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NEW CLASSES OF HYPERCYCLIC TOEPLITZ OPERATORS

EVGENY ABAKUMOV, ANTON BARANOV, STÉPHANE CHARPENTIER,
AND ANDREI LISHANSKII

Abstract. We study hypercyclicity of Toeplitz operators in the Hardy space
H2(D) with symbols of the form R(z) + ϕ(z), where R is a rational function and
ϕ ∈ H∞(D). We relate this problem to cyclicity of certain families of functions
for analytic Toeplitz operators and give new sufficient conditions for hypercyclicity
based on deep results of B. Solomyak.

1. Introduction and main results

Toeplitz operators are among the most important objects in operator theory. They
have numerous applications in complex analysis, theory of orthogonal polynomials,
mathematical physics, etc. Recall that for a function ψ ∈ L∞(T) the Toeplitz operator
Tψ : H2 → H2 with the symbol ψ is defined as Tψf = P+(ψf), where P+ stands for
the orthogonal projection from L2(T) onto H2. As usual, D and T denote the unit
disc and the unit circle, respectively. We recall that the Hardy space H2 of the
unit disc D consists of functions analytic in D whose Taylor coefficients are square
summable, and H∞ is the space of all bounded analytic functions in D.

In the present paper we study the hypercyclicity property for a class of Toeplitz
operators on H2. A continuous linear operator T on a separable Banach space X
is said to be hypercyclic if there exists x ∈ X such that the set {T nx : n ∈ N0} is
dense in X (here N0 = {0, 1, 2, . . . }). Toeplitz operators with antianalytic symbols
were among the basic examples of hypercyclic operators. In 1969, S. Rolewicz [6]
showed that the operator Tαz (a multiple of the backward shift) is hypercyclic on
H2 whenever |α| > 1. Later, G. Godefroy and J. Shapiro [3] showed that for a
function ϕ ∈ H∞ the antianalytic Toeplitz operator Tϕ is hypercyclic if and only if
ϕ(D)∩T 6= ∅. On the other hand, it is obvious that there are no hypercyclic Toeplitz
operators with analytic symbols (i.e., among multiplication operators).

However, the problem of describing hypercyclic Toeplitz operators in the general
case seems to be largely open. This problem was explicitly stated by S. Shkarin [7]
who described hypercyclic Toeplitz operators with symbols of the form Φ(z) = az+b+
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cz (i.e., with tridiagonal matrix). A. Baranov and A. Lishanskii [1] gave necessary
and (separately) sufficient conditions for hypercyclicity of Toeplitz operators with
polynomial antianalytic part of the symbol, that is, for symbols Φ of the form Φ(z) =
P
(

1
z

)
+ ϕ(z), where P is a polynomial and ϕ ∈ H∞. It turned out that the valence

of the symbol played the central role in this study.

In the present paper we will consider more general symbols. Let R be a rational
function without poles in D, i.e.,

(1) R(z) = P (z) +
r∑
l=1

kl∑
j=1

αl,j
(z − ηl)j

,

where P (z) =
∑N1

k=0 ckz
k is a polynomial of degree N1, αl,j ∈ C, and ηl ∈ D̂ := C \D,

1 ≤ l ≤ r, are the (distinct) poles of R of multiplicities kl. We put N2 =
∑r

l=1 kl and
denote by N = N1 + N2 the degree of the rational function R. We do not exclude
the cases when N1 = 0 (i.e., P = const) or N2 = 0 (R = P ). Finally, let ϕ ∈ H∞,
and put

(2) Φ(z) = R

(
1

z

)
+ ϕ(z).

Thus, Φ is analytic in D except the poles 1/η1, . . . , 1/ηr. The aim of this note is to
describe new classes of hypercyclic Toeplitz operators TΦ with the symbols of the
form (2).

