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NEW CLASSES OF HYPERCYCLIC TOEPLITZ OPERATORS

EVGENY ABAKUMOV, ANTON BARANOV, STEPHANE CHARPENTIER,
AND ANDREI LISHANSKII

ABSTRACT. We study hypercyclicity of Toeplitz operators in the Hardy space
H?(D) with symbols of the form R(Z) + ¢(z), where R is a rational function and
p € H*(D). We relate this problem to cyclicity of certain families of functions
for analytic Toeplitz operators and give new sufficient conditions for hypercyclicity
based on deep results of B. Solomyak.

1. INTRODUCTION AND MAIN RESULTS

Toeplitz operators are among the most important objects in operator theory. They
have numerous applications in complex analysis, theory of orthogonal polynomials,
mathematical physics, etc. Recall that for a function ¢ € L°(T) the Toeplitz operator
Ty : H* — H? with the symbol ¢ is defined as Ty f = P, (¢ f), where P, stands for
the orthogonal projection from L?*(T) onto H?. As usual, D and T denote the unit
disc and the unit circle, respectively. We recall that the Hardy space H? of the
unit disc D consists of functions analytic in D whose Taylor coefficients are square
summable, and H* is the space of all bounded analytic functions in .

In the present paper we study the hypercyclicity property for a class of Toeplitz
operators on H?. A continuous linear operator T on a separable Banach space X
is said to be hypercyclic if there exists x € X such that the set {T"z : n € Ny} is
dense in X (here Ny = {0,1,2,...}). Toeplitz operators with antianalytic symbols
were among the basic examples of hypercyclic operators. In 1969, S. Rolewicz [6]
showed that the operator T,z (a multiple of the backward shift) is hypercyclic on
H? whenever |o| > 1. Later, G. Godefroy and J. Shapiro [3] showed that for a
function ¢ € H* the antianalytic Toeplitz operator T3 is hypercyclic if and only if
©(D)NT # (). On the other hand, it is obvious that there are no hypercyclic Toeplitz
operators with analytic symbols (i.e., among multiplication operators).

However, the problem of describing hypercyclic Toeplitz operators in the general
case seems to be largely open. This problem was explicitly stated by S. Shkarin [7]
who described hypercyclic Toeplitz operators with symbols of the form ®(z) = az+b+

1991 Mathematics Subject Classification. 47A16, 47B35, 30H10.

Key words and phrases. hypercyclic operator, Toeplitz operator, univalent function.

The results of Sections 2 and 3 were obtained with the support of Ministry of Science and Higher
Education of the Russian Federation, agreement No 075-15-2019-1619. The results of Section 4 were
obtained with the support of Russian Science Foundation grant 19-11-00058.

1



2 E. ABAKUMOV, A. BARANOV, S. CHARPENTIER, AND A. LISHANSKII

cz (i.e., with tridiagonal matrix). A. Baranov and A. Lishanskii [I] gave necessary
and (separately) sufficient conditions for hypercyclicity of Toeplitz operators with
polynomial antianalytic part of the symbol, that is, for symbols ® of the form ®(z) =
P(%) + ¢(z), where P is a polynomial and ¢ € H*. It turned out that the valence
of the symbol played the central role in this study.

In the present paper we will consider more general symbols. Let R be a rational
function without poles in D, i.e.,

(1) R(z )+ Z s

lljl _nl

where P(z) = Zgl 2" is a polynomial of degree Ny, a;; € C, and n; € D= C\D,
1 <1 <, are the (distinct) poles of R of multiplicities k. We put Ny = >",_, k; and
denote by N = N; 4+ Ny the degree of the rational function R. We do not exclude
the cases when N; = 0 (i.e., P = const) or Ny = 0 (R = P). Finally, let p € H>,
and put

2) O(z) = R(%) + o(2).

