N

N

SAT encodings for Pseudo-Boolean constraints together
with at-most-one constraints
Miquel Bofill, Jordi Coll, Josep Suy, Felix Ulrich-Oltean, Mateu Villaret,
Peter Nightingale

» To cite this version:

Miquel Bofill, Jordi Coll, Josep Suy, Felix Ulrich-Oltean, Mateu Villaret, et al.. SAT encodings for
Pseudo-Boolean constraints together with at-most-one constraints. Artificial Intelligence, 2022, 302,
pp.103604. 10.1016/j.artint.2021.103604 . hal-03475301

HAL Id: hal-03475301
https://amu.hal.science/hal-03475301
Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

https://amu.hal.science/hal-03475301
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S0004370221001557
Manuscript_c8ebdfe3c6d53c283a5f6e44d80df3ac

SAT Encodings for Pseudo-Boolean Constraints
Together With At-Most-One Constraints

Miquel Bofill*, Jordi Coll”*, Peter Nightingale®, Josep Suy?, Felix
Ulrich-Oltean®, Mateu Villaret®

@ Universitat de Girona, Girona, Spain
b Aiz Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
¢ University of York, York, United Kingdom

Abstract

When solving a combinatorial problem using propositional satisfiability (SAT),
the encoding of the problem is of vital importance. We study encodings of
Pseudo-Boolean (PB) constraints, a common type of arithmetic constraint that
appears in a wide variety of combinatorial problems such as timetabling, schedul-
ing, and resource allocation. In some cases PB constraints occur together
with at-most-one (AMO) constraints over subsets of their variables (forming
PB(AMO) constraints). Recent work has shown that taking account of AMOs
when encoding PB constraints using decision diagrams can produce a dramatic
improvement in solver efficiency. In this paper we extend the approach to other
state-of-the-art encodings of PB constraints, developing several new encodings
for PB(AMO) constraints. Also, we present a more compact and efficient ver-
sion of the popular Generalized Totalizer encoding, named Reduced Generalized
Totalizer. This new encoding is also adapted for PB(AMO) constraints for a
further gain. Our experiments show that the encodings of PB(AMO) constraints
can be substantially smaller than those of PB constraints. PB(AMO) encod-
ings allow many more instances to be solved within a time limit, and solving
time is improved by more than one order of magnitude in some cases. We also
observed that there is no single overall winner among the considered encodings,
but efficiency of each encoding may depend on PB(AMO) characteristics such
as the magnitude of coefficient values.

Keywords: pseudo-Boolean constraints, encoding, at-most-one constraints,
SAT

*Corresponding author
Email addresses: miquel.bofill@imae.udg.edu (Miquel Bofill), jordi.coll@lis-lab.fr
(Jordi Coll), peter.nightingale@york.ac.edu (Peter Nightingale), josep.suy@imae.udg.edu
(Josep Suy), £vuo500@york.ac.edu (Felix Ulrich-Oltean), mateu.villaret@imae.udg.edu
(Mateu Villaret)

Preprint submitted to Artificial Intelligence Journal July 20, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0004370221001557
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0004370221001557

20

25

30

35

40

45

1. Introduction

Discrete decision-making problems crop up in many contexts in the modern
world. Such problems can be expressed as constraint satisfaction (or optimi-
sation) problems (CSPs or COPs), then solved using a variety of solver types.
An increasingly popular and successful approach to solving CSPs and COPs is
to encode them into Boolean formulas and then to apply an off-the-shelf SAT
solver. This approach is attractive because of the power of modern conflict-
directed clause learning (CDCL) SAT solvers, such as CaDiCaL [1] and Glu-
cose [2], which incorporate conflict learning, powerful search heuristics, and fast
propagation of the Boolean constraints.

Linear equations and inequalities are ubiquitous in constraint problems such
as scheduling, routing, resource allocation, and many other hard combinato-
rial problems. Pseudo-Boolean (PB) constraints are a particular type of linear
constraint — PB constraints are of the form > | ¢;x; # K, where # € {<,<
,=,>,>}, q1,-..,q, and K are integer constants, and x1,...,x, are 0/1 vari-
ables. There has been a great deal of work on encoding PB constraints to SAT,
some of which is reviewed by Philipp and Steinke [3]. State-of-the-art encodings
are based on Binary Decision Diagrams [4, 5], Sequential Weight Counters [6],
Generalized Totalizers [7, 8], and Polynomial Watchdog schemes [9, 10]. At-
most-one (AMO) constraints (i.e. constraints of the form) ;" z; < 1) are also
very common, with the most basic being a mutual exclusion between two 0/1
variables. In this paper we extend several of the PB encodings mentioned above,
and demonstrate substantially improved performance when PB constraints in-
tersect with AMO constraints.

Bofill, Coll, Suy, and Villaret [11, 12] proposed a SAT encoding based on
Multi-valued Decision Diagrams (MDDs) for a conjunction of a PB constraint
with a set of AMO constraints over the variables of the PB constraint. Such
conjunctions are referred to as PB(AMO) constraints. The AMO constraints,
which can be encoded to SAT in any way, allow certain interpretations to be
erased from decision diagrams, and to represent the PB constraint as an MDD
instead of as a Binary Decision Diagram (BDD). The encoding of the MDD
is notably smaller than the encoding of an equivalent BDD, and the solving
time is substantially reduced. This technique has been used to provide efficient
formulations of particular kinds of scheduling problems [11, 13]. Also, Ansétegui
et al [14] integrated the MDD-based SAT encoding of PB(AMO) constraints into
the automatic reformulation pipeline of Savile Row [15], showing important size
and solving time improvements compared to a BDD-based encoding oblivious
to the existence of AMO constraints.

Efficient encodings of the conjunction of PB and AMO constraints can have
a significant impact on solving a wide range of CSPs. This combination of con-
straints appears in settings where one option has to be chosen among a set of
incompatible options, and the decision has an associated cost. This pattern oc-
curs in numerous applications, for example logistics [16], resource allocation [17],
capital budgeting [18], telecommunications [19], combinatorial auctions [20], and
routing [21], among many others. In short, any problem which is essentially a

50

55

60

65

70

75

80

85

90

multi-choice knapsack problem is likely to contain both PB and AMO con-
straints. Moreover, as stated in Bofill et al [12], any Linear Integer Arithmetic
expression, which are also ubiquitous in CSP models, can be easily transformed
to a PB(AMO) constraint. Therefore finding new and better SAT encodings of
PB(AMO) constraints is of wide interest.

As a motivating example, consider the PB constraint 2z + 3z +4x3+ 224+
3x5 + 4xg < 7. Also, suppose there are two AMO constraints: 1 +zs + 23 < 1
and x4 + x5 + 6 < 1. Encoding the PB constraint alone would require several
clauses and (depending on the chosen encoding) multiple additional variables.
For example, the Generalized Totalizer encoding [7] has 23 additional variables
and 56 clauses. However, the two AMO constraints rule out most of the values
that the sum (2z; + --- 4 4ag) could take, and almost all such values that
break the PB constraint. Encoding the PB constraint together with the two
AMO constraints requires just one clause to prevent zz and xg being assigned
true together. This simple observation underpins all the PB(AMO) encodings
presented in this paper.

1.1. Contributions

The main contribution of this paper is to generalize five state-of-the-art SAT
encodings of PB constraints to encode PB(AMO) constraints. We generalize
each of the following encodings: Sequential Weight Counter (SWC), Generalized
Totalizer (GT), n-Level Modulo Totalizer (MTO), Global Polynomial Watchdog
(GPW), and Local Polynomial Watchdog (LPW). In each case we demonstrate
substantial reductions in size, and also improvements in solving time using two
recent CDCL SAT solvers. Compared to their PB counterparts, PB(AMO)
encodings allow many more instances to be solved within a time limit, and
solving time is improved by more than one order of magnitude in some cases.

Since PB(AMO) constraints generalize PB constraints, we follow the con-
vention of naming the new encodings after the original encoding, prefixing them
with the word Generalized, e.g., from the Sequential Weight Counter (SWC) en-
coding we provide the Generalized Sequential Weight Counter (GSWC) encod-
ing. We also show that the new encodings preserve the propagation properties
of the original ones.

Another contribution of this paper is a new encoding of PB(AMO) con-
straints called Reduced Generalized Generalized Totalizer (RGGT). This en-
coding does not directly generalize any existing PB encoding. RGGT first con-
structs a Generalized Generalized Totalizer (GGT) tree, then applies a reduction
algorithm in order to obtain a more compact representation that replaces in-
dividual numeric values with intervals. In some cases RGGT will detect that
terms in the PB(AMO) constraint are redundant. When this occurs the redun-
dant terms are removed and the entire encoding process is repeated (until a
fixpoint is reached). RGGT is frequently substantially smaller than GGT and
this translates to improved solver efficiency. RGGT can also be used as an en-
coding of PB constraints (without collateral AMO constraints). In this case,
we refer to it as the Reduced Generalized Totalizer (RGT) encoding. We also
present a new heuristic called minRatio to build the binary trees required by

95

100

105

110

115

120

125

130

GT, GGT, RGT, and RGGT encodings. The experimental results show that the
minRatio heuristic has a substantial positive effect on the size and performance
of GT and GGT encodings when compared to a simple balanced tree.

Our experimental results show that the size of the SAT encodings of PB
constraints can be dramatically reduced thanks to taking AMO constraints into
account, and that there can be a huge improvement in solving time when using
the new generalized encodings. We provide new benchmarks (and use others
from the literature) which contain AMO constraints and PB constraints in dif-
ferent configurations, and we show empirically that some encodings are better
than others for particular kinds of PB(AMO).

The rest of the paper is structured as follows:

e Section 2 presents preliminary concepts and notations used in this paper.

e Section 3 describes the normalisation processes that we perform before
encoding a PB(AMO) constraint.

e For the sake of completeness, Section 4 summarises the decision diagram
encoding of PB constraints [5] and its generalization to PB(AMO) con-
straints [12].

e Sections 5, 6, 7, 8, and 9 present the new PB(AMO) encodings. Each
section describes the existing PB encoding followed by its generalization
for PB(AMO) constraints.

e Section 10 describes the propagation properties of the presented encodings.

e Section 11 presents our experimental results comparing the PB(AMO)
encodings to each other and also to their corresponding PB encoding.

e Section 12 surveys other work related to PB(AMO) encoding.
e Section 13 is devoted to conclusions and future work.

This work is an extension of the previous work [22]; here we provide more de-
tailed explanations and examples, and the following additional content: the set
of preprocesses used to simplify PB(AMO) constraints before they are encoded,
in Section 2; a summary of the PB(AMO) based on MDDs presented in [12] (in
order to collect all existing PB(AMO) encodings in this paper), in Section 4; the
Reduced Generalized Totalizer (RGT) encoding for PB constraints and its gen-
eralized version for PB(AMO) constraints in Section 6.3; the minRatio heuristic
to build generalized totalizers in Section 6.4; the Generalized n-Level Modulo
Totalizer (GMTO) encoding in Section 7; and the Generalized Local Polynomial
Watchdog (GLPW) encoding in Section 9. We give further proofs of propagation
properties of GGPW and the new encodings in Section 10. The experimental
section has also been extended: we study in detail the size reduction achieved by
the new encodings of PB and PB(AMO) constraints, namely RGT and RGGT;
we study the results of the other new PB(AMO) encodings, namely GMTO
and GLPW,; we consider additional benchmark sets from the Combinatorial

135

140

145

150

155

160

165

170

Auctions problem, the resource-constrained scheduling problems MRCPSP and
RCPSP/t, and the Nurse Scheduling Problem; and we run all experiments with
an additional SAT solver (CaDiCaL).

2. Preliminaries

A Boolean variable is a variable than can take truth values 0 (false) and 1
(true). A literal is a Boolean variable z or its negation Z. A clause is a disjunc-
tion of literals. A propositional formula in conjunctive normal form (CNF) is
a conjunction of clauses. We will assume that all formulas are in CNF. Clauses
are usually seen as sets of literals, and formulas as sets of clauses. A Boolean
function is a function of the form f: {0,1}™ — {0, 1}.

We will consider constraints that are defined over a finite set of Boolean vari-
ables, i.e., Boolean functions. An assignment is a mapping of Boolean variables
to truth values; it can also be seen as a set of literals, e.g. {x =1,y =0,z =0}1is
usually denoted {z,7,Z}. By scope(C) we denote the set of variables occurring
in a constraint C.

A satisfying assignment of a Boolean function f is an assignment that makes
f evaluate to 1. In particular, an assignment A satisfies a formula F' in CNF
if at least one literal [of each clause in F' belongs to A. Such an assignment is
called a model of the formula. Given two Boolean functions F' and G, we say
that G is logically implied by F, iff every model of F is also a model of G.