As in [1], our conditions will be formulated in terms of the valence of Φ. Recall
that an analytic function h in a domain D is said to be n-valent in D if the equation
h(z) = w has at most n solutions in D counting multiplicities for any w ∈ C. It is
said to be exactly n-valent in D if this equation has exactly n solutions (counting
multiplicities) for any w ∈ h(D). Note that Φ (given by (2)) has a pole of order N1 at
zero and poles of multiplicities kl at 1/ηl, whence the equation Φ(z) = w has exactly
N solutions when |w| is sufficiently large.

Let us first illustrate the connection between the valence of Φ and the hypercyclic-
ity of TΦ through a necessary condition. For the case of symbols with polynomial
antianalytic part the statement was proved in [1].

Proposition 1.1. Let Φ be given by (2). If TΦ is hypercyclic, then the function Φ is
N-valent in D.

Let us also note that if TΦ is hypercyclic, then we have

σ(TΦ) ∩ T 6= ∅, σ(TΦ) ∩ D̂ 6= ∅.
The first condition is a basic property that holds for any hypercyclic operator [4,
Theorem 5.6], while the second one follows from the fact that, for any Toeplitz
operator, its spectral radius coincides with its norm [5, Part B, Ch. 4].
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It can be proven that if Φ is N -valent, then σ(TΦ) = C \ Φ(D, N), where Φ(D, N)
consists of those w ∈ C for which Φ(z) = w has exactly N solutions in D. We refer
to [1, Proposition 2.2] for the details. We do not know whether the hypercyclicity of
TΦ implies that σ(TΦ) ∩ D 6= ∅.

The key step of the proof of our sufficient conditions for hypercyclicity is an ap-
plication of the following principle, already used in [1]: Hypercyclicity of TΦ can be
reduced to standard cyclicity of some analytic Toeplitz (i.e., multiplication) operator.
We recall that a finite (or countable) family U of functions in H2 is said to be cyclic
for Th, h ∈ H∞(D), if the family {hku : u ∈ U, k ≥ 0} is complete in H2. More

specifically, for λ ∈ C \ Φ(D), let us set

(3) hλ(z) =
1

Φ(z)− λ
.

Clearly, hλ is analytic and bounded in D.

Proposition 1.2. Let Φ be given by (2). We assume that

(4) D ∩ (C \ Φ(D)) 6= ∅ and D̂ ∩ (C \ Φ(D)) 6= ∅,

and that, for any λ ∈ C \ Φ(D), the family {1, z, . . . , zN−1} is cyclic for Thλ with hλ
given by (3). Then TΦ is hypercyclic.

Based on this important observation, we will then formulate several sufficient con-
ditions for the hypercyclicity of TΦ. From now on, we assume that Φ is given by (2)
and satisfies (4). We denote by A(D) the disc algebra, i.e., the space of functions
continuous in D and analytic in D.

The following result concerning the case of constant and maximal valence of the
symbol is a direct extension of [1, Theorem 1.2].

Theorem 1.3. Assume that ϕ ∈ A(D) and Φ satisfies the following Maximal Valence
Condition:

(MVC) the function Φ is exactly N-valent on D \ {0, 1/η1, . . . , 1/ηr}, i.e., for any
w ∈ Φ(D) the equation Φ(z) = w has exactly N solutions in D counting multiplicities.

Then TΦ is hypercyclic.

Theorem 1.3, however, does not apply if Φ has varying valence in D. A novel
feature of the present note is that we make use of deep results of B. Solomyak about
cyclic families for analytic Toeplitz operators. Together with Proposition 1.2, this
allows us to significantly enlarge the class of symbols inducing hypercyclic Toeplitz
operators and, in particular, to include symbols with varying valence. These results
are new even for symbols with polynomial antianalytic part studied in [1].

Cyclicity of families of functions for analytic Toeplitz operator is very far from
being understood; deep results in this direction were obtained by B. Solomyak [8]
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and B. Solomyak and A. Volberg [9] in 1980-s. We use the geometric conditions on
the valence of the function Φ given in [8] to distinguish two more classes of hypercyclic
Toeplitz operators.

Theorem 1.4. Assume that ϕ ∈ A(D) and, for some λ ∈ C \ Φ(D), the function hλ
given by (3) satisfies the Increasing Argument Condition:

(IAC) The set hλ(T) is a finite union of C2-smooth Jordan arcs and some con-
tinuous branch of the function t 7→ arg hλ(e

it) is (strictly) increasing on [0, 2π].

