satisfied in our application of the lemma.
(b) Using essentially the same proof one can show that the lemma also holds for Fréchet
spaces. However, in that setting the hypothesis is too strong for our intended application,
see the proof of Theorem 2.9.

We will apply Lemma 2.2 to the unit sequence (e,), in a Banach sequence space X and
to a sequence (), that arises in a natural way from the weights of a weighted shift B,,. In
fact, as is usual in this context, we will define a sequence v = (v,,)n>0 by

1
(2.5) vy = ——, n>0;
wl o e wn
note that vy = 1. Conversely, given a sequence v = (v,,)n>0 of non-zero scalars with vy = 1,
we recover the sequence w by setting

(2.6) wy = 7L > 1
Un

Lemma 2.5. Let X be a Banach sequence space for which (e,), is an unconditional basis.
Let By, be a weighted shift on X, and let v be the sequence associated to w by (2.5). If
A C Ny is a subset of positive upper density such that, for some R > 0, the family

n<N n<m<n+M
1s bounded in X, then the sequence
(3 )
N>0
n<N

18 bounded in X.
Proof. We know from Lemma 2.2 that
(3 v
N>0
neF,n<N
is bounded in X for some syndetic set /' C Ny. By the definition of B,, we have that

Bw( Z Unen) = Z Uanen = Z UnWp€p—1 = Z Un—1€n—1-

neF,0<n<N neF,0<n<N neF, 1<n<N neF, 1<n<N
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Now, since F' is syndetic there is some K > 0 such that

Ny = U(F_k;)>

k<K
which implies that
K
Sa( T we)= X mn
k=0 neF,0<n<N 0<n<Fn
with certain integers m, xy > 1, where Fy = max{n € F': n < N}, with max @ = —1.
The result now follows by the continuity of B,,, the unconditionality of the basis and the
fact that Fly — 0o as N — o0. O

Remark 2.6. Instead of filling the gaps of F' via a backward shift, as done in the proof of
the lemma, one may also fill them by a forward shift. Let w = (w,),>0 be a sequence of
non-zero scalars. The corresponding forward shift £, is defined by F,,x = Zzo:l Wy 1Ly—1Cn-
Then the preceding lemma also holds if F,, is an operator on X and v satisfies w, = 22,

Un
n > 0.
We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. As mentioned before, it suffices to show that (i) implies (iv).
Let © = (x,), € X be a U-frequently hypercyclic vector for B,,. Let C' be a constant due
to unconditionality appearing in (2.2). Then the set

€
A= {neNO 1Bz — OH_”Zg”}

has positive upper density. Since

Vg
n
(2.7) Blx = E Wiyl WeinThanCk = E ThanChs
Vk+n
k>0 k>0

where v is the sequence associated to w by (2.5), we have that for every n € A

1
—T,e0 — eoH < OBz — el <

‘ lleol|
Un

2

Hence

(2.8)

n>1)2

Un

for every n € A.
By (2.7) and (2.8), we note that for every n € A and every integer M > 0,
SQCH Z Um—n——"Cm—n —QC’H vkkarnekH

H Z Um—n€m—n
meA m Um 0<k<M Vk+n
n<m<n+M n<m<n+M k+ncA
< 2C%||Bya| < 2C3(|| B — eol| + [leoll)
< C(1+420)]eol|-

T

Applying now Lemma 2.5, taking account of Remark 2.4(a), we obtain that
1
(2 ) e = (2 men)
wy - wn N>0 N>0
n<N

is bounded in X. Since the basis (e, ), is boundedly complete we can finally deduce (iv). O
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Remark 2.7. Since the proof uses bounded completeness of the basis only in the last step,
we have also proved the following. Let X be a Banach sequence space for which (e,),
is an unconditional basis. If a weighted shift B, on X is U-frequently hypercyclic then
(O <n m€n)]\[20 is bounded in X.

Can one go beyond bounded completeness? There is an indication that this might be
difficult: it is known that if (e,), is an unconditional basis in a Banach sequence space X,
then it fails to be boundedly complete if and only if X contains a copy of ¢ (see [2, Theorem
3.3.2] for the precise statement), and we know from Bayart and Grivaux [5] that Theorem
2.1 fails on ¢y. But it is not clear how to exploit these facts.

Question 2.8. Is there a Banach sequence space X for which (e,), is a non-boundedly
complete unconditional basis so that every frequently hypercyclic weighted shift on X is
chaotic?

2.2. The Bayart-Ruzsa theorem on Fréchet sequence spaces. Let us now turn to
Fréchet sequence spaces in which (e,), is an unconditional basis. We will see that in this
setting bounded completeness of the basis no longer suffices to have all frequently hyper-
cyclic weighted shifts chaotic; see the summary at the end of the paper. The reason is that
with any application of the continuity of the weighted shift we potentially lose quality of the
seminorm. To be more precise, let us fix an increasing sequence (|| - ||;)m>1 of seminorms
defining the topology of X. Then continuity of an iterate B!, n > 1, of B,, means that, for
any m > 1, || Bl x|, is majorized by a multiple of ||z||, but where ¢ may depend on n and
m; this makes our Banach space proof break down. It turns out that it suffices to impose
the property of topologizability on the weighted shifts, see [9]:

(T) Any weighted shift B, on X is topologizable, that is, for any m > 1 there is some
¢(m) > 1 such that for any n > 0 there is some constant C,, ,, > 0 such that, for any x € X,

Byl < Crnnll | gm)-

The property (T) is a condition on the space X, and it is independent of the particular
sequence (|| + ||m)m>1 chosen. We then have the following generalization of Theorem 2.1.

Theorem 2.9. Let X be a Fréchet sequence space that satisfies (T) and for which (ey,), is a
boundedly complete unconditional basis. Let B, be a weighted shift on X. Then the following
assertions are equivalent:

(i) By is U-frequently hypercyclic on X ;
(ii) B, is frequently hypercyclic on X ;
(iii) B, is chaotic on X;

the series ano wrw, En 18 convergent in X.

— — —

(iv

Proof. First, the unconditionality of the basis implies that, whenever z = > . z,e, € X
and b = (b,), is a bounded sequence of scalars, then z =Y ., b,2zne, € X; in addition, for

any m > 1, there exist a constant K, > 0 and some p(m) > 1 such that, for all such z and
b,

(2.9) H Z boanenll < KmeHOOH anen
n>0 m n>0

see [2, Proposition 3.1.3] in the case of a Banach space, but the proof works as well for
Fréchet spaces, using [15, Theorem 3.3.9].

p(m)’
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It suffices again to prove that (i) implies (iv). Thus, let x = (z,), € X be a U-frequently
hypercyclic vector for B,, and m > 1. We fix s > 1 such that ||eg||s > 0 and we let

u=q(p(m)), r=p(p(u)) and ¢=max(p(s),p(p(r)))

where ¢(-) comes from property (T). Since z is U-frequently hypercyclic and ||eg||s > 0, the
set

(&
A= {neNO |B"z — e < leolls }

2K,

has positive upper density. By (2.9) we obtain for any n € A
! —eo|| = — eolls < K| Bpa — < K,||Bra — e < L0l
,U_xneo €o . - ||w1 cWpTp€o 60||s > 5” wk 60||;D(5) >~ S” wl e0||t >~ Ta

n

where v is the sequence associated to w by (2.5). We continue as in the proof of Theorem 2.1,
obtaining first that || > 1/2 for any n € A, and then for any integer M > 0,

) ’ E 'Umfnemfn
T

meA
n<m<n+M

< 2K, Ky | Bt llpry) < 2055 K50) ([ By — €olle + [leoll:)

< 2 Ky (5 + lleoll)-
This shows that the family

Z nEA,M>0

meA

n<m<n+M
is bounded with respect to the seminorm || - ||,; note however that A depends on r. Writing
for N, M >0
YN.Mm = N——i-l Z Z Um—n€m—n,
neA meA
n<N n<m<n+M
we obtain that also the family (yn ar)n,am>0 is bounded with respect to the seminorm || - ||,..

Let § := dens(A) and 0 < € < §%. Then we obtain exactly as in the proof of Lemma 2.2
by a double application of unconditionality that there is a syndetic set F' C Ny so that

K, Ky K,K
C := sup Z Vi€ i

_ )
sup < sup (p—lly Moy = b ——lyn,all < oo,
= keF, k<M

u o j>1,M>0 J>1,M>0
In particular, there is some K > 0 such that

No=J(F—k)

k<K
and by property (T) there is a constant C > 0 such that, for any x € X and 0 <n < K,
1Bz llpm) < Clllgpmy = Cll]lu.