Definition 1. An at-most-one (AMO) constraint is a Boolean function of the
form E?Zl z; < 1, where all x; are Boolean variables.

Definition 2. A pseudo-Boolean (PB) constraint is a Boolean function of the
form > | ¢;x; # K where K and all ¢; are integer constants, all z; are Boolean
variables, and # € {<,<,=,>,>}.

Definition 3. By PB(AMO) constraint we refer to a constraint of the form
PAM; A--- AN My, where P is a PB constraint, and My,..., My are AMO
constraints such that {scope(My),. .., scope(Mp)} is a partition of scope(P).

Since a single variable constitutes a trivial at-most-one constraint, PB con-
straints are a particular case of PB(AMO) constraints, i.e., a PB constraint of
the form Y " | ¢iz; < K is a PB(AMO) constraint of the form Y . | ¢z; <
KAz <1A-Axy <1

Ezample 1. 221 +3x2+3x3+ Tz < 8Az1+22 < 1Az35+24 < 1isaPB(AMO)
constraint. Notice that, for instance, the assignment x1, zs, 3, T4 satisfies the
PB constraint 2x; + 3x2 + 3x3 + 724 < 8 but does not satisfy the PB(AMO)
constraint because of 1 + x5 < 1.

Definition 4 (Encoding). We say that a formula G is an encoding of a Boolean
function F' if the following holds: given an assignment A over the variables of
F, A satisfies F' iff A can be extended to a satisfying assignment of G.

A large number of encodings have been proposed for AMO constraints and
PB constraints in the literature, as well as encodings for cardinality constraints,

175

180

185

190

195

200

ai,az,as, aq,0as,a6,ar

RN

b1, b2, b3 C1,C€2,C3,C4
di,da T3 f1, fa 91,92
1 xo T4 x5 xe x7

Figure 1: Tree representation of a totalizer for variables x1,x2, 3,4, x5, T, 7.

i.e., PB constraints with all coefficients ¢; = 1. Here we revisit some basics of
the Totalizer encoding for cardinality constraints [23], since it is closely related
to many of the encodings presented in the paper. Given a set of variables
Z1,...,Ty, a totalizer is a binary tree that contains a different variable x; at each
leaf. An example is given in Figure 1. For any subtree, the root of the subtree
contains a list with as many Boolean variables as leaves in the subtree. These
variables are constrained to represent in unary notation the sum of the variables
of the leaves of the subtree or, equivalently, the list will be a decreasing ordering
of the values of the leaves. In particular, the list of variables a1, . . ., a, contained
in the root of the totalizer represents the decreasing ordering of the values of
T1,...,%,. Then, an encoding of the cardinality constraint > . x; < K is
completed by forbidding that variable ax . is true.

3. Encoding Technique and Normalisation of PB(AMO) Constraints

Given a PB(AMO) constraint of the form PAM;A- - -AMy, a straightforward
approach to encode it is to generate a formula F' of the form GAH; A--- AN Hy,
where G is an encoding of P, and H; is an encoding of M; for all i € 1..N.
Instead, similarly to the MDD-based approach of [12], we propose to encode
PB(AMO) constraints in a combined way. We encode the conjunction of AMO
constraints in the usual way, i.e., each AMO is encoded separately and we use the
conjunction of all the resulting clauses. However, we encode the PB constraint
assuming that the accompanying AMO constraints are already enforced. This
is what will let us significantly reduce the size of the PB constraint encoding.
Lemma 1 states the correctness of our encoding technique.

Lemma 1. Let P be a PB(AMO) constraint of the form PAM; A---AMpy, where
X ={Xy,..., XN} is a partition of the variables in P such that X; = scope(M;).
Let E be a Boolean formula such that, given any assignment A of the variables
of P that satisfies My A --- A My, A can be extended to a model of E iff A
satisfies P. Then the conjunction of F with an encoding of M; A--- A My is an
encoding of P.

The encoding procedures described in the following sections generate the E
formula of Lemma 1. It is assumed that the AMO constraints M; to My are
encoded elsewhere.

205

210

215

220

225

230

235

240

245

We will not restrict ourselves to any particular encoding for the AMO con-
straints when encoding a PB(AMO) constraint. Furthermore, in the context of
a larger formula, if the AMO constraints are not explicit but logically implied
by the formula, then the encoding of the PB constraint will suffice to obtain a
correct encoding of the PB(AMO) constraint.

Given a PB(AMO) constraint P of the form PAM; A---A My, the encoding
procedures described in the following sections take as input the pair (P, X),
where X = {Xy,..., Xy} = {scope(M),...,scope(Mpn)} is a partition of the
variables of the PB constraint P. Moreover, we soundly preprocess the PB
constraint P and the partition X so that they satisfy a set of properties. Some
of the properties are required for some of the encodings presented in this paper,
while others are used to reduce the size of the constraints or to deal efficiently
with trivial constraints or monomials in the PB constraints. The properties
are enforced in the order they are given, and clauses and variables may be
introduced at each step.

Property 1. P is of the form Y7 | ¢;z; < K, with ¢; > 0.

A PB(AMO) satisfying this property is a monotonic decreasing Boolean
function, i.e. any of its models remains a model after flipping assignments from 1
to 0. The PB constraint P of a PB(AMO) constraint can always be transformed
to have this property [12]. If P is of the form .., ¢jz; = K, it is replaced
by the conjunction of two constraints > ., ¢;z; < K and Y ., ¢;z; > K, both
with partition X. The operators > and > can be transformed to < or <,
respectively, by multiplying both sides of the inequality by —1. Furthermore, <
can be replaced by < by subtracting 1 from the right-hand side. Finally, in order
to get only positive coefficients, we proceed as follows. For each AMO group
X, with some negative coefficient in the PB constraint, consider such minimum
negative coefficient ¢ and perform the following transformation: increase by —¢q
all coefficients of the variables of the AMO-group, as well as K. Moreover, add
a new variable y defined by y <> /\xle x, 1 and add it to the PB constraint with
coefficient —q. This way the inequality is preserved, since the left-hand side will
be incremented exactly by —g whatever variables are set to true, thanks to the
AMO constraint. As an example, consider the PB constraint 421 —7zo+- -+ < 15,
and assume z; and xo constitute an AMO group, i.e., we have x1 + zo < 1.
According to our transformation we would get 11xy + Ozo + Ty + --- < 22,
with y <> 1 A T3. Observe that, on the one hand, the contribution of each
variable of the AMO group is incremented by 7, so the right-hand side must
be incremented by 7 as well and, on the other hand, if neither of the variables
of the AMO group is set to true, then y contributes 7 to the left-hand side, so
the original relation is preserved. Note moreover that the variables originally
with the minimum coefficient (2 in the example) can be removed from the PB
constraint, as their coefficient becomes 0 after the transformation.

Property 2. K > 0.
If K < 0 (the constraint is unsatisfiable) the encoding of (P, X) is just the

empty clause. If K = 0, the encoding is just the union of the unit clauses z; for
all terms ¢;x; where ¢; > 0.

250

255

260

265

270

275

280

285

Property 3. All coefficients satisfy g; > 0.

Otherwise, for any ¢ = 0 where z; € X, remove the term ¢;x; from P,
remove z; from X;, and remove any set X; € X that becomes empty.

Property 4. All coefficients satisfy ¢; < K.

This can be achieved by adding the unit clause 7 for all ¢ > K. For such
q;, where z; € X;, remove the corresponding monomial ¢;x; from P, remove x;
from X;, and remove any set X; € X that becomes empty.

Property 5. N > 1.

Otherwise, the encoding of (P, X) is just the empty CNF (note that this is
sound given Property 4 and the AMOs assumption).

Property 6. Zfil maxg,ex; (q) > K.

This property means that the constraint is not trivially true when all AMO
constraints hold. Otherwise the encoding of (P, X) is just the empty CNF.

Property 7. There are no two variables x;, x; belonging to the same X; with
the same coefficient q; = ¢;r.

Otherwise, for all maximal subsets of variables X/ C X, with the same
coefficient ¢ (i.e. Vx;€X/, ¢ = q): add an auxiliary variable y; update X, as
X; = (X; \ X]) U{y}; remove from P all monomials g;x;, for all z;€X/; add to
P the monomial qy; and add to the encoding of (P, X) the clauses Z7 V y, for all
JZZGXZ(.

Remark: Henceforth, we assume that PB(AMO) constraints satisfy all
these properties.

4. Decision Diagram encoding

In order to cover all existing encodings of PB(AMO) constraints, here we
provide an overview of using Binary Decision Diagrams (BDDs) to encode PB
constraints following [5], and in Subsection 4.2 we provide an overview of using
Multivalued Decision Diagrams (MDDs) to encode PB(AMO) constraints as is
done in [12].

4.1. Binary Decision Diagram

Many BDD-based encodings of PB constraints have been proposed. In this
work we consider the encoding for monotonic decreasing PB constraints pre-
sented in [5], which in this paper will be referred to as the BDD encoding.
Given a PB constraint of the form Z?:l qix; < K with ¢; > 0 for all i, the
BDD encoding consists of, first of all, representing the constraint as a Reduced
Ordered BDD (ROBDD), and then encoding that BDD as a set of clauses. We
use the following definition of a BDD:

Definition 5 (Definition 5 in [12]). A Binary Decision Diagram (BDD) is a
rooted, directed, acyclic graph which represents a Boolean function. BDDs
have two terminal nodes, namely | -terminal and T-terminal. Each nonterminal

290

295

300

node has an associated Boolean variable (selector), and two outgoing edges,
representing the ¢rue and the false assignment of the selector. Every truth
assignment of the variables follows a path from the root to the T-terminal when
it satisfies the formula, or to the 1-terminal otherwise.

A BDD is called ordered if different variables appear in the same order on all
paths from the root. A BDD is said to be reduced if it satisfies the following two
conditions: it contains no isomorphic sub-BDDs, and there is no node whose
true and false child are the same.

Figure 2a contains an example BDD representing a PB constraint. There
exist algorithms to construct a ROBDD representing a PB constraint that run
in polynomial time w.r.t. the size of the resulting ROBDD.

Once the ROBDD has been constructed, an auxiliary variable v is introduced
for each node. The encoding enforces v to be false whenever the sub-ROBDD
rooted at that node follows a path to the L-terminal with a given assignment.
That is, it enforces g A Z; — © and 77 A x; — U, where x; is the variable in
the node of the ROBDD, and vy and vy are the auxiliary variables of the false
child and the true child of that node, respectively. However, since the considered
constraints are monotonic, we can simplify the constraint vg AZ; — ¥ to vy — 7,
because if z; = 0 falsifies the PB constraint, so will z; = 1. Therefore, for each
nonterminal node, the encoding introduces the following clauses:

vg VU (1)
v VI; VT (2)

The encoding is completed by adding three unary clauses:
v AN UL A wvT (3)

where v,., v, and vt are the auxiliary variables of the root node, the | -terminal
and the T-terminal respectively.

4.2. Multivalued Decision Diagram

Bofill, Coll, Suy, and Villaret [11, 12] presented a generalization of the BDD
encoding for PB(AMO) constraints. Like the new encodings presented in this
paper, the MDD encoding receives as input a PB constraint P and a partition X
of its variables. This encoding uses at-most-one Multivalued Decision Diagrams
(AMO-MDD), which is a more generic structure than a BDD. In an AMO-
MDD, as defined in [12], each node contains a set of selector variables. Given
the partition X = {X7,..., Xy}, the nodes of the i-th layer of the AMO-MDD
contain the variables of X; as selectors. An example is given in Figure 2b. For
each node there are multiple possible choices (outgoing edges): assigning one of
the selectors to true, or assigning all of them to false (the else edge). Therefore,
the AMO-MDDs correctly represent all assignments where at most one variable
in each set X; is true. Similarly to BDD, first of all an AMO-ROMDD is
constructed, given an order of the elements of X. Then, one auxiliary variable

305

310

315

(a) ROBDD. (b) AMO-ROMDD.

Figure 2: (a): ROBDD for the PB constraint 2x1 + 3z2 +4x3 + 7x4 < 8 with variable ordering
1 < 22 < 23 < z4. (b): AMO-ROMDD for 2z + 3z2 + 423+ Tz4 < 8, with ordered partition
{z1,z2} < {x3,z4}. Multiple edges between two nodes are represented as a single edge with
multiple labels.

is introduced for each node and Clauses (3) are introduced. Also, for each
nonterminal node, the following clauses are introduced:

v VU (4)
Vj \/xﬁ-\/@ V.’Ej € X; s.t. Vg 7& Vo (5)

where v is the auxiliary variable of the encoded node, v; is the auxiliary variable
of the child node selected by the selector variable z;, and vy is the auxiliary
variable of the else child.