Thus, ® is analytic in D except the poles 1/m,...,1/n,. The aim of this note is to
describe new classes of hypercyclic Toeplitz operators Tg with the symbols of the

form .

As in [1], our conditions will be formulated in terms of the valence of ®. Recall
that an analytic function A in a domain D is said to be n-valent in D if the equation
h(z) = w has at most n solutions in D counting multiplicities for any w € C. It is
said to be ezxactly n-valent in D if this equation has exactly n solutions (counting
multiplicities) for any w € k(D). Note that ® (given by (2)) has a pole of order N at
zero and poles of multiplicities k; at 1/1;, whence the equation ®(z) = w has exactly
N solutions when |w| is sufficiently large.

Let us first illustrate the connection between the valence of ® and the hypercyclic-
ity of Ty through a necessary condition. For the case of symbols with polynomial
antianalytic part the statement was proved in [IJ.

Proposition 1.1. Let ® be given by . If Ty is hypercyclic, then the function ® is
N-valent in D.

Let us also note that if Ty is hypercyclic, then we have
o(Te)NT#0,  o(Ts)ND 0.

The first condition is a basic property that holds for any hypercyclic operator [4
Theorem 5.6], while the second one follows from the fact that, for any Toeplitz
operator, its spectral radius coincides with its norm [5, Part B, Ch. 4].
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It can be proven that if ® is N-valent, then 0(Tg) = C\ (D, N), where ®(D, N)
consists of those w € C for which ®(z) = w has exactly N solutions in D. We refer

to [I, Proposition 2.2] for the details. We do not know whether the hypercyclicity of
To implies that o(Te) ND # 0.

The key step of the proof of our sufficient conditions for hypercyclicity is an ap-
plication of the following principle, already used in [I]: Hypercyclicity of T can be
reduced to standard cyclicity of some analytic Toeplitz (i.e., multiplication) operator.
We recall that a finite (or countable) family U of functions in H? is said to be cyclic
for Ty,, h € H*(D), if the family {h*u : v € U,k > 0} is complete in H?. More
specifically, for A € C\ ®(D), let us set

(3) ha(2) = = 5—

Clearly, h, is analytic and bounded in D.
Proposition 1.2. Let & be given by . We assume that
(4) DN(C\®M)#0 and DN (C\ (D)) 0,

and that, for any X € C\ ®(D), the family {1,z,...,2N"1} is cyclic for Ty, with hy,
given by . Then Tg is hypercyclic.

Based on this important observation, we will then formulate several sufficient con-
ditions for the hypercyclicity of Tg. From now on, we assume that ® is given by
and satisfies . We denote by A(D) the disc algebra, i.e., the space of functions
continuous in D and analytic in D.

The following result concerning the case of constant and maximal valence of the
symbol is a direct extension of [I Theorem 1.2].

Theorem 1.3. Assume that p € A(D) and ® satisfies the following Mazximal Valence
Condition:

(MVC) the function ® is evactly N-valent on D\ {0, .. 1/}, dee., for any

w € ®(D) the equation (z) = w has exactly N solutions in D counting multiplicities.
Then Ts is hypercyclic.

Theorem however, does not apply if ® has varying valence in D. A novel
feature of the present note is that we make use of deep results of B. Solomyak about
cyclic families for analytic Toeplitz operators. Together with Proposition [I.2] this
allows us to significantly enlarge the class of symbols inducing hypercyclic Toeplitz
operators and, in particular, to include symbols with varying valence. These results
are new even for symbols with polynomial antianalytic part studied in [I].

Cyclicity of families of functions for analytic Toeplitz operator is very far from
being understood; deep results in this direction were obtained by B. Solomyak [§]
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and B. Solomyak and A. Volberg [9] in 1980-s. We use the geometric conditions on
the valence of the function ® given in [§] to distinguish two more classes of hypercyclic
Toeplitz operators.