Following now exactly the proof of Lemma 2.5 we obtain, together with an application of
unconditionality, that for any N >0

| > e

0<n<Fn

< K (K +1)CC,

m

where Fy = max{n € F': n < N}, with max@ = —1.
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Note that m > 1 is arbitrary here. Since Fy — oo as N — oo, another application of
unconditionality shows that the sequence

( Z ﬁen>zv20:< Z Un@n)Nzo

0<n<N 0<n<N

is bounded in X, so that the bounded completeness of the basis implies (iv). O

Remark 2.10. (a) Of course, one could just demand that condition (T) holds for a given
weighted shift B,, on X, and then we could conclude that, for this shift, frequent hyper-
cyclicity implies chaos. But given the simplicity of the characterization of chaos, it would
be much easier to show directly that B, is chaotic.

(b) Remark 2.7 also applies to Fréchet sequence spaces.

3. CHAOTIC AND FREQUENTLY HYPERCYCLIC WEIGHTED SHIFTS ON KOTHE SEQUENCE
SPACES

In this section, we aim to apply Theorem 2.9 to a particularly interesting class of Fréchet
sequence spaces, the Kéthe sequence spaces, also called Kéthe echelon spaces, see [16, Chap-
ter 27] or [8].

Let A = (@mn)m>1.n>0 be a matrix of strictly positive numbers such that, for all m > 1,
n >0,

Amn S Am41,n-
Such a matrix is called a Kdthe matriz.
Let 1 < p < oco. We recall that the Kothe sequence space of order p is defined as

NP(A) = {$ = (Tp)n>o : for all m > 1, Z [ L oo},
n>0

while the Kothe sequence spaces of order 0 and oo are given by

co(A) = {:1: = (Tp)n>o : for all m > 1, T}Lngo T 0}7

AP(A) = {a: = (@p)n>o : for all m > 1, sup |z, |am, < oo}.
n>0
The topologies are respectively induced by the (semi-)norms

1/p
e = (3 lealana) s m =1, for 1<p <o,
n>0

||| = sup |Tn|@mn, m > 1, for order 0 and oco.
n>0

We note that, for each of the spaces A?(A), 1 < p < oo, and ¢y(A), the sequence (e,),
is an unconditional basis. On the other hand, the space A*(A) only has (e,), as a basis if
it coincides with ¢y(A) (which can happen, see Proposition 3.2); hence we will only study
weighted shifts on Kothe sequence spaces of finite order.

Remark 3.1. It is easy to see that a Kéthe sequence space X = AP(A), 1 < p < oo, or
X = ¢p(A) is normable and hence a Banach space if and only if

@mn
du>1,Ym>1: sup—
n>0 Aun

< 0Q.

In the first case, X = {(2n)n 1 D50 Qun|Ta|? < 0o} is a weighted (P-space, which implies
that any frequently hypercyclic weighted shift on X is chaotic. In the second case, X is a
weighted co-space, so that there is a frequently hypercyclic weighted shift on X that is not
chaotic.
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Now, in order to apply Theorem 2.9 we need to ensure that the sequence (e, ), is boundedly
complete. For the Kothe sequence spaces of order p € [1,00), this is clearly always the case.
For the simplest Kothe sequence space of order 0, ¢y, or more generally, when cy(A) is a
Banach space, then the sequence (e,), is not boundedly complete. But this is not so for all
Kothe sequence space of order 0. Let us assume that (e,), is boundedly complete in ¢y(A),
and let © = (z,,), be an arbitrary sequence in A>°(A). Then the sequence (ZfLO Tn€n)N>0 18
bounded in ¢4(A) and thus x belongs to ¢o(A). Therefore ¢y(A) = A>*°(A). It is just as easy
to see that if ¢g(A) = A*°(A) then (e, ), is boundedly complete in cy(A).

Now, the identity co(A) = A*°(A) can be characterized in terms of the entries of A, see
[16, Theorem 27.9]. Thus we have the following.

Proposition 3.2. Let A be a Kiothe matriz. Then the following assertions are equivalent:
(i) (en)n is a boundedly complete basis for co(A);
(i) co(A) = A= (A);
(iii) A satisfies the condition
(BC) VI C N infinite, ¥m > 1, 3> 1: inf 22 — .

nel a#’n

We mention in passing that Chapter 27 of Meise and Vogt [16] contains characterizations of
various other interesting properties of Kéthe sequence spaces in terms of the Kéthe matrix A.
We single out the following result that will be used later; see [16, Proposition 27.16] and use
that A\P(A) C A(A) C cp(A) C A*(A)if 1 <p < g < 0.

Proposition 3.3. Let A be a Kothe matriz. Then the following assertions are equivalent:
(i) for some p € [1,00), co(A) = \P(A);
(ii) for some p € [1,00), A*°(A) = A\P(A);
(iii) for some p # q in [1,00), NP(A) = N1(A);
(iv) for all p € [1,00), \P(A) = ¢o(A) = A*(A);
(v) A satisfies the condition
a

m,n
< 0.
Apn

(N) Vm>1,3p>1: )
n>0

Of course, (N) implies (BC). Note that (N) also characterizes when co(A) (or any M(A),
p € [1,00]) is nuclear, see [16, Proposition 28.16].

It is now an easy matter to apply Theorem 2.9 to (certain) Kothe sequence spaces and
thus obtain conditions under which any frequently hypercyclic weighted shift on such a space
is chaotic. However, before stating this result in Subsection 3.2, we will observe a rather
unexpected phenomenon: there are some Koéthe sequence spaces that do not support any
hypercyclic weighted shift.

3.1. Existence of (chaotic or frequently) hypercyclic weighted shifts on Koéthe
sequence spaces. Let us pause briefly in order to reflect on the question we are trying
to discuss. On the positive side we want to show that, on a given Fréchet sequence space,
every frequently hypercyclic weighted shift is chaotic. Now it might be that the problem
is meaningless because there might not be any frequently hypercyclic weighted shifts on
the space. Indeed, for (frequent) hypercyclicity it helps if the weights are big, while the
continuity of the weighted shift limits their growth. There is then a trade-off.

Even more, it is known that there are separable infinite-dimensional Banach spaces that do
not support any chaotic or any frequently hypercyclic operator, see [10], [19]. For shifts, we
do have a characterization of frequently hypercyclic weighted shifts on an arbitrary Fréchet
sequence space in which (e, ), is an unconditional basis; see [11, Theorem 6.2]. However, the
conditions are rather involved. So let us approach the problem from above (are there any
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weighted shifts? are there hypercyclic weighted shifts?) and from below (are there chaotic
weighted shifts?).

3.1.1. Emistence of weighted shifts. The existence of weighted shifts on (most) Banach or
Fréchet sequence spaces is easily characterized.

Proposition 3.4. (a) Any Banach sequence space that contains all finite sequences admits
a weighted shift.

(b) Let X be a Fréchet sequence space in which (e,)n>0 s a basis. Let (|| - ||m)m be
an increasing sequence of seminorms that generates the topology of X. Then X admits a
weighted shift if and only if

(3.1) Vm>1,3u>1,Yn>0: |le,]|m # 0= |lent1]l, #O.

Proof. We first show sufficiency of (3.1) in (b). Let, for any m > 1, p,, =: u > 1 be given
by this condition. Since (e,), is a basis, the Banach-Steinhaus theorem implies that there
are v, > 1 and C,, > 0 such that, for all z € X, n > 0 and m > 1,

(3.2) |znenllpn < Cull@|lu,,-
Let

a, = maxC’m—HenHm ,
msn H€n+1Hum

note that this is well-defined by (3.1) if we let 3 = 0.
Now let w = (wy,,)n>1 be a sequence of non-zero scalars such that

Z | W1 |an < 00.

n>0

n > 0;

Then we have that, for any m > 1 and = € X,

e
S lwmsrznsiealbn < 3 el LN el

n>0 n>0 lent1llm
e
< (3 s € Ll Yy,
2 ewril

m—1
(&
< (X fwnalCor bl ™ il < .
n=0

m
H€n+1HMm n>m

so that B, defines a weighted shift on X.

The necessity of (3.1) follows directly from the continuity of any given weighted shift on
X.