The BDD encoding requires O(nK) auxiliary variables and O(nK) clauses,
while the AMO-MDD encoding requires O(N K) auxiliary variables and O(nK)
clauses.

5. Sequential Weight Counter Encoding

In this section we first recall the Sequential Weight Counter encoding for
PB constraints from [6] and in Subsection 5.2 we provide its generalization to
encode PB(AMO) constraints.

5.1. Sequential Weight Counter

The idea of the Sequential Weight Counter (SWC) encoding for PB con-
straints is to build a circuit that sequentially sums from left to right the coef-
ficients (a.k.a. weights) ¢; whose variable x; is set to true. Specifically, given a
PB constraint >, ¢;z; < K, there is a sequence of n counters of K inputs and
K outputs, where the i-th counter is associated to the variable z;. Each counter

10

320

325

330

335

340

345

receives as input a vector of Boolean variables, which is the unary representa-
tion of an integer value, and adds the weight ¢; to the output if the associated
variable z; is set to true. Therefore, the i-th counter receives as input 23;11 q;T;

and outputs 23:1 gjzj. Note that the output of the counter number ¢ — 1 is
the input of the i-th counter.

An example of a sequence of counters is shown in Figure 3a. The encoding
introduces n - K variables, denoted s; ;, with 1 <i <n, 1 < j < K, where s; ;
is the j-th output of the i-th counter and also the j-th input of the (i 4+ 1)-th
counter. The encoding introduces the following clauses:

=2

Si—1,5 V Sij 2<i<n,1<ji<K
TV S5 l<i<n,1<j<gq
Sic1j VTiVSijtq 251<nl1<j<K-g

EN|

oo
= D — T

9

A~ I~~~

Si—1,K+1—q; V T; 2<i<n

where s¢ ; is the constant 0 for all j, to represent the input of the first counter
which is the empty sum. Clauses (6) state that >°._, ¢ja; > 23;11 gjz;. Clauses
(7) and (8) enforce that if a variable z; is true then its coefficient is added to
the input of the next counter. Finally, Clauses (9) enforce that the sum never
exceeds K.

5.2. Generalized Sequential Weight Counter (GSWC)

We define the GSWC encoding by, instead of associating a single monomial
¢;x; from the PB constraint to each counter, associating a set of monomials
to each of them. In our generalization, given a partition X = {Xi,..., Xn}
of the variables of the PB constraint, the resulting formulation will have just
N counters, where the i-th counter will handle all the monomials gq;x; for the
variables x; in X;. If the variables in each set X; are subject to an AMO
constraint then, given an assignment satisfying those constraints, at most one
coefficient ¢; will be added by each counter, and the output of the whole circuit
will correspond to the value of Z?zl ¢;z;. As in the original encoding, we will
enforce that a sum exceeding K is not reached. The GSWC encoding introduces
the following clauses:

81‘_17j\/8i7j 2§Z<N,1S]§K ()

TV S I1<i<N,meX;, 1<j<q (11)

Si—1,; VTI V Sij+q 2<i< N,z € X;, 1<j<K—q (12)
Si1K+1-q VTl 2<i<N, 1 eX; (13)

Clauses (10) propagate the accumulated sum in the same way as Clauses (6).
Clauses (11) and (12) enforce S; > S;—1 + qizy, for all ; € X;, where S;_; and
S; are respectively the input and output value of the i-th counter. Clauses (13)

enforce that the sum never exceeds K. A high level circuit representation of a
GSWC encoding is shown in Figure 3b.

11

350

355

360

50,1 =0 | 81,1 $2,1 83,1 | s4,1
50,2 =0 | 51,2 52,2 83,2 | S4,2
50,3 =0 _| 51,3 52,3 83,3 | s4,3
s0,4 =0 _| 51,4 524 53,4 | s4,4
50,5 = 0 | +2x1 S1.5 +3z2 52,5 +4x3 S35 +T7x4 | S4,5
s0,6 =0 | 51,6 526 53,6 | s4,6
s0,7 =0 | 81,7 S2.7 83,7 | s4,7
s0,8 =0 | 51,8 s2.8 83,8 | s4,8
(a) SWC.
s0,1 =0 | S1.1 | s2,1
s0,2=0 | 51,2 | s2,2
s0,3=0_| 51,3 | s2,3
$50,4=0_| { 221 51,4 {432 | s2,4
S =0 + S + 3 s
0,5 n 320 1,5 Tz, 525
50,6 =0 _| 51,6 | $2,6
s0,7 =0 _| 81,7 | s2,7
s0,8 =0 | 51,8 | s2,8
(b) GSWC.

Figure 3: (a): high level circuit representation of SWC (2z1 + 3x2 +4x3 + 7Tz4 < 8). (b): high
level circuit representation of GSWC (2z1 + 3x2 + 4a3 + Tx4 < 8, {{z1,z2}, {z3,24}}).

The main difference between the SWC and GSWC encodings is that the
latter has only NV counters, instead of n, and therefore introduces fewer auxiliary
variables (assuming N < n). Also, the number of Clauses (10) in the GSWC
encoding is smaller than the number of Clauses (6) in the SWC encoding. The
SWC encoding requires O(nK) auxiliary variables and O(nK) clauses, while
the GSWC encoding requires O(N K) auxiliary variables and O(nK) clauses.

5.2.1. Comparison with decision diagrams

There is a close relationship between sequential weight counter circuits and
decision diagrams, i.e. between BDD and SWC encodings, and between MDD
and GSWC encodings. In particular, a reduced ordered decision diagram can
be seen as a sequential weight counter where the i-th counter only has output
pins representing sum values that can be obtained from a subset of the first ¢
variable coefficients. Moreover, two sum values may share the same decision
diagram node if this does not affect satisfiability, and this reduction is not per-
formed in sequential counters. Also, reduced ordered decision diagrams shortcut
intermediate nodes when all their output edges point to the same child. This
is usually referred to as a long edge, and is also not used by sequential weight
counters. Therefore, there are possible sum values that are not represented by
any variable in decision diagram encodings. This means that decision diagram

12

365

370

375

380

385

390

395

encodings are smaller, but in some models it might be useful having a variable
representing each sum value. Both the results of the original paper of SWC [6]
and our results show that sometimes encodings based on sequential counters
perform better than those based on decision diagrams.

6. Generalized Totalizer Encoding

In this section we first revisit the Generalized Totalizer encoding for PB con-
straints introduced in [7], then in Subsection 6.2 we provide its generalization
to encode PB(AMO) constraints. In Subsection 6.3 we introduce a new encod-
ing for PB(AMO) constraints, the Reduced Generalized Generalized Totalizer,
which is able to merge sets of equivalent values into intervals, potentially reduc-
ing the size of the encoding. Subsection 6.4 provides a heuristic to build the
binary trees used in the totalizer encodings.

6.1. Generalized Totalizer

The Generalized Totalizer (GT) encoding was presented in [7] as a gener-
alization of the Totalizer encoding for cardinality constraints [23]. The overall
idea of GT is to represent a PB constraint Z?Zl qix; < K as a binary tree where
each leaf represents a term of the sum, and non-leaf nodes represents the sum
of the terms beneath. In each non-leaf node, every possible value of the sum is
represented with one Boolean variable.

In the original presentation, every node of the tree has a distinct label and
an attribute vars which consists of a set of Boolean variables. We add another
attribute vals, a set of values. In GT, vals corresponds to vars (each non-zero
value in wvals has a corresponding variable in vars), but this is not the case in
one of our generalizations of GT. Each variable x; of the PB constraint is placed
into the attribute vars of a different leaf node, and is renamed after the label of
the node and its associated coefficient ¢; (e.g., given the monomial 3z, if the
variable x; is inserted into a leaf node labelled by letter O, then the variable is
named o3). The attribute vals of the leaf node is simply {0, ¢;}. The attribute
vars of any non-leaf node labelled O contains a variable o,, for every variable
l of its left child and for every variable r,, of its right child. Moreover, O.vars
also contains a variable o,, for every value w in the range [1, K] resulting from
summing any pair of values w; and we, where [,,, and r,, are variables of the
left and right children respectively. Also, vars contains a variable ox 1 iff any
of the sums is larger than K. For each variable o, € O.vars, value c is inserted
into O.vals, along with value 0. Figure 4a illustrates an example binary tree.

Once the tree is properly constructed, the GT encoding introduces the fol-
lowing clauses for each non-leaf node O with children L and R:

tw V0w tw € L.vars U R.vars (14)

lwy, VTuy VO Ly, € Lovars, ry, € Rvars, w = min(wy +we, K +1) (15)
It also introduces the unary clause:

AK+1 (16)

13

400

405

410

415

420

A: az,as, a4, as, ag, a7, as, a9, 10, a1l

/ \
B: b27b3ab47b57b65b77b83b97b103b11 C: C3,¢C4,C6,C7,C8,C9,C10,C11
D :dz,d3,ds E:eq,e5,€e9 F:f3, fa, fr G :g6,98,911
VEERN /N VRN /N
H : ho I:1i3 J:ja K : ks L:l3 M :my N :ng O :o0g
O A N
(a) GT.
A: az,as, aq,as, ag, a7,ag, a9, @ip, @11
/ \
B: bZa b33 b47 b5 C: c3, C4, C6, Ccs
Il Il I I Il I I Il
1 To X3 T4 5 xg T7 T8
(b) GCT.

Figure 4: (a): binary tree of GT(2z1 + 3z2 + 4x3 + 5x4 + 3w5 + 4ae + 627 + 8ag
10). (b): binary tree of GGT(2z1 + 3z2 + 4x3 + 5z4 + 325 + 4w6 + 627 + 8T8
10, {{z1, w2, x3, x4}, {a5, w6, x7, w8} }).

ININA

where A is the root node of the tree and ax 1 € A.vars (otherwise the constraint
would be trivially satisfied).

Clauses (14) enforce that the variable o, will be set to true by UP if some
child has a variable t,, set to true. Clauses (15) enforce that the variable o,, will
be set to true by UP if there exists a pair of variables l,,,, 7., from the children
nodes that are set to true and such that w = min(w; + we, K + 1). Finally,
Clause (16) states that the sum of the tree (i.e., the value of the left hand side
expression of the PB constraint) cannot be greater than K.

We apply a minor optimisation to the GT encoding as well as the GGT
encoding presented below. Variables ag,...,ax of the root node only appear
in Clauses (14) and (15) and they are never negated. Therefore, we do not
introduce variables aq, ..., ax of the root node nor their associated clauses.

6.1.1. Comparison with Decomposable Negation Normal Form

The encodings described in Section 4 use decision diagrams (ROBDD in
particular). Ordered decision diagrams are one target language for knowledge
compilation [24]. It is natural to consider whether GT and its generalizations
in this section (GGT, RGT, and RGGT) also correspond to a knowledge com-
pilation language. The GT encoding and its generalizations (GGT, RGT, and
RGGT) can be translated straightforwardly to the knowledge compilation lan-
guage Decomposable Negation Normal Form (DNNF) [24]. For each non-leaf,
non-root node O, for each value w in O.vals — {0}, w can be represented in
DNNF as a disjunction with one disjunct for each pair of values w; and ws
(from the left and right children respectively) where min(w; + we, K + 1) = w.

14

425

430

435

440

445

450

455

460

465

Each disjunct would be a conjunction of the two DNNF terms representing w;
and wsy respectively (reusing terms where possible). The root node is treated
similarly but all values in the range [1, K] are represented by a single disjunc-
tion (since the exact value is irrelevant). For a leaf g;x;, value ¢; is represented
by z; and value 0 by true (subsequently removed by partial evaluation). This
construction is in DNNF but not d-DNNF (it does not have the determinism
property [24]). DNNF can be encoded into SAT using the Tseitin encoding, and
in this case it would be completed by asserting ax ;1 where ax 41 is the Tseitin
variable for the root node value K + 1. GT has a specialised SAT encoding
for the tree which is more compact than the Tseitin encoding of this DNNF
formula. To adapt this DNNF formula for the RGT and RGGT encodings
(described below), values are replaced with intervals.