Then TΦ is hypercyclic.

To state the last (and, in a sense, more general) result, we need to introduce
some notations (see [8, Paragraph 1.3]). Let h be a meromorphic function in D (i.e.,
meromorphic in {|z| < ρ} for some ρ > 1) with poles η1, . . . , ηs in D. Then the

set h(T) splits the plane into finitely many connected components. Let Ω
(k)
h be the

union of the connected components of C \ h(T) in which the number of pre-images
in D \ {η1, . . . , ηs} of h is equal to k (counting multiplicity). The bounded connected

components of the set C \ h(D) =: Ω
(0)
h will be called holes.

We say that h is a function of general position if it is analytic in a neighborhood
of T, the curve t 7→ h(eit) has only finitely many points of self-intersection which are
simple and transversal, and h′|T 6= 0.

Finally, let us say that two disjoint open sets U and V in C \ h(T) are adjacent
if U ∩ V contains h(I) for some open arc I ⊂ T. Then we remark that if h is

meromorphic in D and of general position, then a connected component of Ω
(k1)
h and

a connected component of Ω
(k2)
h are adjacent if and only if k1 = k2− 1 or k1 = k2 + 1.

Moreover, if for some λ ∈ Ω0
h, hλ is given by (3), then hλ is of general position if and

only if so Φ is.

Theorem 1.5. Assume that Φ is of general position and satisfies the following De-
creasing Valence Condition:

(DVC) For some λ0 ∈ D∩Ω
(0)
Φ and λ1 ∈ D̂∩Ω

(0)
Φ , for any j ∈ {0, 1}, and for any

component G ⊂ Ω
(k)
Φ , k ≥ 1, there exist connected components Gi of Ω

(i)
Φ , 1 ≤ i ≤ k,

such that G = Gk, the components Gi and Gi−1 are adjacent for 1 < i ≤ k, and G1

is adjacent to the hole which contains λj.

Then TΦ is hypercyclic.

We shall observe that under the assumption of the previous theorem, condition

(DVC) also reads as follows: For some λ0 ∈ D∩Ω
(0)
Φ and some λ1 ∈ D̂∩Ω

(0)
Φ , and for

any w ∈ C \ Φ(D), there exist continuous paths γ0, γ1 : [0, 1] → C with γi(0) = w

and γi(1) = λi such that γi ∩ Ω
(k)
Φ is connected for any k ≥ 0 and i = 0, 1.
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Remark 1.6. Let λ0 ∈ D ∩ Ω
(0)
Φ and λ1 ∈ D̂ ∩ Ω

(0)
Φ . Then it is easily seen that Φ

satisfies (DVC) for λ0 and λ1 if and only if both functions h = 1
Φ−λ0 and h = 1

Φ−λ1
are analytic in D, are of general position, and satisfy the following condition:

(DVC’) For any component G ⊂ Ω
(k)
h , k ≥ 1, there exist connected components Gi

of Ω
(i)
h , 1 ≤ i ≤ k, such that G = Gk, the components Gi and Gi−1 are adjacent for

1 < i ≤ k, and G1 is adjacent to the unbounded connected component of Ω
(0)
h .

Pictures of domains having this property or not can be found in [8, Fig. 1, Page
812] and in Figures 1 and 2 below.

In the next section we provide examples of symbols Φ of the form (2) satisfying
(MVC), (IAC) or (DVC). The proofs of Propositions 1.1–1.2 and Theorems 1.3–1.5
are postponed to Sections 3 and 4.

2. Examples

Example 2.1. Let Ψ be a univalent function in A(D) which maps D onto a Jordan
domain Ω with 0 ∈ Ω and let B be a finite Blaschke product of degree N . Let γ ∈ D
be such that Ψ(γ) = 0. Then

Φ(z) =
1

Ψ ◦B(z)
=

r∑
l=1

kl∑
j=1

al,j
(z − λl)j

+ ϕ(z),

where λ1, . . . λl are such that B(λl) = γ with multiplicity kl and ϕ ∈ A(D). Thus, Φ
is a symbol of the form (2) which satisfies (MVC).