For (a) note that, in the Banach space case, (3.1) is automatic. Moreover, inequality (3.2)
holds even without the basis assumption when one allows the constant C), to depend on n

since the projections x — x,e,, n > 1, are continuous; the proof can then be continued as
before. 0

In particular, any Kothe sequence space of finite order admits a weighted shift.

Example 3.5. We give here an example of a Fréchet sequence space in which (e,), is a
basis but that admits no weighted shift. Indeed, let

X = {(xn)n ; Z |zon| < oo}

n>0



12 STEPHANE CHARPENTIER, KARL GROSSE-ERDMANN, QUENTIN MENET
This turns into a Fréchet sequence space under the seminorms

Hx”m = ogzag}im |$2n+1| + Z |$2n|, m > 1.
n>0
Then X does not admit any weighted shift because no weight can turn all sequences into
('-sequences.

3.1.2. Euxistence of hypercyclic weighted shifts. For a general Banach or Fréchet sequence
space, the existence of hypercyclic weighted shifts seems to be a complicated matter. Thus
we restrict our attention to Koéthe sequence spaces.
Note that a weighted shift B, defines an operator on a Koéthe sequence space N\(A) or
co(A) if and only if
n P m,n— <C ny MNP (A R
VYm>1,3u>1,0>0,¥n>1: [nl?tmpn1 < Cpn, - on A7(4)
|wn|amn-1 < Caypn, on co(A).
For later use we note here that, in terms of the associated sequence v (see (2.5) and (2.6)),
the conditions can be written as

‘Unfl‘pam,nfl S C|Un’pa,u,na on )\p(A)’

|'Un—1|am,n—1 S C|'Un|au,n7 on CO(A)-

(3.3) Vle,EI,uZl,C’>O,Vn21:{

Proposition 3.6. Let X = AP(A), 1 < p < oo, or X = ¢o(A) be a Kdthe sequence space.
Then there exists a hypercyclic weighted shift on X if and only if there exist a strictly in-
creasing sequence (my)g of positive integers and a positive sequence (Cy)x such that

. a ,
Vn > 1, v, ;= inf Cp—2*2" >
k>1 Amypn—1
and
vm > 1, liminf ———a,, y = 0.
= N m,
N—oo anl Vn

Proof. Let B, be a hypercyclic weighted shift on X. In this proof, let p = 1 for the space
co(A). By continuity, there exist a strictly increasing sequence (my)y of positive integers and
a positive sequence (Cf)y such that, for every n > 1 and k£ > 1, we have

|wn|pamk,n—1 S Ckamk_;,_l,n
hence, for any n > 1,

. Qm n
Vn 1= Inf Cp T > g, [P > 0,
k>1 amk,nfl
Moreover, since B,, is hypercyclic, we have that, for every m > 1,
o 1 .
liminf ————a,, v < liminf
N—oo 1 Un N—oo
n—

see [14, Theorem 4.8]. This shows necessity.

N amN:07

n=t |wnl?

The sufficiency is easily seen by considering the weighted shift B,, with w,, = val? ,n>1,
and using the fact that a,,,, < apy1, for allm > 1, n > 0. [

Under an additional assumption on the Kéthe matrix A, the characterising condition can
be simplified.

Corollary 3.7. Let X = N(A), 1 < p < o0, or X = ¢y(A) be a Kdithe sequence space.
Suppose that

(3.4) VYm,j>1,3J>1,C>0,Vn>0: mntl o Wntt.
a1,n aj,n
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Then there exists a hypercyclic weighted shift on X if and only if

N
(3.5) Ju>1,C>0,Vm>1: lim inf Ln=1 91
N—oo (N Hi\/ n

Am,N = 0.

Proof. The condition is even necessary without assumption (3.4) on A. Indeed, if X supports
a hypercyclic weighted shift then by the previous proposition there is a strictly positive
sequence (v,,), as well as my, g :=mgy > 1 and C' > 0 such that

a a
v, < C—+" <" n>1, and liminf

Ny =0, m > 1.
a’ln 1 N—o0

aml,n—l
This implies (3.5).
On the other hand, suppose that (3.5) holds with some g > 1 and C' > 0. Then one obtains
by (3.4) a strictly increasing sequence (my ) of positive integers and a positive sequence (C},)y
such that, for all £ > 1 and n > 0,

Qpun+1

a

r Ymp1,n+1
<O —= )
al,n amk,n

In particular, setting Cy = C'C},, we deduce that for any n > 1,

vy, = inf Cj,———— g 1,m > C’ >0
k>1 Ay n—1 ay n—1
and that for every m > 1,
lim inf N1 N < hm inf ! am.n = 0.
N—o0 w1 Vn N—oco (N Hn ) a1 = ’

A Kothe sequence space without hypercyclic weighted shifts can arise quite naturally.

Example 3.8. Let X be the sequence space given by
X = {x = (Tp)n>0 : Z |20 p*" < o0 for all p > 0}.
n>0

This can be considered as the space of entire functions with certain lacunary power series.
Then X is the Kothe sequence space A'(A) with ap,,, = m*", m > 1, n > 0. It is easily
verified that (3.4) holds but (3.5) does not. Thus, X supports no hypercyclic weighted shift.

This example will be generalized in Example 4.3(a).

3.1.3. FEuxistence of chaotic weighted shifts. This case can be treated exactly as the ex-
istence of hypercyclic shifts. Note, however, that the characterizing condition of chaos,

(H o € X (see condition (1.1)) depends on the order of the Kéthe sequence space.
n=1Wn N>0

Proposition 3.9. Let X = \(A), 1 < p < o0, or X = co(A) be a Kithe sequence space.
Then there exists a chaotic weighted shift on X if and only if there exist a strictly increasing
sequence (myg)y of positive integers and a positive sequence (Cy)x such that

a 1
Vn > 1, v, :=inf Cp—2" 5 0 and (N—1/> € X,
L S A | anl P/ N>0

where p =1 if X = ¢o(A).
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Corollary 3.10. Let X = X(A), 1 < p < oo, or X = ¢y(A) be a Kithe sequence space such
that (3.4) holds. Then there ezists a chaotic weighted shift on X if and only if

N 1/p
Hn:l al,n—l

Ju>1,0>0: (—) € X,
CVTIL ol 20

where p =1 if X = co(A).

3.2. When frequent hypercyclicity implies chaos on Ko6the sequence spaces. Let
us spell out Theorem 2.9 in the case of Kothe sequence spaces.

Theorem 3.11. Let X be a Kithe sequence space NP(A), or a Kothe sequence space co(A)
that satisfies (BC). Suppose that the following condition holds:
(TK) for any strictly positive sequence v = (vy)n, if
Vm>1,3p>1,C>0,Yn>1: vp_1amp-1 < Cvpayn,
then
(3.6) Vm>1,3pu>1,V7>1,3C;>0,Yn>j: vy_jamny < Civnay,.
Let By, be a weighted shift on X. Then the following assertions are equivalent:
(i) By is U-frequently hypercyclic on X ;
(ii) B, is frequently hypercyclic on X ;
(i) By, is chaotic on X;
(iv) the series Y, -, Men is convergent in X .

Indeed, since B, being an operator on X can be expressed by condition (3.3), with a
similar condition for BJ, it is straightforward to see that condition (T) for the space X is
equivalent to condition (TK) for the Kéthe matrix A.

In the case of Kéthe sequence spaces A?(A) we have already examples to which the theorem
is applicable: these are given by the classical (P-spaces since they are Banach spaces and
thus satisfy (T) trivially. But there also are non-Banach examples and even examples of

order 0.
Proposition 3.12. FEvery frequently hypercyclic weighted shift on H(D) is chaotic.

Proof. The space H(D) of holomorphic functions on the unit disk D can be identified with

the Kéthe sequence spaces ¢g(A) or NP(A) for any 1 < p < oo by letting ap,, = (=i

These spaces coincide since A satisfies (N), and it suffices to show that A satisfies (TK). Let
(vn)n be a strictly positive sequence such that

Vm>1,3p>1,C>0,Vn>1: v, qamp-1 < Cupayn.

1
We can first show that lim sup,, (Uz—;l) m < 1. Indeed, given m > 1, 4 > 1, C' > 0 such that,
for every n > 1, vp—1ampn—1 < Cvpa,,, we get

Up—1 A C 1+ % n
=¢ = (%)
Up, A n—1 I+ 1+ m
1 1
and thus lim sup,, (”’;—;1) < 11:—11 <1+ % Since this inequality holds for every m > 1, we

=

1
deduce that limsup,, (“2=1)" < 1.