6.2. Generalized Generalized Totalizer (GGT)

In our generalization of the GT encoding, we will use the same definition
of the binary tree, but the leaves will be instantiated differently. Instead of
introducing a leaf node for each variable of the PB constraint, we introduce a
leaf node for each of the sets in the partition X. The leaf node O associated
with set X; will contain a variable o4, in its vars attribute for each distinct
coefficient ¢; such that x; € X;. Note that, due to Property 7, q; # qi- for every
two distinct variables x;, xp € X;. As in the GT encoding, every variable z; is
renamed as o4, and placed in O.vars. Each distinct coeflicient ¢; is placed in
O.vals, along with value 0. Then, the GGT encoding introduces Clauses (14),
(15) and (16) as in the GT encoding. Figure 4b depicts the binary tree of a
GGT encoding.

Note that assuming that an AMO constraint over each set X; is satisfied,
at most one of the variables in each leaf node will be true, and therefore the
encoding correctly evaluates Y ., qz; < K.

The GT encoding requires O(nK) auxiliary variables and O(nK?) clauses,
while the GGT encoding requires O(NK) auxiliary variables and O(NK?)
clauses. However, as stated in [7], this size depends on the number of unique
sums of coefficients, and hence the previously given size bounds are only accu-
rate when the number of unique sums is close to K.

6.3. Reduced Generalized Generalized Totalizer (RGGT)

In the GT and GGT encodings it is possible to have two values i,j of a
tree node O such that the choice of ¢ or j does not affect the semantics of the
constraint: informally, it makes no difference whether the node takes value 4
or j. We present a new encoding that makes use of this idea, named Reduced
Generalized Generalized Totalizer (RGGT). Since PB constraints are a partic-
ular case of PB(AMO) constraints, this encoding is also useful to encode PB
constraints. We refer to the PB encoding as Reduced Generalized Totalizer
(RGT), and given an input PB constraint >, ¢;z; < K, RGT consists of the
RGGT encoding with partition X = {{x1},...,{zn}}.

The key idea of the RGGT is to merge sets of equivalent values into intervals
and use only one variable per interval in the encoding. The RGGT was inspired

15

470

475

480

485

490

495

500

505

510

by the ROBDD encoding of pseudo-Boolean constraints [5], which never contains
two equivalent states by construction. In RGGT, tree nodes have an attribute
intervals which is a sequence of integer intervals. Within each interval, the
choice of value does not change the semantics of the constraint.

Take for example the constraint 202, + 30x2 + 2023 + 40x4 + 1025 + 2026 +
z7 < 55 with AMO partition X' = {{x1,z2}, {3, 24}, {z5,26}, {27}}. Figure ba
shows a GGT for this constraint (in this case the wvals attribute is shown in
each node). First, all values of the root node (A) that are < 55 are equivalent:
they all unconditionally satisfy the constraint. Therefore the root node has two
intervals: [0, 51], [56, 0c0]. Next, in node B, values 0, 20, and 30 are equivalent:
for all values ¢ € C.vals, the sums 0 + ¢, 20 + ¢, and 30 + ¢ are in the same
interval of A therefore the choice of 0, 20, or 30 is not significant regardless of
the value of C'. Collecting values into intervals is called reduction and parents
are always reduced before children. An interval is non-trivial if it contains more
than one value.

Figure 5b shows the RGGT tree created by one pass of reduction. Nodes
A, B, C, and G have non-trivial intervals. Node G is a leaf node, representing
term z7. Non-trivial intervals in leaf nodes trigger changes to the PB(AMO)
constraint, the details of these changes will be described later. In this case,
term x7 and its AMO group are deleted because the term does not affect the
satisfaction of the constraint (values 0 and 1 are in the same interval). Whenever
the PB constraint is modified the entire RGGT process is repeated from scratch.
Figure 5c shows the GGT tree constructed in the second pass, with 2 fewer nodes
than Figure ba. Finally, Figure 5d shows the RGGT tree produced by the second
pass. The final RGGT tree would require 6 SAT variables to encode, whereas
the original GGT in Figure 5a would require 11.

The reduction algorithm is presented in Algorithm 1. The first section
shows the outer loop, the body of which builds a GGT tree with only wvals
attributes. No additional Boolean variables are created at this point. Then
makeChildIntervals is called to create the intervals attribute of each node.
After all intervals have been constructed, for each non-trivial interval of a leaf
node, corresponding terms of the PB constraint are adjusted. First, coefficients
are reduced to the smallest value in the interval (lines 5-8). Any value in the
interval could be used; the smallest is a heuristic choice. Terms with coefficient
0 are removed, then empty AMO sets are removed from X (on lines 9-10), thus
restoring Property 3.

The function makeChildIntervals traverses the GGT tree top-down, cre-
ating the intervals attribute of each node V' using intervals of the parent U and
vals of the sibling W. Two adjacent values a,b of V are placed in the same
interval iff (for each value w of the sibling node) a+w and b+ w are in the same
interval of the parent — i.e. the choice of a or b is not significant.

Property 8. For each non-leaf node O with children L and R, for each pair of
intervals [a,b] € L.intervals and [c,d] € R.intervals there must exist an interval
le, f] € O.intervals that contains [a + ¢, b+ d].

Note that Property 8 will hold by construction, otherwise either [a, b] or [c, d]

16

A A

0,1, 10,11, 20, 21, 30, [0,51],
31,40, 41, 50, 51, > 56 [56, oo]
/ AN
B C B C
0, 20, 30, 0,1, 10, [0, 30], [40], [0,1], [10, 11],
40,50, > 56 11, 20, 21 [50], [56, oo] [20, 21]
/N /N / AN /o N\._
D E F G D E F f 1
0,20,30 0,20,40 0,10,20 0,1 (0], [20], [30] [0], [20],[40] [0],[10],[20] [0, 1]4
(a) Initial GGT tree with vals at- (b) RGGT tree after first pass, nodes la-
tribute. belled with intervals attribute.
A A
0, 10, 20, 30, 40, 50, > 56 [0, 50], [56, o]
/ AN e AN
B C B C
0,20, 30,40,50,>56 0,10,20 [0, 30], [40], [50], [56, 00] [0], [10], [20]
/N 7N\
D E D E
0,20,30 0,20,40 [0],[20],[30] [0],[20], [40]

(c) GGT tree of second pass, la- (d) RGGT tree after second pass, nodes la-
belled with vals attribute. belled with intervals attribute.

Figure 5: Two passes of the RGGT algorithm reach a stable tree for the PB(AMO) 20z +
30z2 + 20z3 + 4024 + 1025 + 20z6 + 27 < 55, X = {{z1,z2}, {23, 24}, {z5, 26}, {x7}}.

could not have been constructed by lines 16-17 of Algorithm 1.
Finally the RGGT tree is encoded into SAT. For each non-leaf node U,
for each interval [a,b] € U.intervals where a > 0, one Boolean variable ugp is
sis created and placed in U.vars. For each leaf node L, note that all intervals must
be trivial (since Algorithm 1 has completed) but some intervals may be linked
to more than one term. For each interval [a,a] € L.intervals where a > 0, if
exactly one term ¢;z; is linked to L and ¢; = a, then x; is named [, , and added
to L.vars. Otherwise a new Boolean variable [, , is created, and for all terms
s0 ¢;x; linked to L where ¢; = a the clause —x; V [, 4 is added.
The RGGT encoding introduces the following clauses for each non-leaf node
O with children L and R. The following two sets of clauses are comparable to
Clauses 14 and 15 of (G)GT.

tapV Oef tap € Lovars U R.vars, oy € O.vars, e <a, b< f (17)

lap VTedVoe s lap € Lovars, req € Rvars, oe.y € O.vars, e<a+c, b+d< f
(18)

For the root node A the unary clause @x1 o0 is added.

6.4. A Heuristic To Build GT, GGT, RGT, and RGGT Trees

Each of the totalizer encodings described above (GT, GGT, RGT, and
RGGT) requires a method to construct a binary tree given a set of leaf nodes.

17

525

530

535

540

Algorithm 1: RGGT reduction algorithm.

Data: A PB(AMO) constraint y_._; ¢;z; < K, with variable partition X
Result: A Reduced Generalized Generalized Totalizer tree

1 repeat

2 Build a GGT tree with root node A without vars attributes

3 A.intervals < [[0,max(A.vals \ {K + 1})], [K + 1, o0]]

4 makeChildIntervals(A)

5 foreach L: leaf node with non-trivial interval do

6 foreach [I,u]: non-trivial interval (w > 1) in L.intervals do
7 foreach q;z; linked to L wherel < q; < u do

9 Delete terms q;x; where ¢; =0

10 Delete empty cells of partition X

11 until No changes to PB(AMO) constraint

12 Procedure makeChildIntervals(U)is
13 foreach child V' (with sibling W) of U do

14 V.intervals < [[a,a] | a € Vivals,a < K + 1] + [[a, 0] | a €
Vovals,a = K + 1]

15 foreach adjacent pair of intervals [a, b], [c,d] in V.intervals in
ascending order do

16 if Vw € Wovals. 3I € U.intervals. (w+b) € IN(w+c) €1

then

17 | Replace [a, b], [c,d] with [a,d] in V.intervals

18 if V' has children then

19 ‘ makeChildIntervals (V)

In this section we propose a new heuristic named minRatio to build the binary
tree required by these encodings. The minRatio heuristic compares the num-
ber of values of a (proposed) internal node to the product of the numbers of
values of its two children, greedily minimising the ratio of these two quantities.
Suppose we have three tree nodes C, D, E with value sets C.vals = {0, 3,6},
D.vals = {0,3,6}, and E.vals = {0,4,8}, and K = 15. If C and E shared
a parent A, then A.vals = {0,3,4,6,7,8,10,11,14}. The size of A.vals is the
product of |C.vals| and |E.vals|. However, if C and D shared a parent B, then
B.vals = {0, 3,6,9,12} — smaller than the product of its children. The minRatio
heuristic would generate B in this case.

MinRatio works on a set S of tree nodes. Initially S contains all leaf nodes.
MinRatio has completed when S contains a single node (which will be the
root). At each step, two nodes B and C' are removed from S and their parent
A is created and added to S. B and C are selected to minimise the quotient
|A.vals|/(|B.vals| x |C.vals|). Note that K + 1 is counted as a single value. In
the experiments described below, we refer to the encodings using the minRatio
heuristic simply as GT, GGT, RGT, and RGGT.

18

545

550

555

560

565

570

A
0,1, 10,11, 20, 21, 30,
31,40, 41, 50, 51, > 56

A / AN
0,1,10, 11, 20, 21, 30, B c
31, 40,41, 50,51, > 56 0, 10, 20, 30, 40, 50, > 56 0,1
B C D E
0,20,30,40,50,>56 0,1,10,11, 20,21 0,20, 30,40,50,>56 0,10,20
D E F G F G
0, 20, 30 0, 20, 40 0,10,20 0,1 0,20, 30 0,20, 40
(a) Default (input order, balanced) (b) Using the MinRatio heuristic

Figure 6: Comparing tree-building heuristics for GGT(20z1 + 30z2 + 20z3 + 40x4 + 1025 +
20z6 + x7 < 55, {{z1, z2}, {23, 24}, {z5, w6}, {x7}}).

In order to evaluate the impact of the minRatio heuristic, in Section 11 we
will compare its performance to that of a natural default heuristic with the
GT and GGT encodings. The default heuristic constructs a balanced binary
tree where the elements of X' are placed in the leaf nodes from left to right in
input order. When the number of leaf nodes is not a power of two, the leftmost
leaves are the ones of higher depth. In the experimental section we refer to the
encodings using these heuristics as GTd and GGTd (where d indicates default).
Our results show that the minRatio heuristic has a substantial positive effect on
the size and performance of GT and GGT encodings when compared to GTd
and GGTd.

The default heuristic produces balanced trees of height [log,(|X])], whereas
minRatio can produce unbalanced trees of much greater height. In fact we ob-
served that minRatio tends to produce highly unbalanced trees. In our exper-
iments with the Multi-Choice Multidimensional Knapsack Problem (MMKP)
(described in Section 11.1), when using GGT the number of leaf nodes is
|¥| = 15 and the tree height is 14 in all cases except for one constraint of
one instance in MMKP3 which has height 13. With just one exception, the
trees are as high as possible (i.e. maximally unbalanced). When using GT,
considering MMKP1, the trees have height at least 112 (with 150 leaf nodes).
In MMKP2, trees have height at least 97 (with 150 leaves), and in MMKP3,
trees have height 57 or more (with 75 leaf nodes). Minimal heights are 8 for
MMKP1 and MMKP2, and 7 for MMKP3, so it is clear that minRatio is build-
ing extremely unbalanced trees. For the Combinatorial Auctions problem (see
Section 11.1) PB(AMO) constraints are of different sizes so we report percent-
ages. All GGT trees are a minimum of 74% of the maximum possible height,
and GT trees are at least 38% of the maximum possible height — in both
cases substantially higher than a balanced tree. Figure 6 compares the default
heuristic to minRatio on a small example with the GGT encoding. In this case,
minRatio produces an unbalanced tree of maximal height by first combining the
three leaf nodes with larger values (i.e. values that are multiples of 10) in one

19

575

580

585

590

595

600

605

610

subtree. The combination of node C with any other node has a poor ratio, so
node C is the last leaf node to be incorporated into the tree.