Example 2.2. Another example of a symbol satisfying (MVC) can be obtained as
follows. Let Ω be a Jordan domain invariant under rotation by 2π/N , for some
N ∈ N. and let Ψ : D → Ω be the conformal mapping with Ψ(0) = 0. Then it is
clear that Φ = 1/ΨN will be exactly N -valent in D.

Example 2.3. It is easy to provide with examples of Φ satisfying (IAC) as small
perturbation of zn. Indeed, let ε > 0, λ ∈ C and Ψ ∈ A(D)∩C1(D). Then one defines

Φ(z) = λ+ [zn(1 + εΨ(z))]−1.

Clearly, Φ is of the form P (1/z) + ϕ(z), and a direct computation gives that the
derivative of t 7→ arg h(eit) is equal to n+O(ε), where h = (Φ− λ)−1. So Φ satisfies
(IAC) for any ε small enough.

Example 2.4. Let us first build a 2-valent function h ∈ H(D), of general position,
which satisfies (DVC’) and has a zero of order 2 at 0. To do so, let us first (the steps
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are illustrated in Figure 1) consider the conformal map Ψ which sends D onto the
sector of annulus Γ given by

Γ =
{
z ∈ C : r < |z| < R, −π

4
+ α < arg z < π − α

}
,

with 0 < r < R < (2
√

2 − 1)r, 0 < α < π
8
. Then step 2 consists in composing

Ψ with the map (1 + εz)z2 − β(1 + i), where ε > 0 is very small and β is such

that 0 < c̃ < c < ã < a < b̃ < b < d̃ < d (see Figure 1 for the definitions of

a, ã, b, b̃, c, c̃, d, d̃). Note that such β exists because of the choice of r and R. Thus,
the resulting map is g(z) = (1 + εΨ(z))Ψ(z)2 − β(1 + i). There is, however, a small
problem that g is not analytic in D. To overcome it consider g(ρz) for some ρ ∈ (0, 1)
close enough to 1. Finally, put

h(z) = g2(ρz) =
[
(1 + εΨ(ρz))Ψ(ρz)2 − β(1 + i)

]2
.

The resulting domain h(D) is shown in the last part of Figure 1.
It is easily seen that h is 2-valent, of general position, has zero of order 2 at 0 and

satisfies (DVC’). Note also that (h− µ)−1 also satisfies (DVC’) for any µ /∈ h(D).
If we put Φ = 1/h, then it is clear that Φ(z) = a1z

−2 + a2z
−1 + ϕ(z), where ϕ is

analytic in D. Thus, we can take λ0 ∈ D so that hλ0 has (DVC’) (for e.g., λ0 = 0).
It remains to find λ1. Note, that

hλ1 =
1

Φ− λ1

= − 1

λ1

− 1

λ2
1(h− λ−1

1 )
.

Thus, if we can choose λ1 ∈ D̂ so that 1/λ1 /∈ h(D) (which is possible for most of
the choices of r and R) we conclude that Φ is of general position and has (DVC). By
construction, Φ satisfies neither (MVC) nor (IAC).

Example 2.5. Choosing the parameter β in a good way we can modify the construc-
tion in Example 2.4 so that 0 < ã < a < c̃ < c < b̃ < b < d̃ < d. Then, repeating
the construction, we build Φ of general position, which does not satisfy the condition
(DVC’) (see Figure 2).