Theorem 1.4. Assume that p € A(D) and, for some A € C\ ®(D), the function hy
given by satisfies the Increasing Argument Condition:

(IAC) The set hy(T) is a finite union of C*-smooth Jordan arcs and some con-
tinuous branch of the function t — arg hy(e®) is (strictly) increasing on [0, 27].

Then Tg is hypercyclic.

To state the last (and, in a sense, more general) result, we need to introduce
some notations (see [8, Paragraph 1.3]). Let h be a meromorphic function in D (i.e.,
meromorphic in {|z| < p} for some p > 1) with poles 7,...,ns in D. Then the
set h(T) splits the plane into finitely many connected components. Let lek) be the
union of the connected components of C \ A(T) in which the number of pre-images
in D\ {n,...,ns} of hisequal to k (counting multiplicity). The bounded connected
components of the set C \ h(D) =: ng) will be called holes.

We say that h is a function of general position if it is analytic in a neighborhood
of T, the curve ¢ — h(e®) has only finitely many points of self-intersection which are
simple and transversal, and h'|p # 0.

Finally, let us say that two disjoint open sets U and V in C\ h(T) are adjacent
if U NV contains h(I) for some open arc I C T. Then we remark that if h is
meromorphic in I and of general position, then a connected component of Q;Lkl) and
a connected component of Qg”) are adjacent if and only if ky = ko — 1 or ky = ko + 1.

Moreover, if for some A € Q9. hy is given by , then h) is of general position if and
only if so P is.

Theorem 1.5. Assume that ® is of general position and satisfies the following De-
creasing Valence Condition:

(DVC) For some A\g € DN ng) and A\ € ]ﬁﬂQg}), for any j € {0,1}, and for any
component G C Qg),k > 1, there exist connected components G; of Qg), 1 <1<k,
such that G = Gy, the components G; and G;_1 are adjacent for 1 < i < k, and G,
is adjacent to the hole which contains A;.

Then Tg is hypercyclic.

We shall observe that under the assumption of the previous theorem, condition
(DVC) also reads as follows: For some Ay € DNQY and some A\, € DN QY and for

any w € C\ ®(D), there exist continuous paths 7o, 71 : [0,1] — C with v(0) = w
and v;(1) = A; such that ; N Qgc) is connected for any £ > 0 and ¢ =0, 1.
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Remark 1.6. Let \p € DN Q((IS) and \; € DN QSI?). Then it is easily seen that ®
satisfies (DVC) for A\¢g and A; if and only if both functions h = ﬁ and h =

are analytic in I, are of general position, and satisfy the following condition:

1
[N

(DVC’) For any component G C Q;Lk), k > 1, there exist connected components G;
of Qg), 1 <i <k, such that G = Gy, the components G; and G;_1 are adjacent for
1 < i<k, and G is adjacent to the unbounded connected component of Qéo)

Pictures of domains having this property or not can be found in [§, Fig. 1, Page
812] and in Figures [I| and [2 below.

In the next section we provide examples of symbols ® of the form satisfying
(MVC), (IAC) or (DVC). The proofs of Propositions and Theorems
are postponed to Sections [3 and [4

2. EXAMPLES

Example 2.1. Let ¥ be a univalent function in A(D) which maps D onto a Jordan
domain € with 0 € Q and let B be a finite Blaschke product of degree N. Let v € D
be such that ¥(y) = 0. Then

\IfoB ZZ zil])\l #(2),

=1 j=1

where Ay, ...\ are such that B();) = v with multiplicity k; and ¢ € A(D). Thus, ®
is a symbol of the form ([2) which satisfies (MVC).

O(2) =

Example 2.2. Another example of a symbol satisfying (MVC) can be obtained as
follows. Let Q be a Jordan domain invariant under rotation by 27 /N, for some
N € N. and let ¥ : D — Q be the conformal mapping with ¥(0) = 0. Then it is
clear that ® = 1/U¥ will be exactly N-valent in D.