We now show that if limsup,, (“2=)" < 1 then (3.6) holds. Let m > 1, u=m+1, j > 1.

We need to find a constant C; > 0 such that, for every n > 7,

Un—j C; ( 1+ + )n
< RV 1 .
Up, (1+E)] 1+m—+1




CHAOS AND FREQUENT HYPERCYCLICITY FOR WEIGHTED SHIFTS 15

1
We remark that such a constant will exist if lim sup,, (Uz—:) m <1, and since

1

1 Jj—1 1 Jj—1
Un—5\n . Un—1—-1\"n . Un—1— n—l
limsup( ]> thmnsup( ” lll> §Hhmsup<max<1, l 1)) : <1,
1=0 n- =0 "

n Un Un—1i
we get the desired result. O

Note that the above result is not vacuous since H (D) supports chaotic weighted shifts such
as the differentiation operator [18]. Examples of Kéthe matrices A to which Theorem 3.11
applies and where all the spaces ¢o(A) and \P(A), 1 < p < oo, are different can also be found
(see Example 4.15(a)).

3.3. When frequent hypercyclicity does not imply chaos on Kothe sequence
spaces. We now show that some Kothe sequence spaces, even of order p € [1,00), sup-
port frequently hypercyclic, non-chaotic weighted shifts.

For this we recall the following result; see [11, Theorem 6.2]. If X is a Fréchet sequence
space in which (e,), is an unconditional basis, then a weighted shift B,, on X is frequently
hypercyclic if and only if there exist a sequence (&,),>1 of positive numbers with ¢, — 0 as
r — oo and a sequence (A, ),>; of pairwise disjoint sets of positive lower density such that

(i) for any r > 1,
Z Upar€nir converges in X;
neA,

(ii) for any r,s > 1, any m € A, and any j =0,...,r,

H E Un—m+j€n—m+j

TLEAT
n>m

< min(e,, &),
S

where v is the sequence associated to w via (2.5).
Recall also that, by (1.1), B,, is chaotic if and only if

(3.7) Z Upe, converges in X.
n>0

For the existence of a non-chaotic frequently hypercyclic weighted shift we will modify the
construction of such a shift in ¢q as given in [11, Theorem 7.3]. The following was shown in
the proof there.

Lemma 3.13 ([11]). There exists a strictly increasing sequence (Ni)r>o0 of non-negative
integers with Ng = 0 and pairwise disjoint sets A,, r > 1, of positive lower density with the
following properties:
(a) Forr > 1, if n € A,, then for any k > 0,
Nk§n<Nk+1:>Nk—|—k’§n<Nk+1—r.
(b) Forr,s > 1,ifn € A, m € As, n > m, then for any k > 0,
Ny <n—m < Npyp = Ny +max(r,s) <n—m < Ny —max(r,s).

A frequently hypercyclic, non-chaotic weighted shift on ¢y was then given by the weight
w that is associated, via (2.6), to the following sequence v = (v,,)n:

Up, for N, <n < Niy1,k > 0.

- 2n—Nk.
For general spaces it seems natural to consider
1

bank,n

Uy, = for N, <n < N1,k >0,
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for suitable numbers b,, ,,. This leads us to the following condition for Kéthe sequence spaces
X; note that part () depends on which space AP(A) or c¢o(A) one considers.

(B) There is a strictly positive upper triangular matrix

B = (bm,n)mzo,an

with increasing columns such that the following properties hold:

() Ym>1,3u>1,C>0,Vj>0,n>j: G, <Cc—2 .
Qpn+1 bj+1,n+1
amn
> P ) .
(B) dm >1: TILI>1% o > 0;

and either (v), where
Ym >1: Z am—’n<oo, if X = AP(A),

. . b'm,n
(7) I(Jm)m=1 "ZJ’&m]n
lim limsup —— =0, if X = ¢o(A);
m=00  n—oo Jm,n
or (7), where
( . o L Omon+tl bjr1,mt1
Ym>1,3IN >0, p<1,¥j >0, n>max(N,j): — < T

=~ )
Amn bj,n

~ : Amon
() < k)1 A (di)k>1 /,Vm > 1 lim sup . —

k—o0 n>max(dg,ng) bdk n

A Jm)m>1 ", Vm > 1: lim Gmn _ 0.
L - n—o0 T

Here, (jm)m, (ng)r and (dg), are strictly increasing sequences of positive integers. Also
note that the n-th column of the matrix B has (only) n + 1 entries, and these are supposed
to be increasing.

We have introduced the alternative and rather technical condition (7) in order to deal
with some interesting spaces that do not satisfy (7v). One example is given by the power
series space of order p > 1 and infinite type with o = (log(log(n + 3)),,, see Theorem 4.6.
Note, however, that the third condition in () implies () when X = ¢y(A) so that, for these
spaces, condition (7) is of no interest.

Theorem 3.14. Let X = M\ (A), 1 < p < o0, or X = co(A) be a Kdthe sequence space. If
condition (B) holds then X supports a chaotic weighted shift, and there ezists a frequently
hypercyclic weighted shift that is not chaotic.

Proof. We start by showing that under condition (B) the hypotheses of Proposition 3.9 are
satisfied. By (), there exist a strictly increasing sequence (my)g>1 of positive integers and
a positive sequence (Cj)r>1 such that, for every k£ > 1 and n > j > 0,

amkvn < Ck b]?’n‘
Uil Djringt

Therefore, we have for every n > 1,

. A N b'+1n
v, := inf Cfp —=2 > max 2%

k2L n—1 - JSn—l

> 0.
jvn_l

It remains to show that if () or () holds then (W) € X, where p =1 for the

N>0
space X = ¢g(A). First, let (j,,)m be a strictly increasing sequence of positive integers. We
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then deduce that, for every m > 1 and every N > j,,, we have

1 < 1 1
—_—V  — a - a
HN U m,N = Jm—1 bn,n HN b]-m’n m,N
n=1"n n=1 brn—1,n—1 n=7jm bim—1,n—1
N-1
(38) _ 1 bjmflv.jmfl Hn:jm bjm*l,n a/m7N
 bjm—tgm—1 N—1 A
m bo,onL Hn:]m bjm,n b],m,N
Qm,N
< bpo
bjm N

since B has increasing columns.
If () holds, then (3.8) implies that (W)N>0
n=1"n -

belongs to ¢y(A) if and only if there is an increasing sequence (k). of positive integers such
that sup,>;,  |Tk|@me — 0 as m — oo.

On the other hand, if (¥) holds then for every m > 1 there exist J,, > 0 and p,, < 1 such
Gmntl < Bntl VWe then deduce that, for every N > J,,,

bO,n

€ X; note that a sequence x = (z,,),

that, for every n > J,,,

Am,n

N

1 bo,n—1
e (T s
Hn:l Ln

Since p,, < 1, it follows again that (W)]\DO € X.
n=1Yn -

We can thus deduce in each case from Proposition 3.9 that there exists a chaotic weighted
shift on X.

We now show that under condition (B), the space X also supports a weighted shift which
is frequently hypercyclic but not chaotic. We first consider a Kéthe sequence space M\(A).

Let B = (bmn)mn be a strictly positive upper triangular matrix that satisfies condition
(B), where we begin by the variant («), (8) and (). Let (Nk)r>0 be a strictly increasing
sequence of non-negative integers with Ny = 0 and A,, r > 1, pairwise disjoint sets of
positive lower density such that (a) and (b) of Lemma 3.13 hold.