3. Necessary conditions

In this section we prove Proposition 1.1. The proof goes along the same lines as the
proofs in [1] and we include it for the sake of completeness only. Assume that Φ is not
N -valent and so, for some µ, the equation Φ(z) = µ has N+1 solutions z1, z2, . . . zN+1

in D counting multiplicities. We assume that these solutions are distinct. If they are
not distinct the argument requires an obvious modification (see [1] for details). We
will show that the adjoint operator TΦ̄ has an eigenvector and so TΦ is not hypercyclic,
a contradiction.
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0

D Γ

rR0

α

α

Ψ

z2(1 + εz)− β(1 + i)

0 dba−c
ic̃

−iã

−ib̃

−id̃

h(z) :=
[
Ψ2(z)(1 + εΨ(z))− β(1 + i)

]2

z2

h(D)

0−d̃2 c2−c̃2 d2b2

a2−ã2

−b̃2

: Ω
(2)
h : Ω

(1)
h : Ω

(0)
h

Figure 1. Example of h satisfying (DVC’)

h(D)

0−d̃2

a2−ã2
d2b2

c2−c̃2
−b2

: Ω
(2)
h : Ω

(1)
h : Ω

(0)
h

Figure 2. Example of h which does not satisfy (DVC’)
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We construct this eigenvector of TΦ̄ as a linear combination of Cauchy kernels
kzm , where kλ(z) = 1

1−λ̄z . Recall that for any antianalytic Toeplitz operator we have

Tϕkλ = ϕ(λ)kλ.

Put f =
∑N+1

m=1 βmkzm , where βm are some complex coefficients. Note that TΦ =
TR∗(z)+ϕ(z), where

R∗(z) =

N1∑
k=0

c̄kz
k +

r∑
l=1

kl∑
j=1

ᾱl,j
(z − η̄l)j

is analytic and bounded in D. Hence, using the fact that R(1/zm) + ϕ(zm) = µ, we
get

(5)

TΦf(z) =
N+1∑
m=1

βm

(
R∗(z)

1− zmz
+

ϕ(zm)

1− zmz

)

= µ̄f(z) +
N+1∑
m=1

βm
R∗(z)−R(1/zm)

1− zmz
.

Clearly,

R∗(z)−R(1/zm)

1− zmz
∈ span

{
zk,

1

(z − η̄l)j
: 0 ≤ k ≤ N1 − 1, 1 ≤ l ≤ r, 1 ≤ j ≤ kl

}
.

Since the dimension of this span is N , we can find nontrivial βm such that the last
sum in (5) is identically zero, and so TΦf = µ̄f . �

4. Sufficient conditions

The proofs of Theorems 1.3–1.5 are each based on Proposition 1.2, which in turns
is based on an application of the Godefroy–Shapiro Criterion (see [3], [2, Corollary
1.10] or [4, Theorem 3.1]).

Theorem (Godefroy–Shapiro Criterion). If, for a bounded linear operator T on a
separable Banach space X, both ∪|λ|<1Ker (T − λI) and ∪|λ|>1Ker (T − λI) span a
dense subspace in X, then T is hypercyclic.

We will then first search for the eigenvectors of TΦ.

4.1. Computation of eigenfunctions. Let us denote by Sn(g) the nth partial sum
of the Taylor series of g ∈ H2 at 0. Put Q(z) =

∏r
l=1(1− ηlz)kl .

We recall that Tz̄ is the backward shift S∗ on H2, i.e.,

Tz̄f = S∗f =
f(z)− f(0)

z
and Tz̄kf = (S∗)kf =

f(z)− Sk−1(f)

zk
.
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Then, for η ∈ D̂, k ≥ 1 and g ∈ H2,

(S∗ − ηI)kg =
k∑
j=0

(
k

j

)
(−η)k−j(S∗)jg

= g

k∑
j=0

(
k
j

)
(−η)k−j

zj
−

k∑
j=1

(
k

j

)
(−η)k−j

Sj−1(g)

zj

=
(1− ηz)k

zk
g − 1

zk

k∑
j=1

(
k

j

)
(−ηz)k−jSj−1(g).