Example 2.3. Tt is easy to provide with examples of ® satisfying (IAC) as small
perturbation of 2. Indeed, let ¢ > 0, A € C and ¥ € A(D)NCY(D). Then one defines
O(2) = A+ [2"(1+e¥(2))] !

Clearly, ® is of the form P(1/z) + ¢(z), and a direct computation gives that the
derivative of t — arg h(e') is equal to n + O(e), where h = (® — \)~1. So ® satisfies
(IAC) for any ¢ small enough.

Example 2.4. Let us first build a 2-valent function h € H(ID), of general position,
which satisfies (DVC’) and has a zero of order 2 at 0. To do so, let us first (the steps
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are illustrated in Figure (1)) consider the conformal map ¥ which sends D onto the
sector of annulus I' given by

F:{zec: r<|z| <R, —%
with0 <7 < R < (2V/2—-1)r, 0 < a < g+ Then step 2 consists in composing
W with the map (1 4 £2)2* — (1 + i), where ¢ > 0 is very small and 3 is such
that 0 < ¢ < c<a<a<b<b<d< d (see Figure I 1| for the definitions of
a,a,b,b,c, ¢ d,d). Note that such § exists because of the choice of r and R. Thus,
the resulting map is g(z) = (1 +&¥(2))¥(2)? — B(1 +i). There is, however, a small
problem that g is not analytic in D. To overcome it consider g(pz) for some p € (0,1)
close enough to 1. Finally, put

h(z) = g*(p2) = [(14eW(p2))W(p2)* = B(1L+1)]".

The resulting domain h(DD) is shown in the last part of Figure .

It is easily seen that h is 2-valent, of general position, has zero of order 2 at 0 and
satisfies (DVC’). Note also that (h — u)~! also satisfies (DVC’) for any u ¢ h(D).

If we put ® = 1/h, then it is clear that ®(2) = a1272 + asz~! + ©(2), where ¢ is
analytic in D. Thus, we can take Ao € D so that h,, has (DVC’) (for e.g., Ag = 0).
It remains to find A;. Note, that

11 1
O—XN A N(h-ATY

+a<argz<7r—a},

hy, =

Thus, if we can choose A; € D so that 1/A; ¢ h(D) (which is possible for most of
the choices of r and R) we conclude that ® is of general position and has (DVC). By
construction, ® satisfies neither (MVC) nor (IAC).

Example 2.5. Choosing the parameter [ in a good way we can modify the construc-
tion in Example sotht 0 <a<a<é<ec<b<b<d<d Then, repeating
the construction, we build ® of general position, which does not satisfy the condition
(DVC) (see Figure [2)).

3. NECESSARY CONDITIONS

In this section we prove Proposition[I.1} The proof goes along the same lines as the
proofs in [I] and we include it for the sake of completeness only. Assume that ® is not
N-valent and so, for some p, the equation ®(z) = p has N+1 solutions 21, 29, . . . 2y41
in D counting multiplicities. We assume that these solutions are distinct. If they are
not distinct the argument requires an obvious modification (see [1] for details). We
will show that the adjoint operator T has an eigenvector and so T is not hypercyclic,
a contradiction.
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D002 [aP [

FIGURE 1. Example of h satisfying (DVC’)
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FIGURE 2. Example of h which does not satisfy (DVC’)
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We construct this eigenvector of T as a linear combination of Cauchy kernels

k., , where ky)(z) = 1_—15\2: Recall that for any antianalytic Toeplitz operator we have
Tsky = @(N)ka.
Put f = Z%ﬂ k., , where [3,, are some complex coefficients. Note that TG =
T, R ()490) where
N1 r ky ar
FIEE SLES 3) pee e
k=0 =1 j=1 (2 =)

is analytic and bounded in . Hence, using the fact that R(1/z,,) + ¢(2m) = u, we
get

Z b < 1—Z,z 1(p—(zziw3z>
® S
B B

1—zmz

Clearly,

LGRS

ol :0§k§N1—1,1§l§r,1§j§kl}.
1—7Z,2

(z —m)
Since the dimension of this span is N, we can find nontrivial 3,, such that the last
sum in is identically zero, and so T f = [f. 0

4. SUFFICIENT CONDITIONS

The proofs of Theorems are each based on Proposition [1.2| which in turns
is based on an application of the Godefroy—Shapiro Criterion (see [3], [2, Corollary
1.10] or [4, Theorem 3.1]).