We then define a weighted shift B,, with weight w associated, via (2.6), to the sequence v
given by

1
bl/p

n—Ng,n

(3.9) Vn = Ny << Nyt k> 0;

note the power 1/p that is required by the form of the seminorms in A?(A).
Then we have for N, <n < Ny —1, k>0,

(Un—l-l)p _ bn—Nk,n
b

Un

)
n—Ng+1,n+1

while for n = N1 — 1, kK > 0, we have that

<Un+1>p - bank,n > bank,n

= )
Un bO,nJrl bankJrl,nJrl
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where we have used the fact that the columns of the matrix B are increasing. Thus, in view
of (3.3), condition («) implies that B,, is an operator on A\P(A).
Next, let m > 1 be such that (8) holds. Then

amka

inf vl @, = inf > 0,

k>0 k>0 bo n,
which, by (3.7), implies that B, is not chaotic on AP(A).
It remains to show that B, is frequently hypercyclic on AP(A). It follows from (7) that
for any m > 1 there are j,, > 1 and n,, > j,, such that

Qpnm, 1
n>nm Jm,n

where we may assume that (j,,), and (n,,), are strictly increasing.
We will then consider the sets

A =A,, r>1

It suffices to show that conditions (i) and (ii) in the characterization of frequent hypercyclicity
stated above hold for the sequence (A ),>; of pairwise disjoint sets of positive lower density.
Thus, let » > 1 and m > 1. Using condition (a) of Lemma 3.13 we see that

a
D . m,n+r
E Untr@mntr = E 5 -

neA. k>0  neAl b+ r=Npntr
Ng<n<Ngi1
Also by (a) we have that if n € A, N, < n < Ngy1 then n > Ny + k, so that for all but
finitely many & we have that n +r — N > j,,, hence b,y N, ntr = 0}, ntr, Which together
with (/) implies (i).
Now, let r,s > 1, m € A, and j = 0,...,r. Using condition (b) of Lemma 3.13 we see
that

P o as,nferj
U?’Lfm“rj aszn_m+j -

b, . _ .
neA; k>0 neAl n>m n=m+j—Ngn—m+j
n>m Np<n—m<Ngy1

< Z Z Zmax(r,s),n—m—l—j :

k>0 TLGA;ﬁ,n>m ]max(r,s)m—m-i-j
Np<n—m<Npyq1

where we have used the fact thatifn € AL = A, ,me A, =A,.,n>m, Ny <n—m < Ny
fork > 0,and j = 0,...,7 then, by (b), n—m+j—N; > max(n,,ns) > max(Jjr, js) = Jmax(r,s)-
Now, for these n, m, j we have that n—m-+j > max(n,, ns) = Nmax(r,s)- Hence, with condition
(7'), we have that

a 1
D . max(r,s),v o 1 1
Z Un—m+;js,n—m+j S Z < 9max(r,s) - mln(Q_T’ 2_3>

TLGA;‘ Vznmax(r,s) Jmax(r,s) "V
n>m

This shows (ii), which completes the proof for A?(A) under condition (B) with («), (5) and

(7)-

The proof for ¢o(A) is very similar if one takes p = 1 in (3.9) and notes again that
r = (Tp)n € co(A) if and only if there is an increasing sequence (k) of positive integers
such that sup;;.  |Zr|@me — 0 as m — oo.

Next suppose that (B) holds with («), () and (), where it suffices to consider the case
when X = AP(A); see the remark before the statement of the theorem. Choose again (Ny)i>o
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and (A,),>1 according to Lemma 3.13. Throughout the remainder of the proof, for m > 1,
let v, = N and p,, = p be given by the first condition in (7). We may assume that (vp,)m
is strictly increasing.

Also, let (dg)r and (jm)m be the sequences of integers given by the second and third
conditions in (7). Then we can find inductively strictly increasing sequences (Iy)g>1, (1})k>1
of strictly positive integers such that, if £ > 1 and 1 < m <k,

a/m,Nl/ +dlk 1
(3.10) k<
bdlk’Nl§€+dlk 2
and
Am,N,/ +jm 1
(3.11) —— < (1= pm)
bjm,Nl“jm 2k

and we set [p = [[ = dy = 0. We may also assume that
L, >d,, k>1

We then set
N,; :Nl;c,al;g =d;,, k>0.

It follows from (a) and (b) of Lemma 3.13 that we have
(a’) For r > 1, if n € A,, then for any k£ > 0,

N, <n <N = N,+d, <n< N, —r
(b’) For r;s > 1,if n € A,, m € A;, n > m, then for any k& > 0,
N, <n—m < Ny, = N +max(r,s) <n—m < Ny, —max(r,s).

We now define a weighted shift B, via a sequence v exactly as in (3.9), however with
(Ng)k replaced by (N})g. Conditions («) and () imply again that B,, is an operator on X
that is not chaotic. It remains to show that conditions (i) and (ii) in the characterization of
frequent hypercyclicity hold.

Let r > 1, m > 1. It follows with (a’) that, for & > 0,

(312) Z 'Ungra'm,n-i-r < Z baLJﬂ’ < Z —am,n

nEA, nea, - nmr=Npntr n>N/ +d; b"_Nllf’”
N} <n<Nj_, n>Nj+dj, - :

By the first condition in (7) we have for all n > NJ

am,n—‘rl amm,

m
bn—l—l—N{ﬂ,n—l—l bn—N,’C,n

provided that k is so big that N| > v,. If, in addition, k¥ > m, then summing a geometric
series gives us with (3.10) that

o 1 Gt 11
3.13 § T <L it Al R —
( ) ban,’C,n 1 Pm bd;c,N,/chd;C 11— Pm 2k

n>Nj +dj,
Altogether it follows from (3.12) and (3.13) that, for any » > 1 and m > 1,

p — p
E Uy O g = E g Uy O g < OO

neA, k>0 neA,

’ /
N{<n<Nj_,

This shows condition (i).
Finally, for any m > 1, let J,, be an integer such that

(3.14) Om > Npyy — N, 0<k <m.
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We may assume that (d,,),, is strictly increasing. We will then consider the sets
A; = Amax(u,«,jr,ST)a r>1

It suffices now to show that condition (ii) above holds for the sequence (A} ),>1.
To this end, let r,s > 1. By (b’) and the definition of the A/ we have that if n € A/,
m € A, and N, <n—m < Nj_, (k>0) then

(3.15) n—m > max(Vy, Vs) = Vmax(r.s)
and
(316) n—m > NI:; + maX(.jm.js) - NI; + jmax(?ﬂs);

moreover, we can remark that k£ > max(r, s) since
n—m > N+ max(0,,8s) = Nj, 4 dmax(rs)
and since it follows from (3.14) that N} + dmax(rs) > Vi, for every k < max(r, s).

Now let m € A’ and j =0,...,r. Then we have for £ > 0, using (b’) once more and also
(3.16), that
Qa, n—m+j
Z Uifm+ja57n7m+j S Z b mr g
TLEAI nEA' n_m+]_N/7n_m+]
N,’anfm<N‘,’€_~_1 N,’anfm<N,’€+1
a _ .
(317) < Z max(r,s),n—m-+j :

b . , .
. n—m+j—N, n—m+
n_mzN];J’_jmax(r,s) J J

< Z Amax(r,s),n—m
>~ b / .
. n—m—N, n—m
n_mzN];J’_jmax(r,s) k

Moreover, by (3.15) and the first condition in (¥), we have

Amax(r,s),n+1—m Gmax(r,s),n—m
> Pmax(r,s) b

n—m—Nj ,n—m

bn+17mfN,’c,n+1fm

whenever n —m > Nj. Thus, with (3.17) and (3.11), we obtain after summing a geometric
series that

Up a < 1 amax(rvs)vN]gJ”jmax(r,s) < ]'
nomtjQsm-mtj S 7

_ . . = 9ok
TLEA; pmax(r,s) b.]max('r,s)aN]/C+.7max(r,s) 2

! !
ngn—m<N,ﬁLl

whenever k£ > max(r, s).
Altogether we have that

2 . (2 2
va s p—mij = Z v et < ———— = min [ —, — |.
n—m-+j"sn—m+j n—m+josn—m+j = 9omax(r,s) o1’ 9s
neA;, k>max(r,s) neA;
n>m N <n—m<Nj

This shows condition (ii), which completes the proof for A?(A) also under condition (B) with
(@), (B) and (7). 0

Let us mention that Theorem 3.14 can be applied to the space ¢y (take A = (1)>1.1>0
and B = (m + 1);,50>m) to recover the result of Bayart and Grivaux [5]. An example of a
non-Banach space to which it is applicable is the space H(C) of entire functions, which can
be identified with the Kéthe sequence spaces ¢o(A) or AP(A) for any 1 < p < oo by letting

A p = M.