Thus, for f ∈ H2, applying the previous to g = [(S∗ − ηI)k]−1f , we obtain

[(S∗ − ηI)k]−1f =
zkf + pk
(1− ηz)k

,

where pk is some polynomial of degree at most k − 1. It follows that

TΦf =

N1∑
k=0

ck(S
∗)kf +

r∑
l=1

kl∑
j=1

αl,j[(S
∗ − ηl)j]−1f + ϕf

=

N1∑
k=0

ckf + qk
zk

+
r∑
l=1

kl∑
j=1

αl,j
zjf + pl,j
(1− ηlz)j

+ ϕf

= Φf +

N1∑
k=1

qk
zk

+
r∑
l=1

kl∑
j=1

αl,jpl,j
(1− ηlz)kl

,

where pl,j is a polynomial of degree at most kl − 1 and qk is a polynomial of degree
at most k − 1 (while q0 = 0).

Therefore, the equation TΦfλ = λfλ is equivalent, for some polynomials p and q
with degree at most N2 − 1 and N1 − 1 respectively, to

fλ =
zN1p+Qq

zN1Q(Φ− λ)
.

Clearly, fλ ∈ H2 for any λ ∈ C \ Φ(D), and so fλ is an eigenvector of TΦ. Note that
this holds true for any choice of the polynomials p and q with degree at most N2− 1
and N1 − 1 respectively.

4.2. Proof of Proposition 1.2. By (4), we can find two open sets U0 ⊂ D ∩ (C \
Φ(D)) and U1 ⊂ D̂ ∩ (C \ Φ(D)) consisting of eigenvalues of TΦ. Let λ0 ∈ U0.



10 E. ABAKUMOV, A. BARANOV, S. CHARPENTIER, AND A. LISHANSKII

Expanding fλ around λ0, for λ close to λ0, we get

fλ =
zN1p+Qq

QzN1(Φ− λ0)

∑
k≥0

hk(λ− λ0)k,

with h = 1
Φ−λ0 . Thus, if f ∈ H2 is orthogonal to all such fλ, then

f ⊥ zN1p+Qq

QzN1(Φ− λ0)
hk, k ≥ 0

for any polynomials p and q with degree at most N2 − 1 and N1 − 1 respectively.
Note that any polynomial of degree at most N − 1 can be represented as zN1p+Qq
for some p and q, whence

f ⊥ (zN1Q(Φ− λ0))−1zjhk, 0 ≤ j ≤ N − 1, k ≥ 0.

Now, by assumption, the family {1, z, . . . , zN−1} is a cyclic set for the operator Th,
i.e., the family {zjhk : 0 ≤ j ≤ N − 1, k ≥ 0} is complete in H2. Since zN1Q(Φ− λ0)
is a nonvanishing function in A(D), it is invertible in A(D), and so the family

{(zN1Q(Φ− λ0))−1zjhk : 0 ≤ j ≤ N − 1, k ≥ 0}

is also complete. Thus, f = 0.
Since the same argument works for U1, we see that the families {fλ}λ∈U0 and
{fλ}λ∈U1 are complete in H2. Hence, by the Godefroy–Shapiro Criterion, TΦ is hy-
percyclic. �

Remark 4.1. Note that for the conclusion of Proposition 1.2 to hold it is sufficient

to assume that there exist λ0 ∈ D ∩ (C \ Φ(D)) and λ1 ∈ D̂ ∩ (C \ Φ(D)) such that
for h0 = 1

Φ−λ0 and h1 = 1
Φ−λ1 the family {1, z, . . . , zN−1} is cyclic for Th0 and for Th1 .

Before giving the proofs of Theorems 1.3–1.5, let us recall Solomyak’s results that
we shall apply.

4.3. Solomyak’s theorems. Even if we use only a very special case of the results
from [8], we find it appropriate to give a short survey of them. Recall that a matrix-
valued function of size n× p whose entries are in H2 is said to be outer if p ≥ n and
the greatest common inner divisor of its minors of order n is 1. In this definition it
is possible that p =∞.