6.4.1. Comparison with decision diagrams

Given that minRatio produces extremely unbalanced trees, it is natural to
compare the RGT and RGGT encodings with minRatio to the BDD and MDD
encodings in Section 4. Suppose that the tree for RGT/RGGT is of maximal
height, and that the order of terms or AMO groups in the tree (from the deepest
leaves to the root) is consistent with the order of the decision diagram. The
nodes T and L of the decision diagram correspond to the two intervals of the
root node of the RGT/RGGT. The two encodings collapse equivalent states in
very similar ways. The most significant difference is that the decision diagram
may have long edges (i.e. edges that bypass one or more terms or AMO groups)
whereas this is not possible in the RGT/RGGT encoding.

7. n-Modulo Level Totalizer Encoding

In this section we first revisit the n-Modulo Level Totalizer encoding for
PB constraints from [8] and in Subsection 7.2 we provide its generalization to
encode PB(AMO) constraints. Subsection 7.3 gives some construction details.

7.1. n-Modulo Level Totalizer

The n-Modulo Level Totalizer (MTO) encoding generalises the Weighted
Totalizer encoding which, as stated in [8], is essentially an equivalent definition
to the GT encoding that was presented in a parallel work. For the sake of
readability we unify the nomenclature of the MTO encoding with the one of
the GT encoding, but the overall idea of the encoding summarised here and the
resulting clauses are the same as in the original work.

The MTO encoding, equally to the GT encoding, consists in building a
(generalization of a) totalizer in which the root of every subtree represents the
sum of the monomials associated to its leaf nodes and, in particular, the root of
the whole totalizer represents the sum of the monomials in the PB constraint.
The main difference with respect to GT is that the values of the nodes are
represented in a mixed radix base.

A mized radiz base is a vector A = (Ao, ..., Ag_1) where 8 € Ny and Vi €
0.6 —1: X € NJA; > 1. A number I € Ny is represented in base A as
dﬁ dﬁ—l ... dpwhere Vi€ 0.0 —1:0<d; <\, d5 € Np, andI:dg X ()\0 X
)\1 Xoee X)\ﬁ,1)+"'+d2 X ()\0 X)\1)+d1 X ()\0)+d0

For instance, numbers 0,1, ..., 10 in base (3, 2) would be represented as 0 0 0,
001,002,010,011,012,100,101,102,110,11 1. Number 100 would
be represented in base (3,2) as 16 1 1, that is 16 x (2x 3)+1x3+1, and it would
be represented in base (3,2,2) as8 0 1 1, that is 8x (2x2x3)+0x(2x3)+1x3+1.
As a particular case, a binary base can be defined as a vector containing an
infinite number of 2s, that we denote by A = (2x), and similarly a decimal base
can be defined as A = (10%).

20

615

620

625

630

635

640

The MTO encoding builds a totalizer where the value of a node is represented
in a mixed radix base, and each digit is represented with a distinct symbol as
in the GT encoding. An example is given in Figure 7a. For each node O and
digit dp, with h € 0..6 — 1, we define a list of variables O} of maximum length
An, which will contain a subset of the variables of, ..., Olih—r We also define
a list Og (i.e., the list for the digit of most weight), that can contain as many
variables as required to represent the value of the node. If a variable 0? is true,
it means that the dj, digit of the value of O is at least 4. The element off is
always present in a list Oy, and is defined to be a 1 constant (it is omitted in
Figure 7). The other variables only appear if required to represent the node
values, similarly to GT, as follows:

e At leaf nodes we place the variables of the PB constraint P transformed
into variables of Oy, lists. Note that each variable in P can correspond to
more than one variable in the Oy, lists. For instance, in Figure 7a, variable
x4 has coefficient 5, which is represented in base (4, 3) as 1 1, and therefore
corresponds to the variables k9 and &} in the lists Ky and K of node K.

e At a non-leaf node O with left and right children L and R, we add to list
O}, the required new variables to represent any sum of the variables in Lj
and Rj. First of all, we introduce a new variable to represent the carry
digit whenever the sum of two weighted digits from L; and R, is greater
or equal than A,. We name this variable 'yg, and it is only introduced
if there exist two variables I/, r;’ such that ¢ + j > Ap, or such that
i+ 7+ 1>)\, if there exists the carry digit fyg_l. Otherwise, the carry
variable 'yg is assumed to be false. Then, O}, contains a variable o”, with
o =i+ j(mod \), for any two variables {7 rjh. Also, if 'yg*l exists, Op

contains variables o, with o =i + j + 1(mod \p).

Note that the GT encoding can be seen as a particular case of the MTO encoding
where an empty base A = () is used.

The encoding contains, firstly, the clauses needed to propagate the sums of
values from the leaf nodes to the root node. For every non-leaf node O, with
children L and R, we add the following clauses.?

Sums when the carry-in does not exist. For all h € 0.3 — 1, I € Ly, 7";? € Ry,
where 0 =1 + j:

E\/ﬁ\/ofi\/’yg if 0 <An (19)
Ivrlvah if 0> M (20)
EVEVOZ’. mod An Zf o>)\h (21)

IThe nomenclature of this formulation has been slightly changed w.r.t. the one in [§]
without affecting the final result, for the sake of a unified notation in the current work.

21

645

650

655

Sums when the carry-in does exist. Forall h € 1..5—1, l? € Ly, rjh € Ry, where
c=i+7+1:

wg_l\/ﬁ\/g\/og\/’yg if 0 <Ap (22)
TV TV A i o>, (23)
BTV s, Fosn

Sums for the uppermost digits. For all lf € Lg, Tf € Rg, where 0 =i + j:

1B\ B
17 vl vol (25)
fyg_l \% l? \% r? \ 0§+1 (26)

Secondly, the encoding enforces that the value of the root node is not greater
than the constant K of the PB constraint. To impose this constraint, K must
also be represented in base A, and we refer to the dj digit of this representation
by K. The clauses to be added are the following, specified from the uppermost
to the lowest digit, where O is the root node of the tree:

of Vol € 0g,i> KP (27)
o Vo Vo™l e Op_1,i> KP1 (28)
o VO Vv o2, Vol Vol € Oy,i> K" (29)
o VO Vvl Vol Vo? € Og,i > K° (30)

Note that this series of formulas can be stopped if we find an index h such

that o};{h ¢ Oy, because o’;(h is always true and is part of all the clauses from

that point on.

7.1.1. Comparison with Decomposable Negation Normal Form

In Section 6.1.1 we showed that GT, GGT, RGT, and RGGT trees can be
straightforwardly encoded into the knowledge compilation language Decompos-
able Negation Normal Form (DNNF) [24]. This is not the case for MTO: a
straightforward translation into NNF does not have the decomposable property
(that conjuncts do not share variables). Consider a non-leaf node O (with chil-
dren L and R), and digit h. The carry 'yg depends on values of Lj, and Ry. The
values of the digit Oy, (represented in MTO with variables o) depend on Ly,
and Ry, as well as the carry 73 (see clause (22)) and as a result the NNF terms
corresponding to variables 0 may not be decomposable. As a concrete example,
suppose A, = 3 and there is no carry-in. o is true when I and 7} are both
true and % is false (conjunction A4). 4% is true when I? and r} (for example),
so I is mentioned in two conjuncts of A and the NNF is not decomposable.

22

660

665

670

By : b?,bg,ba,,'y%

e q2 42 4,2 2
As .a%,aQ,a3,a4
Ay :a(l),a%,'y .
Ao 1 aj,ay,a3,7%
Bzzbi Co :0%7(22
. 1.1 . 1
By 1 by, b3,y Gy $ €1, Coy Y,

.0 0 0
Co: C1,C3,C3, Yo

Do : Es : Fy Go g%

D1 :d% Eq 6%,62 Fy: 11 G1 :g%,g%gyé

Dy : dY,d3,d3,~% Eg:é€) Fo: fd Go : g9

Hs : I : Jo Ko Lo : My : Na : O3 :

Hy : I : Juigl| | Krck Ly: My :ml Ni:ni| |O7:0}

H():hg Io:ig Jo : Ko:k? Lollg My : No:ng Op :
hY=z1 i9=x2 ji=as k) = ki 9=x5 m}=zxg n9=n} ol=zg

=x4 =7
(a) MTO.
Az :a%
Aq :al,al, v}
20 0 2 Ao : af, a5, 43,7
3 0o 0 3
70 1 o 0 _ 0_
500 1 1 B Bs: Ca: B
by = x1 B bl Ci:clcl| G3=%5
610 1 2 bgfx Y, 1iep s c?<—a; vV
g2 By : b9, b3, b9 Co:c§,cy| 67 *6 v a7
8 0 2 0 by <~ @3 Vx4 cy =18
(b) Coeflicients in (¢) GMTO.

base (4, 3).

Figure 7: Example with base A = (4, 3), P : 2z1+3x2+4x3+524 +3xs +4x6 + 627+ 8xs < 10.
(a): binary tree of MTO(P). (b): representation in base A of the coefficients of P. (c): binary
tree of GMTO(P, {{z1,x2,x3,z4}, {25, x6,x7,28}}).

7.2. Generalized n-Modulo Level Totalizer (GMTO)

The generalization from MTO to GMTO is analogous to the generalization
from GT to GGT. We will instantiate the leaves of the totalizer in a way that
each set of variables X; € X is represented by a single leaf node. The leaf
node O associated to set X; will contain all variables of the form o involved
in the representation in the selected mixed radix base A of the coeflicients g;
of variables x; € X;. We denote as q? the dj, digit of the representation of g;
in base A. For each set X; € X, with leaf node name O, for each dj, digit with
h € 0..3, and for each value o € 1..\p:

o If there is no coefficient g; such that z; € X; and q? = o, then list Oy
does not contain variable of.

23

675

680

685

690

695

700

705

710

o If there is only one coefficient g; such that z; € X; and qjh = o, then
variable of! € Oy, is the same as variable z;.

o If there is more than one coefficient g; such that z; € X; and q? = o, then
variable ol € Oy, is a new variable, and we add the clauses Z; V o for any
such g;.

As in MTO, o} is defined as the 1 constant and is always present for each
h € 0..3 and for all nodes. An example is given in Figure 7c (the constants o}
are not represented).

Therefore, the GMTO encoding consists of the previous definition of the
totalizer together with clauses (19)—(30). Note that assuming that an AMO
constraint over each set X is satisfied, the value of the leaf node associated to
X; will be at least q;, where x; € X; is the variable that is set to true, and
therefore the encoding correctly evaluates Y " ¢;z; < K.

The MTO encoding requires O(n3\g) auxiliary variables and O(n3A32) clauses
(assuming A\g = -+ = A\g_1 = [Kflﬂ) [8], while the GMTO encoding requires
O(N o) auxiliary variables and O(NBA3) clauses.

7.3. Construction of (G)MTO

In our experiments, in order to build the n-Level Modulo Totalizer, we follow
Algorithm 5 from [8] which produces a balanced binary tree, with very small
sizes and good performance in our experiments. Regarding the selection of a
mixed radix base, we have implemented a greedy heuristic based on the descrip-
tion given in Section 4.3 of [8]. We keep adding values to A until [], -, An > K.
To select the new value Aj to add to A, we choose the number greater than 1
which is a divisor of the largest number of coefficients of the PB constraint and,
in case of a tie, we choose the highest value. Each time we add a new value Ay
to A, all coeflicients ¢; are updated as ¢; = |g;/An] in order to find the best
divisor (base) for the next digit.

8. Global Polynomial Watchdog Encoding

In this section we first revisit the Global Polynomial Watchdog encoding for
PB constraints from [9] and in Subsection 8.2 we provide its generalization to
encode PB(AMO) constraints.

8.1. Global Polynomial Watchdog

The Global Polynomial Watchdog (GPW) encoding was introduced by Bailleux
et al [9]. It uses as its basis a polynomial watchdog formula, denoted PW (P),
which is associated with a PB constraint P, and contains a variable named
the output variable, denoted w. The PW (P) formula satisfies the following
property:
Lemma 2 (Lemma 1 in [9]). For any partial assignment to the variables of P,
unit propagation on PW (P) assigns 1 to w if and only if this partial assignment
cannot be extended to a model of P.