Proposition 3.15. There exists a frequently hypercyclic weighted shift on H(C) that is not
chaotic.
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Proof. Let A be the Kothe matrix given by a,,, = m™. We consider the upper triangular
matrix B = (byn)m>0n>m given by by, , = 2" and we show that condition (B) holds. We
first remark that B has increasing columns. Condition («) is satisfied by considering p = 4m
and C' =1 since for every n > j > 0,

am,n _ 1 < 1 _ bjm
Antlyy — 9ntit+l

Qpn+1 bj+1,n+1

Condition (/) is trivially satisfied for any m since by, = 1 for every n > 0; finally, condition

() is satisfied for j = m since, for every n > j, 3= = (zﬂm)n It follows from Theorem 3.14
J,n

that there exists a frequently hypercyclic weighted shift on H(C) that is not chaotic. U

In view of Propositions 3.12 and 3.15, we see that among Kothe sequence spaces satisfying
(N), there are examples for which frequent hypercyclicity implies chaos and others for which
this is not the case. Actually, this is also the case among Kéthe sequence spaces not satisfying
(N) (see Example 4.15).

Thus we have now a sufficient and a necessary condition for frequent hypercyclicity to
imply chaos concerning weighted shifts on Kothe sequence spaces. We are still quite far
from a characterization. For instance, one may ask the following.

Question 3.16. (a) Is there a Kéthe matrix A so that, on ¢y(A), every frequently hypercyclic
weighted shift is chaotic (and that there are such shifts) while \?(A) admits a frequently
hypercyclic, non-chaotic weighted shift? This would inverse the known behaviour for ¢y and
o,

(b) Is there a Kothe matrix A so that, for some p > 1, every frequently hypercyclic
weighted shift is chaotic on A(A) (and that there are such shifts) while, for some ¢ # p,
A(A) admits a frequently hypercyclic, non-chaotic weighted shift? Note that, so far, all our
conditions are blind to the order p once it is not zero.

In summary, there exist a Kothe sequence space that does not support any chaotic or
frequently hypercyclic weighted shift (Example 3.8), one where every frequently hypercyclic
weighted shift is chaotic and where there are such shifts (/% or H(D) (see [7] and Propo-
sition 3.12)), and one that supports a chaotic weighted shift and a frequently hypercyclic,
non-chaotic shift (co or H(C) (see [5] and Proposition 3.15)). The only remaining case is the
following.

Question 3.17. Is there a Kothe sequence space supporting frequently hypercyclic weighted
shifts but no chaotic weighted shift?

4. CHAOTIC AND FREQUENTLY HYPERCYCLIC WEIGHTED SHIFTS ON POWER SERIES
SPACES

In this section, we will apply the results of the previous section to so-called power series
spaces which generalize the spaces H(ID) and H(C), see [16, Chapter 29]. Let a = (av,)n>0 be
an increasing sequence of strictly positive numbers that tends to infinity, and r» € R U {oc}.

Let 1 < p < oo. Then the power series space of order p and type r is defined as

Ay (o) = {x = (Tp)n>o : for all t < r, Z |z, |Peln < oo},

n>0

while the power series space of order 0 and type r is given by

Cor(a) = {91: = (@p)n>o : for all t < r, lim |xn|et°‘n — },

n—oo
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which are topologized by the obvious (semi-)norms. If 7 = oo then the space is said to be
of infinite type, otherwise of finite type. Power series spaces are particular Kothe sequence
spaces.

Many interesting spaces are or can be considered as power series spaces, for example the
space s of rapidly decreasing sequences (any p, r = oo, a = (log(n+2)),), the space H(C) of
entire functions (any p, r = 0o, @« = (n+1),,) and the space H(Dg) of holomorphic functions
on the disk of radius R > 0 (any p, r = log R, a = (n+1),,). A recent addition is the space
ces(p+), 1 < p < oo, which was studied in [1] and shown to coincide with AL%_I(()() for
a = (log(n +2)),.

In the literature, authors are often content with considering one particular order, like
p =2 (see [16, Chapter 29]) or p = 1; but see, for example, [12] for the full family.

4.1. Power series spaces of infinite type. Power series spaces of infinite type are special
Kothe sequence spaces with Kothe matrix A = (apmn)mn given by
A =M™, m>1,n > 0.
The following is easily verified, see Remark 3.1, Propositions 3.2 and 3.3, and the proof of
[16, Proposition 29.6].

Proposition 4.1. Let X = A, (@), 1 < p <00, or X = Cy () be a power series space of
infinite type. Then it is a non-Banach Fréchet space for which the basis (e,), is boundedly
complete. In addition, its Kéithe matriz satisfies condition (N) if and only if

log(n)
sup
n>1 Qn

< 00

Moreover we know from Subsection 3.1 that power series spaces always support weighted
shifts. As for the existence of (frequently) hypercyclic or chaotic weighted shifts we have the
following.

Proposition 4.2. Let X = A, (@), 1 < p < 00, or X = Cy () be a power series space
of infinite type.
(a) Then X supports a hypercyclic weighted shift if and only if
N—1
lim sup —Zn:O M _ .
N—oo an

(b) Moreover, X supports a chaotic weighted shift if and only if

N-1
lim —Z”ZO L
N—o00 O[N

Proof. 1t is readily verified that the Kéthe matrix (m®),, , satisfies condition (3.4).

(a) Suppose that limsupy_, ., %ﬁa” = 00. Choose > 2 and C' > 1. Writing any given
m > 1 as m = p” with some p > 0 we see that
N 1
I{NHi}Hf W = h]{[n inf ) N1 =0.
oo ( J=n=19" 00 CNNJOZN<W D=1 Oén+1—P)

Hence, by Corollary 3.7, there exists a hypercyclic weighted shift on X.
N—-1

On the other hand, if limsupy_, Z”;;]OVO‘" < oo then, since « is an increasing sequence,
. N . 130 o
we also have limsupy_,,, 5~ < limsupy_, o-=%52— < 0o. Let p > 1 and C' > 0, and

choose .
m > sup C'an pan 2n=1on,
N>0
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Then we have that, for all N > 0,

moN < m )aN > 1
CNMZiV:lan B O%M$Zf=1an -

Hence, by Corollary 3.7, X admits no hypercyclic weighted shift.
(b) The proof, based this time on Corollary 3.10, is very similar and therefore omitted. [

In the sequel we will be led to study properties of power series spaces based on the

behaviour of the quotients
Qn41

an
as n — 00; note that these quotients are all at least 1. Thus the following is of interest.

Example 4.3. (a) Suppose that
Ont1

lim inf > 1.

n—oo O(n
Then the corresponding power series spaces of infinite type do not support any hypercyclic
weighted shifts. Indeed, there is then some ny > 0 and p > 1 such that % > pF for all

n > ng and k > 0. Hence, for any N > ny,

< <

av- O Pl

Zfzvzinlo Qn N_Zno 1 1

Y

so that the assertion follows from the previous proposition.
(b) On the other hand, if
lim 22— g

n—o0 O[n

then any corresponding power series spaces of infinite type supports a chaotic weighted shift.
In fact, in that case, for every € > 0, there exists some nyg > 0 such that -2z for

1
W 2 Tor
every n > ng and k > 0, and thus we have that

N-1 N—ng
Y 7% 1 1
lim inf —Zn_"o im i

N—oo aN ~ N—oo e (1‘|‘€)k _g

«

Since this inequality holds for every € > 0, the assertion follows again from the previous
proposition.

We return to the question whether every frequently hypercyclic weighted shift is chaotic.
In the context of power series spaces of infinite type, condition (TK) turns out to be too
strong and does not allow the existence of hypercyclic weighted shift, as shown by the
following result.

Theorem 4.4. Let X = A, (@), 1 < p < o0, or X = Cyol) be a power series space of
infinite type. If condition (TK) holds then X does not support hypercyclic weighted shifts.

Proof. Let v, = W for n > 0. Then, for any m > 1, when choosing i = 2m, we have
for any n > 1 that

1

On—1 __ « Qn—1 [e% J—
Wm " == Un2 "mn S Un(2m) "= UnGQpn-

Un—10mn—-1 =
Thus, by (TK), taking m = 1, there is some p > 1 such that for any j > 1 there is some
constant C; > 0 such that, for any n > j,

1 1,
Qa1+ ton_; =G Sarttan
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hence
9an—j+1+tan < Cipom,
and thus
Jon—j < opm_j+ ...t ap < ap_ji ..+ o, <log, C) + ay, log, .
We then have that, for any 7 > 1,

log, C; 4 log, #) _ log,
. j M

We choose j > 1 such that logT?” < % Then there is some ny > j such that, for every n > ny,

a s
limsup —Z < lim Sup(

n—oo  Op n—00 JC0n J

Xn—j 1.
o, 2
It follows that
ZNfl 1 L@J N—vj
an .
limsup =2=0 " < limsup (— an)
N—oo an N—00 an v=0 n=N—(v+1)j+1
5= 5= |
. .Oényj . .
< lim sup j— | <limsup | J — | < o0.
N—o0 ( VZO an ) N—o0 VZO 2v

We then deduce from Proposition 4.2 that X does not support hypercyclic weighted shifts.
O

This result is surely disappointing. It shows that our sufficient condition for frequent
hypercyclicity to imply chaos obtained in Subsection 2.2 is not good enough in the present
context; recall that, for Kothe sequence spaces, (TK) is equivalent to (T).