Theorem (Godefroy—Shapiro Criterion). If, for a bounded linear operator T on a
separable Banach space X, both Uy« Ker (T — M) and Ujys1Ker (T' — M) span a
dense subspace in X, then T s hypercyclic.

We will then first search for the eigenvectors of Tg.

4.1. Computation of eigenfunctions. Let us denote by S, (¢g) the nth partial sum
of the Taylor series of g € H? at 0. Put Q(z) = []_,(1 — m2)".
We recall that T% is the backward shift S* on H?, i
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Then, for n € D, k > 1 and g € H?,

2\
:gg(’“ﬂ— ) go sjz_lfg)
=5 53 (§) s

Thus, for f € H?, applying the previous to g = [(S* — nI)*]~1f, we obtain

2 f+ py
(1 —=mnz)k’

where pj, is some polynomial of degree at most £ — 1. It follows that

(5%~ )] f =

Tof = Zc (S) f+ZZaU (8™ =m)|7' f +of

=1 j=1
—z%f”'wzz LA Ty

1131 mz
_(I)f+ZQk+ZZ Oészlg

l1]1 L —mz)*

where p; ; is a polynomial of degree at most k; — 1 and g; is a polynomial of degree
at most k — 1 (while ¢y = 0).

Therefore, the equation Tg fy = Afy is equivalent, for some polynomials p and ¢
with degree at most Ny — 1 and N; — 1 respectively, to

NMp+Qq

h=mo@ -

Clearly, f\ € H? for any A € C\ ®(D), and so fy is an eigenvector of Ty. Note that
this holds true for any choice of the polynomials p and ¢ with degree at most Ny — 1
and N7 — 1 respectively.

4.2. Proof of Proposition By (), we can find two open sets Uy C DN (C \
®(D)) and U; ¢ DN (C\ &(D)) consisting of eigenvalues of Tg. Let \g € Up.
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Expanding fy around \g, for A close to \g, we get

N1
1= zp+Qq§:MA o)

ZN1 P )\0
k>0
with h = . Thus, if f € H? is orthogonal to all such fy, then
Mp+Qq
1 —h k>
T om@—n ="

for any polynomials p and ¢ with degree at most N, — 1 and N; — 1 respectively.
Note that any polynomial of degree at most N — 1 can be represented as zV1p + Qq
for some p and ¢, whence

FLEMQ@ =) '2PhY,  0<j<N-1, k>0

Now, by assumption, the family {1,z2,...,2¥71} is a cyclic set for the operator T},
i.e., the family {z/h*: 0 < j < N —1,k > 0} is complete in H2. Since 2™ Q(® — \g)
is a nonvanishing function in A(D), it is invertible in A(D), and so the family

{(zMQ(® — X)) "W 0<j <N -1,k >0}

is also complete. Thus, f = 0.

Since the same argument works for U;, we see that the families {f\}cr, and
{fr}rev, are complete in H?. Hence, by the Godefroy—Shapiro Criterion, T is hy-
percyclic. 0

Remark 4.1. Note that for the conclusion of Proposition [[.2] to hold it is sufficient
to assume that there exist \p € DN (C\ ®(D)) and \; € DN (C\ (D)) such that
for hg = 5 and by = EM the family {1, z,..., 2V} is cyclic for T}, and for Ty, .

Before giving the proofs of Theorems let us recall Solomyak’s results that
we shall apply.