24

715

720

725

730

We first summarise how to construct the formula PW (P) and then complete
the definition of the GPW encoding. The first step is to rewrite the constraint
into the form T+ Y " | ¢;x; < m - 2P, with a strict inequality, where p, T and
m are defined as follows: p = |log,(max;—1 ,(g;))| is the index of the most
significant bit in the binary representation of the largest coefficient g;, where 0
is the index of the least significant bit. In other words, p 4+ 1 is the number of
bits needed to represent ¢; in binary notation; T is the smallest non-negative
integer such that K + 1+ 7 is a multiple of 2°; m = (K + 1+ T)/2P.

Once the constraint is rewritten to this form, a set B, of variables of P

(called bucket) is computed for each bit 0 < r < p. We denote by b,(g;) the
r-th bit of the binary representation of the integer ¢;. Bucket B, contains all
the variables z; such that b.(¢q;) = 1. Bucket B, also contains a 1 constant if
b-(T) = 1.
Example 2. The following is the transformation to apply to the PB constraint
2x14+3x2+4x3+Txy < 8 We have p =2, and T = 3 is the smallest integer such
that K + 1+ 7T = 12 is a multiple of 2P, with m = 3. Therefore, the constraint
is expressed as 3 + 2x1 + 3xo + 4x3 + Tr4 < 12. The content of buckets By, By
and Bs is illustrated in Figure 8.

The idea is to decompose each coefficient in its binary representation and
sum each bit having the same weight.

The formula PW(P) can be represented as a circuit, as can be seen in
Figure 8 corresponding to Example 2. We denote by (B,) a vector with an
arbitrary order containing the elements of bucket B,. The formula PW (P) uses
two main components: the formulas ¢(V) and ¢ (V;,V3). The formula ¢(V)
has as input a vector of Boolean variables V', and has as output a vector of
|V| variables named U(V'). The formula ¢(V') enforces that U (V) is the unary
representation of the sum of the input variables. The formula ¥(V7, V3), has as
input two vectors of variables V; and V5, which are the unary representation of
two integers, and has as output a vector of |V| + |V3| variables named S. The
formula ¢(V7, Va) enforces that S is the unary representation of Vi + V. In
the definition of PW (P), we denote by S, the output of the ¢ formula related
with bucket B,, for 1 < r < p, and we define Sy = U({By)). Half of the value

of Sy for a weight 2%, denoted as S;/Z is integrated in the sum for weight 251,
Then, the formula PW (P) is defined as the conjunction of these two formulas:

$((B,)) 0<r<p (31)
B(U(B,)), SH2) 1<r<p (32)

The GPW encoding is defined as:

PW(P) (33)
w (34)

The basic idea is that the m-th bit of S, represented with variable w, is set to
1 by UP if the sum of the constraint is greater or equal than m-2P = K +1+T.

25

By : (1 T2 T4) By : (1 Tl T2 T4) By :(x3 T4)
| | | | | | | | |
#((Bo)) #((B1)) #((B2))
%:: = — B e ———
U((Bo)) = So U((B1)) U((B2))

o,
| w(U(<Bl>>7Sé/2>j}] | vwis)),s17) #w

sa/? S

5172 S

(a) PW(2z1 + 3w + 43 + Txg < 8).

ro T4 1 T2 T4 XT3 T4
([LN AR
Bp: (1 Y1,0 ¥2,0 By : (1 Y1,1 Y2,1) By : (Y2,2)
| | | | | | |
#((Bo)) #((B1)) #((B2))
%::‘D B S ——
U({Bo)) = So U((B1)) U((B2))

| Y
O WU(<31>>753/2>$] | v, st E&w

512 So

532 S
(b) PW (2x1 + 3x2 + 4ws + Txa < 8, {{x1,x2}, {x3,24}}).

Figure 8: (a): circuit representation of PW (2z1 + 3xz2 + 4z3 + 7z4 < 8). (b): circuit repre-
sentation of PW (2z1 + 3z2 + 4x3 + Txa < 8, {{z1,z2}, {z3,za}}).

If w is set to 1 the formula is not satisfied. We build formulas ¢ and 1 as in
Bailleux et al [9], where ¢ is encoded with a totalizer, and ¢ with an adder of
75 unary numbers.

8.2. Generalized Global Polynomial Watchdog (GGPW)

We define GGPW by using a generalized polynomial watchdog formula PW (P, X)
instead of the original polynomial watchdog formula. Again, P is normalised to
the form T+ Y | ¢;x; < m - 2P in the same way as in PW (P). For each set

o X;, PW(P,X) will contain a vector of variables Y; = (¥s p, Yip—1,- - - ¥i,0)-

Y, is interpreted as a binary number, where for all z; € X; such that z; is
true, at least the bits corresponding to the binary representation of ¢q; are set
to one. Therefore, when exactly one z; is true, Y; will be greater than or equal
to ¢q;. The following clauses define the variables Y;:

Tlvyl,r OSTSP,lgliNa ZZGXZ; b’r‘(ql):l (35)

In this case bucket B,, for each bit 0 < r < p, will contain variables
Yi.rY2,rs - - - YN,r- Bucket B, will also contain a 1 constant if b,(T) = 1.

26

The formula PW (P, X) is defined as the conjunction of (31), (32) and (35).
Some considerations can be taken into account on Clauses (35) in order to
ns optimise the encoding:

o If there is no z; € X; such that b.(¢) = 1, and therefore variable y; ,
does not appear in any clause of (35), then this variable is not created nor
included in any bucket.

e If there is only one variable ; € X; such that b,.(g;) = 1, then variable
750 Yir is the variable z; itself, and Clause (35) is not added for y; ,.

e Otherwise, y; , is indeed a new variable and Clause (35) is added.

Figure 8 contains a circuit representation of PW (P, X).
The GGPW encoding is defined by:

PW (P, X) (36)
w (37)

Just as with the other newly introduced encodings, given an assignment that
satisfies an AMO constraint over each X; € X, this encoding represents the PB
s constraint » ., ¢;z; < K in a more compact way.

The GPW encoding introduces O(n log(n) log(gmas)) auxiliary variables and
O(n?log(n) log(¢mazx)) clauses, while the GGPW introduces O(N log(N) log(qmaz))
auxiliary variables and O(N? log(N) log(¢maz)) clauses, where g4 = max?_; g;.
This follows from the fact that a totalizer ¢ with n input variables requires

70 O(nlog(n)) auxiliary variables and O(n?log(n)) clauses, and an adder v of
unary numbers with n input variables requires O(n) auxiliary variables and
O(n?) clauses; see [9].

9. Local Polynomial Watchdog Encoding

In this section we briefly revisit the Local Polynomial Watchdog encoding

76s for PB constraints from [9] and in Subsection 9.2 we provide its generalization

to encode PB(AMO) constraints. For this generalization, we provide an effi-

cient implementation that reuses many variables and clauses to obtain smaller
formulas.

9.1. Local Polynomial Watchdog

In Section 10 we give details of the propagation strength of each encoding,
and note that GPW does not have the same propagation strength as BDD, GT,
RGT, and SWC. The Local Polynomial Watchdog (LPW) does have the same
propagation strength as the others mentioned, at the cost of additional variables
and clauses (specifically by including a different PW formula for each variable

27

770

775

780

785

790

795

of the PB constraint). The definition of PW(P) is the same as in GPW, that
is Constraints (31) and (32). Then, LPW is defined as:

PW (P[zi])
w(Plx;]) VT

1<i< (38)
1<i< (39)

where Plz;] is the resulting PB constraint of setting x; to 1 in P, and w(P[x;])
is the output variable of PW (P[z;]).

9.2. Generalized Local Polynomial Watchdog (GLPW)

Similarly to LPW, we can define the GLPW to be a GAC encoding for
PB(AMO) constraints. We can do that by simply modifying Formulas (38)
and (39) as follows:

PW (Plz;, Xi], X\ {X:}) XieX zekX; (40)
w(Plzy, X;)) VT X, e X, x€X; (41)

where P[z;, X;] is the PB constraint resulting from setting x; to 1 in P and
setting any other variable z; € X; to 0, and w(P[x;, X;]) is the output variable
of PW (Plxzy, X;], X\ {X:}).

The LPW introduces O(n? log(n) 1og(¢maz)) auxiliary variables and O(n?log(n) log(¢maz))

clauses, while the GLPW encoding introduces O(nN log(N) log(gmaz)) auxiliary
variables and O(nN?log(N)log(qmaz)) clauses, where g, = max?_; ¢;. Basi-
cally, the sizes are multiplied by n w.r.t. those of GPW and GGPW, since we
encode n polynomial watchdog formulas, one for each variable in P.

Bailleux et al [9] stated that the LPW encoding can be compacted by reusing
some of the components of the different polynomial watchdogs introduced by
Constraints (38), and some hints were given, but no method was detailed nor
evaluated for this purpose. Here we provide implementation techniques to obtain
small GLPW encodings.

Firstly, we build the totalizers for formulas ¢ in a way that (i) any two
formulas PW (P[z;, X;], X\{X;}), PW(P[zy, X;], X\{X;}) contain exactly the
same set of totalizers, and (ii) the totalizers of any two formulas PW (P[z;, X;]),
PW(Plzy,X;]), with i # j, share most of the nodes. This is explained in
Section 9.2.1.

Secondly, we reuse auxiliary variables and clauses while constructing formu-
las (40) . This can help not only in GLPW but also to encode PB constraints
without AMOs, i.e., in LPW encodings. Variables and clauses are reused glob-
ally across the different generalized local polynomial watchdog formulas for all
X; € X, x; € X;. This is explained in Subsection 9.2.2.

9.2.1. Structure of Totalizers

The difference between the two formulas PW(P[z;, X;], X \ {X;}) and
PW (Plzy,X;], X\ {X;}) is just the value of the right hand side K in the
PB constraint.

28

800

805

810

815

820

825

830

835

Ezxample 3. Consider the PB constraint and partition:

(P, X) = (221 + 3xo + dxs + Txy < 8, {{z1,22}, {23,24}})

With 1 = 1: PW(Pz1, X1], X\{X1}) = PW (4z3 + Txy < 6,{{z3,24}})
With To = 1: PW(P[.TQ,Xl}, X\{Xl}) = PW(4(E3 + 7£U4 < 5, {{$37x4}})
With 23 = 1: PW(Plxs, Xo], Y\{X2}) = PW (221 + 3z2 < 4, {{z1,22}})
With x4y = 1: PW(P|xyg, Xa], X\{X2}) = PW (221 + 3z2 < 1, {{z1,22}})

The only difference between P[zy,X;] and Plxo, X;] is the right hand side
constant in P[zy, X;] and Plxg, X1]. The same happens with Plxs, X5] and
P[$4,X2].

The only thing that prevents the contents of the buckets of PW (P[x;, X;], X\
{X;}), PW(P[z;,X;], X\{X;}), and hence of the ¢ formulas, to be the same,
are the possible 1 constants introduced by 7" in the normalisation step. However,
since formulas ¢ sort the buckets, instead of putting a 1 constant in the input
of ¢ we can append a 1 constant directly to the first position of the output of ¢
when required, i.e., the 1 constant now goes directly into formula v (see first step
of Figure 9a). This way, the content of the buckets for PW (Plx;, X;], X \{X:}),
PW(Plxy, X;], X\ {X;}) is exactly the same regardless of whether there is an
input 1-constant. Therefore, we will only introduce one formula ¢, encoded as
a totalizer, for each bit r and for each X; € X, instead of one totalizer for each
bit r and variable x;. In fact we can go one step further, and since formulas
1 behave as mergers of two sorted lists, we can move the 1 constant directly
to the output of formula ¢ (see second step of Figure 9a). This second move
of the 1 constant reduces to a small extent the sizes of formulas v, and most
importantly, makes the content of S, independent of any 1 constant in bucket
B,.. This is illustrated in Figure 9, where S, is exactly the same when b,.(T) = 1
and when b,(T) = 0. This lets us reuse the output of formulas ¢ as will be
explained in Section 9.2.2, thus saving variables and clauses.