Question 4.5. Does there exist a power series space of infinite type that supports chaotic
weighted shifts and for which every frequently hypercyclic weighted shift is chaotic?

In the opposite direction we have the following result.

Theorem 4.6. Let X = A, (), 1 < p < o0, or X = Cy(a) be a power series space of
infinite type. Suppose that either

Je €(0,1), VC > 0,3 > 1: ) emnatetonCon oo if X = Ay o(a),
n>j
VC > 0,37 >1: liminf(a,—j + ... + ap_1 — Cay,) > —00, if X = Cpo(@);
n—oo

or

. Ol
lim /= =1.

n—00 (i,
Then X supports a chaotic weighted shift, and there exists a frequently hypercyclic weighted
shift on X that is not chaotic.

Proof. We will apply Theorem 3.14. First of all, for an arbitrary € € (0, 1), define the upper

triangular matrix B = (b, ) by
1
bm,n_— n>m 20,

- gan—m+~~-+an71

where we interpret by, = 1, n > 0. Then B has increasing columns. Let m > 1, and choose
p > m/e. Then we have forn > j >0,

Umn Djriny1 (m/e)*n <1

)
A+t Djn pomt
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so that part (a) of condition (B) holds. Part (3) is trivially satisfied.

Now suppose that the first hypothesis holds, and let X = A, («). Then choose as € a
corresponding value. Let m > 1, and let C' > 0 be such that m = e~. Then
a/mJL _ gan_j+...+an,1—0an7 n Zj Z 0
bin
Hence the hypothesis implies that also part (y) of condition (B) holds in this case. For
X = Cp (), one first needs to note that the hypothesis also holds for 2C, so that we have,
for the 7 > 1 given by the hypothesis,

Olp—j + ..t _Can = (an—j +...tap — QCOén) —|—COén — 00,

which implies part () also in this case by the same argument as above.

Finally suppose that the second hypothesis is satisfied, where now the space X is arbitrary.
For simplicity let us take ¢ = % Let m > 1, and choose n > 0 such that m!'*” < 2m. Then
there is some N > 0 such that a,1 < (1 +n)a, for all n > N. Hence we have for all j > 0
and n > max(N, j) that

a b ma’ﬂ+1 m1+77 Qn m1+77 )
o e (e
Amn bjtinsr  (2m)on 2m 2m

which shows the first condition in (7).

Next we fix a strictly increasing sequence (dj)x>1 of positive integers such that, for all
k>1,2% > k2(1 + k). We then choose 1, > 0 such that (1 + ;)% < 2 for £ > 1. Finally,
there are v > 0 such that a,, 11 < (14 nx)a, for all £ > 1 and n > v, and we can assume
that (vg)g is strictly increasing. Thus we have for £ > 1, n > 1, and 1 < m < k that

Am,n+dy mOn+dy, m (1) Yk am < (mz)an < < 1 )an < ( 1 )ao

— < - _ =
bdk,n-i-dk 2an+..-+an+dk—1 — 2dkan Qdk k + 1 k + 1
This shows the second condition in (7) with n, = v + di, k > 1.
Taking j,, = d,, for m > 1, and choosing m = k above we have that, for all m > 1 and

n = N,
Ui ( 1 )%
bjm,n+jm “\m+1
Thus also the third condition in (¥) holds. O

Thus we have by Example 4.3 and Theorem 4.6 the following.

Corollary 4.7. Let X = A, (), 1 < p <00, or X = Cpy () be a power series space of
mfinite type.
(a) If

. . o O0pn
liminf /L > 1
n—oo aTL

then X supports no hypercyclic weighted shift.
(b) If

. Q41
lim /4= =1

n—00 (i,
then X supports a chaotic weighted shift, and there exists a frequently hypercyclic weighted
shift on X that is not chaotic.

Corollary 4.7(b) applies in particular to the space H(C) of entire functions, see also Propo-
sition 3.15, and the space s.

Proposition 4.8. The space s of rapidly decreasing sequences admits a frequently hypercyclic
weighted shift that is not chaotic.
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We end our study of power series spaces of infinite type by giving an example of such a
space supporting chaotic weighted shift but to which Theorem 4.6 is not applicable.

Example 4.9. Consider the sequence space

X:{(xn)n:‘v’mZL( sup |xn|>mk!—>0ask—>oo}.

2k—1<n<ok
This is a power series space Cy o (a) with a given by
anp = k! if 2t < <2F k> 1,

and ag = 1. Then we have for 28=1 < N < 2% k > 2. that

ok—1

N—1 _
ano O{n 2 Zn:2k72+1 an _ Qk 2(]{7 - 1)' 00
an k! k!
as N — 00, so that by Proposition 4.2 the space Cj o (a) admits chaotic and hence frequently
hypercyclic weighted shifts.

On the other hand, we have for any 57 > 1 and any k sufficiently large that

a2k+17j + ...+ Aok — Ck2k+1 = jk' — (k + 1)',

so that liminf, ,o(an—j + ... + ay—1 — @) = —00. And, of course, limsup,,_, O‘g—zl > 1.

Theorem 4.6 is thus not applicable, and we do not know if every frequently hypercyclic
weighted shift on Cj () is chaotic or not.

4.2. Power series spaces of finite type. We turn to power series spaces of finite type.
We first note that, since ef®» = e"®elt=")an one can change the finite type r by a diagonal
transform into any other finite type; hence any weighted shift on a power series spaces of
finite type is conjugate to a weighted shift on a power series spaces of type 0. In the sequel
it will therefore suffice to do the proofs in the case of r = 0.

Now, power series spaces of type 0 are special Kothe sequence spaces with Kothe matrix
A = (m,n)my given by

1
Ammn = 77— ~an, M Z 1,n Z 0.
(1+3)

We again have the following, see Remark 3.1, Propositions 3.2 and 3.3, and the proof of

[16, Proposition 29.6].

Proposition 4.10. Let X = A,,(a), 1 <p < 0o, or X = Cy,() be a power series space
of finite type. Then it is a non-Banach Fréchet space for which the basis (e,), is boundedly
complete. In addition, its Kéithe matriz satisfies condition (N) if and only if

lim log(n)

n—oo an

=0.

Moreover, by Subsection 3.1, these spaces always support weighted shifts. The charac-
terizing conditions of Propositions 3.6 and 3.9 for the existence of hypercyclic or chaotic
weighted shifts do not seem to simplify easily. Thus we will be content with the following.

Example 4.11. (a) Suppose that

. an+1
lim

n—00 Qi

Then the corresponding power series spaces of finite type do not support any hypercyclic
weighted shifts. We will show this for A, («), the argument for Cy,(a) being similar.
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Thus, let B,, be a weighted shift on A, ,(«). By continuity there then exist © > 1 and
C > 1 such that, for every n > 1, |wp|Par,1 < Cay,, and thus |w,|? < €271 Therefore

(1+5)om
we get for n > 1 that
n a 1 1
CZQ,u,n H v :< 1‘}‘/: )O{nH< 1+; >ak
n — (n ey n/an9an_1/a 1 ap_1/o ’
Hk:l |wy [P C’ 1_|_ an e Qou—1 Cn/an9an—1/ n(l_i_ﬂ) e a1/ oy,

Now, since % — oo and therefore -~ — 0 as n — oo there is some N > 0 so that, for all
n >N,

Lt o1 and T s
> and ——— > 1.
Cn/anan—1/an (1 4 ﬁ) Qan—1/an
Thus we have for all n > N,
a N-1 o
- ( ) >0
HZ:l wgl? kl;[l 20k 1/0% ’

which contradicts [14, Theorem 4.8]. We conclude that B,, is not hypercyclic.
(b) On the other hand, if
Opt1

lim sup < 00

n—oo aTL
then any corresponding power series space of finite type supports a chaotic weighted shift.
Specifically, we will show that the weighted shift B,, with w, = 2 for all n > 1 is chaotic on
any such space, which we will prove again only for A, ,(«). To this end, let m > 1. It then
follows from the hypothesis that there are n,, > 0 and p > 1 such that, for every n > n,,,

op

~( o/ )" < L
1 n— - 1 yan— n - 1oy’
T A (o

note that a,, — 0o as n — oo. Thus there is a constant C' > 0 such that, for all n > 1,
wyplam,n—l S Caumv

so that B, is an operator on A,,(a). Moreover, for every m > 1, we have that

1 1
Zmam,n§2%<%

n>0 L1 n>0
which shows that B,, is chaotic; see (1.1).