Theorem 4.2 (B. Solomyak, 1987). Let h ∈ A(D) and let the set h(T) be a fi-
nite union of C2-smooth Jordan arcs. If h satisfies the property (IAC), then the
set {u1, . . . , um} ⊂ H2 is cyclic for the operator Th if and only if the following two
conditions hold:
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(P1) For any ζ1, ζ2, . . . , ζl ∈ D such that h(ζ1) = . . . = h(ζl) = a, and the value a
is taken at the point ζj with multiplicity Kj, we have

rank [ui(ζj), u
′
i(ζj), . . . u

(Kj−1)
i (ζj)]1≤i≤m

1≤j≤l
=

l∑
j=1

Kj;

(P2) For any z ∈ T and for sufficiently small neighbourhood Vz such that in Vz∩D
there exist k one-to-one branches ψ1 = id, ψ2, . . . , ψk of the function h−1 ◦ h, the
matrix-function [(ui ◦ ψj)(ζ)]1≤i≤m, 1≤j≤k is outer in Vz ∩ D.

Note that this theorem applies also to the case when {ui}i is an infinite sequence,
i.e., m =∞.

Theorem 4.3 (B. Solomyak, 1987). Let h be analytic in D. If h is of general position
and satisfies the property (DVC’), then the set {u1, . . . , um}, m ∈ N, is cyclic for the
operator Th if and only if the conditions (P1), (P2) and (P3) hold, where

(P3) For any hole G ⊂ Ω
(0)
h there exist i, j ≤ m such that (ui◦ν−1)/(uj ◦ν−1)|∂G /∈

N(G), where ν = h|T and N(G) is the Nevanlinna class in G.

We shall apply Solomyak’s theorems only to the set {1, z, . . . , zN−1} which, by [8,
Sect. 1.3, Rem. 3], satisfies the conditions (P1), (P2) and (P3) for any N -valent h
satisfying the conditions of Solomyak’s theorems 4.2 and 4.3.

4.4. Proof of Theorems 1.3–1.5.

Proof of Theorem 1.3. If Φ satisfies (MVC), then also for any λ ∈ C \ Φ(D) the
function h = 1

Φ−λ has the property that for any w ∈ h(D) the equation h(z) = w

has exactly N solutions in D. By [1, Proposition 3.1] the family {zjhk : 0 ≤ j ≤
N − 1, k ≥ 0} is complete in H2. Thus, by Proposition 1.2, TΦ is hypercyclic. �

Proof of Theorem 1.4. Since Φ satisfies (IAC), there is λ ∈ C \Φ(D) such that Theo-
rem 4.2 applies to the function h = 1

Φ−λ . Thus, the family {zjhk : 0 ≤ j ≤ N−1, k ≥
0} is complete in H2. Let us show that for any other µ ∈ C \ Φ(D) and hµ = 1

Φ−µ
the family {zjhkµ : 0 ≤ j ≤ N − 1, k ≥ 0} is also complete in H2.

Note that h1 = c1 + c2
h−c3 , where c1, c2, c3 are some constants (which can be written

explicitly in terms of λ and µ, see (3)) and c3 /∈ h(D). By condition (IAC), the
closed domain Ω = h(D) has no holes, and so the function z can be approximated by
functions in span{(z − c3)−k : k ≥ 0} uniformly in Ω. Thus, h ∈ span{(h − c3)−k :
k ≥ 0} in H2, whence

span{zjhk1 : 0 ≤ j ≤N − 1, k ≥ 0}
= span{zjhk : 0 ≤ j ≤ N − 1, k ≥ 0} = H2.
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Now, TΦ is hypercyclic by Proposition 1.2. �

Proof of Theorem 1.5. Let λ0 ∈ D∩ (C \Φ(D)) and λ1 ∈ D̂∩ (C \Φ(D)). By Remark
1.6, both functons h0 = 1

Φ−λ0 and h1 = 1
Φ−λ1 belong to A(D), are of general position

and satisfy (DVC’). Then, by Theorem 4.3, the families {zjhk0 : 0 ≤ j ≤ N−1, k ≥ 0}
and {zjhk1 : 0 ≤ j ≤ N − 1, k ≥ 0} are complete in H2. Therefore, by Proposition
1.2 and Remark 4.1, TΦ is hypercyclic. �

References

[1] A. Baranov, A. Lishanskii, Hypercyclic Toeplitz operators, Results Math. 70 (2016), 3, 337–
347.
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