Once the constants are moved to the output of ¥, for any two formulas
PW(P[J?hXi], X \ {Xl}), PW(P[JZ[/,X]'], X \ {X]}) with Xi 7& Xj, their
corresponding buckets B, for a bit r only differ in one variable, that is y;, in
the first formula and y; , in the second. From the perspective of a totalizer, this
means that only one leaf node changes between the trees of the two totalizers
for PW(Plx;, X;], & \ {X;}) and PW(P[zy, X;], X\ {X,}). Therefore, we
can reuse most of the nodes of the totalizers, and their associated auxiliary
variables, when constructing the formulas. This is illustrated in Figure 10, where
we consider a PB(AMO) with N = 8, and hence GLPW requires introducing 8
totalizers of 7 leaf nodes. We can see that the proposed implementation requires
30 distinct totalizer nodes in total, while a naive implementation without reusing
nodes requires 104 distinct nodes.

With the proposed implementation of GLPW, the number of required auxil-
iary variables is O(nN10g(¢maz)), and the number of clauses is O(nN2log(gmaz))-
This follows from the fact that we are only introducing one formula ¢ for each
i € 1..N and for each bit r € 0..p. This reduces the total asymptotic size

29

Br:i(1 Yir Y2 Ysr) By :(Ylr Y2 Ysr) Br:(YLr Y2r Ys.r)

#((Br)) #((Br)) ¢(Br))
3 U((Br)) U((B)) U(B:))

5, 5Y/7 — 1] Sy SH? — 5. 8,

— 1/2
— wwis, 83 ﬂ —vws.s) ﬂ —| OB S5 H
1 =

(a) Circuit when b,.(T) = 1.

By : (Yir Y2,r y3,’r>

o((Br))

U((Br))

s, SM?

" wwsm), s %:@

(b) Circuit when b,(T") = 0.

Figure 9: (a): example of moving the 1 constants introduced by T from the bucket to the
output of formulas 1. (b): representation of the corresponding formulas ¢ and ¢ when no 1
constant is introduced by T'.

A
PN
B C

N 7N

D E F G

I I I N

HIJ KLMN

Al A2 A3 A4
N N 7 N N
B! c B2 c B3 c B4 c
N 7 N\ LA S 7 N\ N 7N r N 7N
I E F G H E F G D K F G D J F G
AR Y 7N\ AR 7N 7N\ AR} ARY 7N\ AR} 7N 7N\
J KL MN O J KL MN O H I L M N O HI L M N O
A5 AS A7 A8
S S S S
B (o3 B (el B C7 B C8
/N ¢ N /N ¢ N /N r N /N r N
D E M G D E L el D E F @) D E F N
A s S s AN AN
HIJK N O HIJK N O HIJKILM HIJKLM

Figure 10: Example of reusing of totalizers of formula ¢ for some bucket B, when only one
leaf changes every time. In this example, N = 8 and we assume that all variables y; , are
present in By, for ¢ € 1..8. The tree on the top is never created but illustrates the virtual
totalizer where no leaf node is missing. The nodes (variables) and edges (clauses) in boldface
appear only in one totalizer, and the others are reused in most totalizers.

of formulas ¢, but not the one of formulas ¥ which become the dominating
components of this size.

so 9.2.2. Reuse of Auxiliary Variables

Now we describe how to reuse auxiliary variables and clauses among the dif-
ferent generalized polynomial watchdog formulas (40). The degree of reusability

30

845

850

855

860

865

870

875

880

is especially high in the polynomial watchdog formulas generated for variables
belonging to the same group X;. To a minor degree, we can also reuse parts
of generalized polynomial watchdog formulas related to variables belonging to
distinct groups. We maintain three maps (MY, MT, MM) that store variables
that can be reused if needed.

Map MY. This map is used to store the variables y; , that are defined by
clauses (35), but avoiding having to introduce equivalent auxiliary variables.
The key to an entry of MY is the set of variables V' that logically imply MY (V)
according to clauses (35). The following example shows a case in which variables
Yi,r are reused.

Ezample 4. Consider a set X; € X such that X; = {x1, 22,23} and the associ-
ated coefficients are q; = 3,g2 = 7,93 = 11. The binary representations of the
coefficients are 0011, 0111, and 1011, respectively. We need at least 4 bits to
represent these numbers, and therefore we need 4 buckets. Looking at the bit
of most weight (r = 3), the set of variables which have b.(¢) = 1 is just {x3}.
In this case, since it is only one variable, no new variable is added nor clauses
(35), and we set MY ({z3}) = x3. Similarly, looking at the following bit r = 2,
we set MY ({x2}) = x2. For r = 1 we introduce an auxiliary variable y; 1, add
clauses T1 V y;.1, Tz V ¥;,1 and T3 V y; 1, and define MY ({x1, z2,23}) = y;1. For
the least significant bit » = 0, we can reuse variable MY ({z1, z2,23}) instead
of introducing variable y; o and the corresponding extra clauses.

Map MT. This map is used to implement the totalizers of formulas ¢, avoiding
building a subtree twice with the same leaf nodes. Given as key a set of variables
corresponding to leaves of a totalizer, it returns the variables of the root of the
totalizer.

Map MM. This map is used to store the output formulas %, i.e., the vectors S,.,
and reuse them when possible. The key of an entry is a triplet (S,_1,¢, U({B,))),
where:

e S,_1 is the vector of output variables of formula v for the previous bit.

e c=1Iif Sii 21 was defined considering b,_1(T) = 1, and 0 otherwise (see
Figure 9). That is, ¢ = 1 if the left input of ¢ are the even positions
of S._1, and ¢ = 0 if the odd positions must be taken. See for instance
that circuits ¢ and ¢ are identical in Figure 9a (right) and Figure 9b.
The presence or not of a 1 constant (i.e., of ¢) determines which bits SE/?

(either odd or even) are taken as input of the next formula ¢ for bit r + 1.

e U((B;))) is the output of ¢((B,)), without including the 1 constant if
present.

Note that an entry of MM contains all the bits of S,.. The choice of even or
odd bits from S, used as input of ¢ for bucket r + 1 can be different at each
generalized local polynomial watchdog formula.

31

885

890

895

900

905

910

915

920

It is natural to ask whether preprocessing could achieve the same or similar
reuse of variables and clauses when given a naive GLPW encoding. None of the
common subexpression elimination algorithms implemented in Savile Row [15],
which is the constraint reformulation tool that we use in our experiments, would
extract the common subtrees because the auxiliary variables have distinct names
in each subtree. In SAT preprocessing, Equivalent Literal Substitution (ELS)
[25] examines the set of binary clauses and detects sets of literals that take the
same truth value in all solutions. The variables reused through maps MY, MT,
and MM do not necessarily meet the definition of equivalence. Consider the
variables y; 1 and y; 0 in Example 4: when all z variables are false, y; 1 and
yi,0 are free and so can take different values, therefore they are not equivalent
literals.

10. Propagation Properties

In this section we review the principal propagation properties that SAT en-
codings can have, and we describe the propagation characteristics of the new
generalized encodings. In summary, all the presented PB(AMO) encodings pre-
serve the propagation strength of their counterpart PB encodings.

Unit propagation (UP) is the main propagation mechanism used in modern
SAT solvers. It is based on the principle that if a clause contains a single literal
(i.e., under a given assignment, all literals but one are false), then every model
must make that literal true. Hence, the assignment can be extended with this
literal. The principal consistency notions that a SAT encoding F of a constraint
C' can achieve with UP are the following:

e F is said to be consistency checker (CC) when: given any partial assign-
ment A, if A cannot be extended to a model of C, then unit propagating
A on E will falsify some clause.

e F is said to be generalized arc consistent (GAC) when: given any partial
assignment A, if a variable x in C is true (respectively false) in every
extension of A satisfying C, then unit propagating A on E will extend A
to AU {x} (respectively AU {T}).

Although we do not consider them in this work, it is worth mentioning that
there also exist stronger consistency notions that do not relate to the encoded
constraint C' but are defined on all variables of F, including auxiliary variables:

e A formula E is said to be unit refutation complete (URC) when: given
any partial assignment A that cannot be extended to a model of F, then
unit propagating A on E will falsify some clause.

e A formula E is said to be propagation complete (PC) when: given any
partial assignment A, if a variable z in E' is true (respectively false) in
every extension of A satisfying E, then unit propagating A on F will
extend A to AU {x} (respectively AU {Z}).

32

925

930

935

940

945

950

955

Table 1: Propagation strength of the different encodings.

BDD | SWC GT/RGT MTO GPW LPW
MDD | GSWC | GGT/RGGT | GMTO | GGPW | GLPW
GAC GAC GAC - CC GAC

Note that any GAC encoding is also CC, any PC encoding is both URC and
GAC, and any URC encoding is also CC.

When clear from the context, these properties are usually attributed to the
encoding methods. For instance, we say that the MDD encoding is GAC, mean-
ing that all formulas obtained with the MDD encoding method are GAC, and
we say that GMTO is not CC, meaning that there exist PB(AMO) constraints
whose encoding obtained with the GMTO encoding method is not CC.

The propagation strength of the encodings considered in this paper is sum-
marised in Table 1. Previous works have already proved the propagation strength
for encoding PB constraints of BDD [5], SWC [6], GT [7], and GPW and
LPW [9]. Regarding RGT, it can be easily proved that it is also GAC using
the same reasoning that was applied in the GAC proof of GT in [7]. The key
idea of the proof is that UP propagates to a parent node the sum of the values
reached by the two children given the current assignment. This also happens in
RGT, where Property 8 ensures that any sum value is always represented by a
corresponding interval.

Theorem 1. RGT is a GAC encoding of PB constraints.

We are however interested in the propagation strength of encodings of PB(AMO)
constraints. There are many GAC encodings of AMO constraints, for instance
the pairwise encoding [26]. Since we consider monotonic PB(AMO) constraints,
it is straightforward to see that the previous PB encodings can be used in con-
junction with encodings of AMO constraints to obtain PB(AMO) encodings
with the same propagation strength.

Lemma 3. Let P be a PB(AMO) constraint of the form P A My A--- A My.
Let E be any GAC (respectively CC) encoding of P. Then the conjunction of
E with a GAC (resp. CC) encoding of My A --- A My is a GAC (resp. CC)
encoding of P.

The generalized PB(AMO) encodings considered in this paper maintain the
propagation properties of their counterpart non-generalized encodings. This is
proved in Theorem 2. The intuition of its proof is that each one of the formulas
obtained with MDD, GSWC, GGT, RGGT, GGPW and GLPW for an input
(P, X) can be roughly seen as a union of many encodings obtained respectively
with BDD, SWC, GT, RGT, GPW and LPW. In particular, they encode all
possible PB constraints obtained by keeping in P just one variable for each Xj.
For instance, GSWC (121 + g2x2 + qszs + qura < K, {{x1, 22}, {x3,24}}) is
roughly an efficient union of SWC(¢q1z1 + qzzs < K), SWC(q1z1 + quzy < K),
SWC(gaxe + qszs < K) and SWC(gaxa + quxsa < K), that shares auxiliary

33

960

965

970

975

980

985

990

995

1000

variables and clauses. Therefore, GSWC contains all the required clauses to
enforce GAC on the possible PB constraints that satisfy the AMOs.

Theorem 2. Let P be a PB(AMO) constraint of the form PAMy A--- AN My,
where X = {X1,..., XN} is a partition of the variables in P such that X; =
scope(M;). The following hold:

o Let E be any encoding among MDD, GSWC, GGT, RGGT and GLPW.
Then the conjunction of E(P,X) with a GAC encoding of My N -+- N My
is a GAC encoding of P.

e The conjunction of GGPW (P, X) with a CC encoding of M1 A --- N My
is a CC encoding of P.

Proof. We prove the theorem for GSWC, but the proof for the other encodings is
analogous. Let S denote the conjunction of GSWC(P, X) with a GAC encoding
of My A--- AN My. Let A be a partial assignment to the variables of S which is
extendible to a satisfying assignment of P. Therefore, no AMO constraint M; is
violated under A. We need to show that for every variable = of P such that x is
not assigned in A, if AU{z} cannot be extended to a satisfying assignment of P,
then z is set to false by unit propagating A on S (note that AU {Z} can always
be extended to a satisfying assignment due to decreasing monotonicity, so we
don’t need to consider this case). W.l.o.g., assume that x; € X; is such variable.
If AU {z1} cannot be extended to a satisfying assignment of My A -+ A My
then, by the assumption that S contains a GAC encoding of M; A --- A My,
we have that x; is set to false by unit propagation. Assume now the contrary,
i.e., that AU {x1} can be extended to an assignment satisfying the AMOs. In
this case, the reason why UP should set z; to false is that AU {x;} cannot
be extended to satisfy P. Since A U {z1} does not violate My A --- A My, at
most one variable in X; is true in A, for 2 < ¢ < N, and no variable in X7 is
true in A. Let us construct a PB constraint P’ from P by picking one variable
xj, from each set X;, 2 < ¢ < N, as follows: if X; contains a variable which
is true in A, then this is the variable to be picked up from X;, otherwise pick
up any variable. We define P’ : qiz1 + Zf; ¢j,xzj, < K. Since P’ contains
all variables of P which are true in A, and due to the monotonicity of P, we
have that g;z1 + vazz gj,xj;, < K is equisatisfiable to Z?:l ¢;7; < K under the
assignment AU {z;}, and therefore AU {z1} cannot be extended to a model of
P’. Tt is not hard to see that GSWC (P, X) contains all clauses of SWC(P’).
Since the SWC encoding is GAC, S contains all the clauses required to set x1
to false by UP. O

An alternative proof that MDD is GAC was presented in [12]. Note that
LPW as well as GLPW are the only GAC encodings of polynomial size consid-
ered in this paper. The other ones have pseudo-polynomial size complexity.