Concerning the condition (TK), power series spaces of finite type behave quite differently
from their counterparts of infinite type, see Theorem 4.4.

Theorem 4.12. Let X = A, (o), 1 <p < o0, or X = Cy,.(a) be a power series space of
finite type. Suppose that

+J

lim sup lim sup —= < oo.

j—00 n—00 Oy,

Then X supports a chaotic weighted shift.
Moreover, for any weighted shift B, on X, the following assertions are equivalent:
(i) By is U-frequently hypercyclic on X ;
i) B, is frequently hypercyclic on X ;
ii) B, is chaotic on X;
iv) the series Y, ~o wmw-€n s convergent in X.

(i



28 STEPHANE CHARPENTIER, KARL GROSSE-ERDMANN, QUENTIN MENET

Proof. Since « is increasing, the first limsup in the hypothesis is a supremum. Thus, the
first assertion follows from Example 4.11(b). In addition, there is some § > 0 such that, for
all 7 > 1, we have that

(4.1) day, < ayj

holds for all sufficiently large n.

To complete the proof it suffices, by Theorem 3.11, to show that condition (TK) is satisfied.
To this end, let (v,),>0 be a strictly positive sequence so that, for any m > 1, there are
fm > 1 and C,, > 0 such that, for all n > 1,

Un—lam,n—l S Cmvnaum,na

hence . )
1 + 1 \an—1 1 + 1 \an
Up—1 S Cmvn% S Cmvn%
(14 ) (14 )
Let (n.,)m be a strictly increasing sequence of positive integers such that, for all n > n,,,
Cr,
Ly =&
(14 )

Thus, if we define M, = log(1 + %) for n,, < n < nyy, m > 1, with M,, = log?2 for
0 <n < nq, then (M,), is a decreasing positive sequence that converges to 0 and such that,
for all n > nq,

Vpoy < vpeMnon,

Now let m > 1. Then there is some p > 1 such that
(4.2) log(1+ ) < dlog(1+ ;).
Let 7 > 1. Then we have for all n > n; + 7 that

amzn_j
Un—j

<,
aun (14 %)a"

<, eXp(_ 1Og(1 + %)an—j + jMn—jan + 1Og(1 + i)an)
Since (M,,), tends to 0, we have by (4.2) that for all n sufficiently large

amznij
U j——

- eXp(Mn7j+1Oén7j+1 + ...+ Mn@n)(l + i)an

< vy exp(—log(1 + L)a,—; + dlog(1 + 2)a,);
A

hence, by (4.1) we have for all large n that

a/m7n7j

Up—; < vy,.

Apn

This shows that (TK) holds. O

As for the existence of non-chaotic frequently hypercyclic weighted shifts we have the
following.

Theorem 4.13. Let X = Ay, (a), 1 <p < oo, or X = Cy,(a) be a power series space of
finite type. Suppose that

lim sup o+l
n—o00 679
and
Jee€(0,1),¥6>0,35>1: Zg’o‘"ﬁ*a“" <oo, if X =AM, (a),
n>j
. .. Qg o ’ . o
lim sup lim inf = 00, if X = Chr(a).

j—o0 n—oo iy
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Then X supports a chaotic weighted shift, and there exists a frequently hypercyclic weighted
shift on X that is not chaotic.

Proof. We will show that the hypothesis implies condition (B) under the alternative () in
Theorem 3.14.

We first consider the case when X = A, (a). Let € € (0,1) be given by the hypothesis.
We then define the upper triangular matrix B = (b, ) by

by =e"""", n>m>0.
Note that B has increasing columns. Let m > 1, and choose 1 > 1 such that
1\M 1

where M = sup,,», “2**. Then we have for n > j > 0,

1\an, 1\M
Qm,n bj+1,n+1 _ (1 + ;) i < <(1 + ﬁ) )a" <1
a,u,nJrl bj,n (1 + %)a” - 1 —+ % -

so that part (a) of condition (B) holds.
Next, choose m so that (1 + =) < 1. Then
o 1
b()’n B €a"(1 + %)a”
for all n > 0, so that also part (/) holds.

Finally, let m > 1, and define § > 0 by ¢’ = ﬁ Then we have for n > j > 1,

Ammn gfan_j%»éan

bin ’
so that by considering the integer j given in the hypothesis for € and 9, we can deduce that
also () holds. This completes the proof for X = A, ().
If X =Cy,(), it is easy to see that the hypothesis implies that
V6 >0,3j>1: lim g @n-itoam =,

n—o0

where e € (0, 1) can be chosen arbitrarily; see also the proof of the following corollary. Then
we proceed as in the case of X = A, (). O

The following is immediate from the previous results.

Corollary 4.14. Let X = A, (), 1 < p < o0, or X = Cy,(a) be a power series space of
finite type.

(a) If N
lim — =
n—oo an
then X supports no hypercyclic weighted shift.
(b) If .
lim sup lim sup — < oo
Jj—00 n—00 Ay,

then X supports a chaotic weighted shift, and every frequently hypercyclic weighted shift on
X s chaotic.

(c) If o
lim sup < oo and limsupliminf 2 = oo

n—00 (079 J—00 n—oo Oy

Opi1

then X supports a chaotic weighted shift, and there exists a frequently hypercyclic weighted
shift on X that is not chaotic.
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Proof. In view of Example 4.11 and the Theorems 4.12 and 4.13, we need only show that,
for X = A, ,(«), the hypothesis in (c) implies the one in Theorem 4.13. Thus, let ¢ € (0,1)
be arbitrary, and let § > 0, where we may assume that § < % Then the hypothesis in (c)
implies that there are some j > 1 and some N; > j such that, for all n > N;, a,,—; < da,.

This implies that
Z Sfan,j+26an < Z 550‘"_
n>N; n>N;

But since we also have that % > 2 for all large n, the latter series converges, which had
to be shown. U

Corollary 4.14(b) applies in particular to the space H(D) of holomorphic functions on the
unit disk D, see also Proposition 3.12.

The following table summarizes our findings for power series spaces A, (), 1 < p < oo,
and C,(«) of finite or infinite type when « satisfies

Qpyq

p = lim € [1, +o0],

n—o0 (U,
see Corollaries 4.7 and 4.14. In this table, '=" stands for the fact that every frequently
hypercyclic weighted shift is chaotic (and that there are chaotic and hence frequently hy-
percyclic weighted shifts), '’ for the fact that some frequently hypercyclic weighted shifts
are not chaotic, and ’x’ indicates that there are no hypercyclic (and hence no frequently
hypercyclic) weighted shifts.

H T <0 ‘ example H 7 = 00 ‘ example

p=1 = | H(D) # | H(C), s
l<p<oo + X
p =00 X X

The specific examples in the table are all nuclear spaces. We end by adding some non-
nuclear examples. This will support the claim made at the end of the Introduction.

Example 4.15. (a) Let the Kothe matrix A be given by

1
am,n—m, le,nZO

Then the corresponding Kothe sequence spaces are power series spaces of type 0 with «,, =
log(n + 1), n > 1. Thus, on any such space, there are frequently hypercyclic weighted
shifts, and they are all chaotic since lim,, ag—:l = 1. Since condition (N) is not satisfied, see
Proposition 4.10, all the spaces ¢y(A) and AP(A), 1 < p < oo, are different by Proposition 3.3.
Note that A'(A) is the space ces(1+) studied in [1], see our discussion at the beginning of
this section.

(b) Let the Kothe matrix A be given by
Ay = (log(n+1)™, m>1,n>0.

Then the corresponding Koéthe sequence spaces are power series spaces of infinite type with
a, = log(log(n + 1)), n > 2. On any such space there are frequently hypercyclic weighted
shifts that are not chaotic since lim, agil = 1. Since condition (N) is not satisfied, see
Proposition 4.1, all the spaces ¢y(A) and M (A), 1 < p < oo, are different by Proposition 3.3.




[1]

[19]
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