4.3. Solomyak’s theorems. Even if we use only a very special case of the results
from [§], we find it appropriate to give a short survey of them. Recall that a matrix-
valued function of size n x p whose entries are in H? is said to be outer if p > n and
the greatest common inner divisor of its minors of order n is 1. In this definition it
is possible that p = oc.

Theorem 4.2 (B. Solomyak, 1987). Let h € A(D) and let the set h(T) be a fi-
nite union of C%-smooth Jordan arcs. If h satisfies the property (IAC), then the
set {uy, ..., un} C H? is cyclic for the operator Ty, if and only if the following two
conditions hold:
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(P1) For any C1,Cs,...,¢ € D such that h((y) = ... = h({) = a, and the value a
is taken at the point (; with multiplicity K;, we have

rank [ui(G;), ui(G;), - ul™ T (G hsiom = Z

1<]<l

(P2) For any z € T and for sufficiently small nez’ghbourhood V. such that in V,NID
there exist k one-to-one branches 1, = id, s, ..., of the function h™' o h, the
matriz-function [(u; © ¥;)(()1<i<m, 1<j<k is outer in V. N D,

Note that this theorem applies also to the case when {u;}; is an infinite sequence,
i.e., m = oo.

Theorem 4.3 (B. Solomyak, 1987). Let h be analytic in D. If h is of general position
and satisfies the property (DVC’), then the set {uy, ..., uy}, m € N, is cyclic for the
operator Ty, if and only if the conditions (P1), (P2) and (P3) hold, where

(P3) For any hole G C QEZO) there exist i,j < m such that (u;ov™")/(ujov )]s ¢
N(G), where v = hlr and N(G) is the Nevanlinna class in G.

We shall apply Solomyak’s theorems only to the set {1, z,...,2"~1} which, by [8,
Sect. 1.3, Rem. 3], satisfies the conditions (P1), (P2) and (P3) for any N-valent h
satisfying the conditions of Solomyak’s theorems [£.2] and [£.3]

4.4. Proof of Theorems M1.3H1.5l

Proof of Theorem[1.3, If ® satisfies (MVC), then also for any A € C\ ®(D) th
function h = 315 has the property that for any w € h(D) the equation h(z) =

w
has exactly N solutions in D. By [I, Proposition 3.1] the family {z/h* : 0 < j <
N — 1,k > 0} is complete in H2. Thus, by Proposition Ts is hypercyclic. [l

Proof of Theorem[1.4 Since ® satisﬁes (IAC) there is A € C\ (D) such that Theo-
rem (4.2| applies to the function h = . Thus, the family {z/h*: 0 < j < N—1,k >

0} is complete in H2. Let us show that for any other y € C\ ®(D) and h, = =

o
the family {zjhk 0< j < N — 1,k >0} is also complete in H2.
Note that hy = ¢; + 72 o Where ¢1, ¢2, c3 are some constants (which can be written

explicitly in terms of A and p, see (3)) and c3 ¢ h(D). By condition (IAC), the
closed domain €2 = h(DD) has no holes, and so the function z can be approximated by
functions in span{(z — c¢3)™" : k > 0} uniformly in Q. Thus, h € span{(h — c3)7* :
k >0} in H?, whence
span{z'hY: 0<j <N — 1,k >0}
:span{zjhk: 0<75< N—l,kZO}:H?
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Now, Ty is hypercyclic by Proposition [1.2] O

Proof of Theorem[I.3. Let Ao € DN (C\ ®(D)) and A\; € DN (C\ &(D)). By Remark
, both functons hg = <1>+A0 and hy = <I>+/\1 belong to A(D), are of general position
and satisfy (DVC’). Then, by Theorem [4.3] the families {/hf : 0 < j < N—1,k > 0}
and {z7h} : 0 < j < N — 1,k > 0} are complete in H?. Therefore, by Proposition
and Remark [4.1], T is hypercyclic. O
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