It was stated in [9] that the GPW encoding is not GAC. Since GGPW is
a generalization of GPW, it is also not GAC. For instance, one could consider
a PB(AMO) constraint where all AMO constraints have size 1. In this case,
GPW and GGPW are identical. The same happens with MTO, which is also

34

1005

1010

1015

1020

1025

1030

not GAC as stated in [8], and therefore GMTO is not GAC either. In fact,
MTO is not even a CC encoding of PB constraints, and therefore GMTO is not
a CC encoding of PB(AMO) constraints.

Theorem 3. MTO is not a CC encoding of PB constraints.

Proof. Consider the PB constraint and MTO encoding of Figure 7a. Let partial
assignment A = {zg, 75} (i.e. A= {mi,ol}). Clearly A cannot be extended to
a model of P since 4z + 8xg > 10. The only generated clauses containing m}
and o} are:

(19) : 15 vmi v fivar (19) : nj Vo V g3 V& (20) : n} Vol VvAb

where we paint in red the literals of type fyg, b and rf which are trivially
false and are not included in these clauses by construction. Similarly we do
not include clauses of type (22) to (24) which are satisfied due to 7/~ ' being
trivially false. o

Unit propagation only assigns literal fi, due to clause mi V f{. The only
remaining clauses containing variable fi are:

(19):f711\/£\/c%\/75 (22):%\/711\/£\/c%\/'y(1]

(19): fivgivelvat (23):7%V fIvgl vad

(20) = f{ V gy V& (23) 7@ VA Vg VAL (24) gV Vg Ve
No clause is falsified and no other literal is unit-propagated. O

Corollary 1. The conjunction of GMTO with an encoding of the AMO con-
straints is not a CC encoding of PB(AMO) constraints.

Although GMTO is the encoding with the worst propagation properties
among all the encodings considered in this paper, in Section 11 it can be observed
that it produces the smallest formulas by far in the selected benchmark sets. As
a result, the GMTO encoding ends up providing the best performance for some
benchmarks.

11. Experiments

In this section we report on a comparison between the different encodings for
PB(AMO) constraints, and also between those and the classical encodings for
PB constraints. For this purpose, we solve problems containing PB constraints
as well as sources of incompatibility between their variables, i.e. mutexes. We
provide empirical evidence of the usefulness of taking into account existing AMO
constraints when encoding PB constraints. We show that all new PB(AMO)
encodings perform significantly better than their counterpart PB encodings,
based on executions of two different SAT solvers which are representative of the
state-of-the-art. We also show the good performance of the reduced generalized
totalizer encodings (RGT / RGGT). We study in detail the impact of the RGGT
reduction algorithm on the size of the generalized totalizers.

35

1035

1040

1045

1050

1055

1060

1065

1070

11.1. Experimental Setting

On one hand we consider two problems consisting essentially of conjunc-
tions of PB constraints and AMO constraints: the Multi-Choice Multidimen-
sional Knapsack Problem (MMKP) and Combinatorial Auctions (CA). For these
problems, the AMO constraints between Boolean variables are explicitly stated
in the problem definition, and hence we can directly define the PB(AMO) con-
straints, as we describe in Subsections 11.1.1 and 11.1.2.

On the other hand we consider three challenging problems that are not
essentially a set of PB(AMO) constraints but where PB constraints play an
important role as well. Namely, we consider two extensions of the highly stud-
ied Resource-Constrained Project Scheduling Problem (RCPSP): Multi-mode
RCPSP (MRCPSP) [27] and RCPSP with Time-Dependent Resource Capac-
ities and Requests (RCPSP/t) [28]. We also consider the Nurse Scheduling
Problem (NSP) [29]. These three problems have been modelled with the con-
straint programming modelling language Essence Prime [30]. We automatically
detect AMO constraints and generate the SAT formulas using Savile Row [31],
as described in [14]. In brief, Savile Row detects pairs of Boolean variables that
cannot be true at the same time (mutexes) by using constraint programming
propagation schemes, and then builds disjoint AMO constraints from those mu-
texes. The detected AMO constraints are translated to SAT with the 2-product
encoding [32]. In Subsections 11.1.3, 11.1.4 and 11.1.5 we provide a small de-
scription of such problems together with a discussion on the source of the mu-
texes, which in most cases are implicit, i.e. not stated by an explicit constraint
in the model.

We have chosen MMKP, which is essentially a set of PB(AMO) constraints,
in order to craft three different benchmark sets with different parameters, with
the aim of showing which encodings are better suited for different kinds of
PB(AMO) constraints (e.g. with different numbers of variables, coefficient val-
ues or AMO sizes). For the other problems, we have used representative bench-
marks from the literature. We have considered the decision version of CA,
MRCPSP, RCPSP/t and NSP, which are optimisation problems. This means
that for maximisation problems (CA), and respectively minimisation problems
(the others), we set a lower bound (resp. upper bound) on the objective func-
tion. In order to obtain both satisfiable and unsatisfiable instances, we consider
each instance twice with two different bounds: a bound equal to the best known
objective (in most cases the optimum), and a bound equal to the best plus one
(in CA) or minus one (in the others). Table 2 summarises the properties of each
benchmark set.

Overall, we consider all the problems that have been studied in the previous
works related to PB(AMO) constraints [14, 12]. All of them are NP-hard. In
each case the AMO constraints are encoded using only binary clauses and a
small number of additional variables. The AMO encodings are invariant when
comparing the various PB and PB(AMO) encodings, so the clauses and variables
of the AMO encodings are not included in the reported formula sizes.

36

1075

1080

1085

Table 2: Summary of each set, containing in this order: number of instances; approximate
number of PB constraints in each instance; approximate average number or range of number
of variables in a PB constraint; average size of the AMOs; range of values of the coefficients.

|[set| | PB count | PB size | AMO size | coef.
MMEKP1 500 10 150 10 [1,1000]
MMKP2 500 10 150 10 [1,60]
MMEKP3 400 50 75 5 [1,10]
CA 340 1 [70,200] 8 [1,2500]
MRCPSPj30 1004 68 29 4 1,10
RCPSP/Tj120 | 720 624 158 9 1,10
NSP 400 1 700 1 [1.4]

11.1.1. MMKP Instances

These have been generated using the MMKP instance generator from [33].
Each instance is defined by four parameters: L is the number of PB constraints,
N is the number of AMO constraints, M is the number of Boolean variables in
each AMO constraint, and @ is the maximum coefficient of a variable in a PB
constraint. The variables of the AMO constraints are disjoint, so there are a to-
tal of n = N - M Boolean variables in each instance. The PB constraints contain
all n variables. The j-th variable in the i-th AMO constraint is named z; ;. The
coefficients in the PB constraints are generated uniformly and independently at
random in the range [1, @]. The resulting instance has the following constraints:

N M

SN qigwig < Kk 1<k<L (42)
i=1 j=1

M

> om, <1 1<i<N (43)
J=1

M

> wi>1 1<i<N (44)
j=1

The conjunction of PB and AMO constraints (42) and (43) is not a hard prob-
lem, since a trivial solution is to set all variables x; ; to 0. For this reason we
add at-least-one constraints (44), requiring that at least one variable in each
AMO group is set to true. This way, (43) together with (44) form an ezactly-
one constraint. When generating the SAT formulas, constraint (43) is encoded
with the Regular encoding [34].

We provide three different benchmark sets with different parameters. The
instances in a benchmark set are distributed in families, and every family has
values of K} distributed uniformly at random around a different mean in the
range [1, M - Q]. The values of K} are proportional to the values of the coef-
ficients in order to avoid introducing trivially satisfiable PB constraints. We
choose different values of K} to ensure that in the benchmark sets there are

37

1090

1095

1100

1105

1110

1115

1120

1125

instances of different hardness, and that approximately half of the instances are
satisfiable.

MMKP1 100 families of 5 instances, with L = 10, N = 15, M = 10, Q = 1000.
The families have linearly increasing K, values from family 1 (capacities
of about 1000) to family 100 (capacities of about 14000).

MMKP2 100 families of 5 instances, with L = 10, N = 15, M = 10, @) = 60.
The families have linearly increasing K}, values from family 1 (capacities
of about 100) to family 100 (capacities of about 800).

MMKP3 20 families of 20 instances, with L = 50, N = 15, M =5, Q = 10.
The values of K, linearly increase in each family, ranging between 65 and
100.

As can be seen in Table 3, the three benchmark sets are diverse regarding the
sizes of the formulas generated by all encodings. Namely, formulas obtained from
MMKP1 are approximately one order of magnitude larger than those obtained
from MMKP2, and these are approximately one order of magnitude larger than
the formulas obtained from MMKP3.

11.1.2. CA Instances

In the CA problem, there is a number of sets of items which are demanded
(bids). Each bid has an associated profit, and some bids are incompatible,
i.e. they cannot be selected together because they contain a same item. The
problem consists of selecting a subset of bids to maximise the obtained profit.
This problem can be naturally modelled with a Boolean variable for each bid: a
variable is set to true if and only if its associated bid is selected; AMO constraints
appear when setting incompatibilities between bids; finally, the maximisation
of the profit is modelled as a pseudo-Boolean objective function. The AMO
groups are constructed using the following greedy procedure: we start with an
empty list that will hold disjoint sets of bids and we process each bid b in turn;
b is added to the first set in which all existing bids are pairwise incompatible
with b; if no such set exists, a new set containing b is added to the list.

We consider the set of instances presented by Bofill et al [35], which were
generated with the Combinatorial Auctions Test Suite [36]. There are a total
of 170 optimisation instances, each one containing a set of between 70 and 200
bids, and a subset of these bids must be selected. As explained before, from
each instance we have defined two instances of the decision problem with two
different lower bounds, and hence there is a total of 340 instances.

11.1.8. MRCPSP instances

The MRCPSP consists of deciding a start time and an execution mode for
each of the activities of a project. These activities have demands of arbitrary
quantities on shared resources of limited capacity, and it must be ensured that
those capacities are never surpassed. These constraints can be naturally mod-
elled with PB constraints. Also, there are predefined end-start precedence re-
lations between activities that must be respected. Finally, the duration and

38

1130

1135

1140

1145

1150

1155

1160

1165

1170

demands on resources of each activity depends on the selected execution mode,
and just one mode must be chosen. An optimal solution must minimise the total
duration of the project. We consider the time-indexed model from [14], where
Boolean variables express whether an activity is running in a particular mode at
a particular time instant. There are mainly three reasons of pair-wise incompat-
ibility between these variables: precedences between activities, the requirement
of single-mode selection, and the limited capacity of the resources.

For this problem, we consider the 552 feasible instances of the j30 set from
PSPLib [37], each of them with two upper bounds. We refer to this set as
MRCPSPj30.

11.1.4. RCPSP/t instances

RCPSP/t is another extension of RCPSP. Unlike MRCPSP, there is just
one execution mode per activity. However, the demands of an activity over
each resource can change during its execution, i.e. the demand depends on
how many time units have passed since the activity started. A natural way to
deal with this characteristic is by introducing Boolean variables stating whether
an activity has started at a particular time instant, and express PB resource
constraints in terms of these variables [38]. Therefore there is a new source
of pair-wise incompatibilities in addition to precedences and limited resource
capacities, that is the fact that an activity cannot start at two different time
instants.

For this problem, we consider a representative subset of 360 instances out
of the 3600 instances of set j120 from [28]. The J120 set is composed of 360
families of 10 instances with similar characteristics, and from every family we
have chosen the first one. Again, each instance is considered with two upper
bounds. We refer to this set as RCPSP/Tj120.

11.1.5. NSP instances

The NSP is the problem of deciding the daily shifts of nurses according to
their preferences. Many variants of this problem have been proposed [39, 29].
Here we consider the basic definition that was also used in [14] as well as the
same Essence Prime model and set of instances. In particular, the considered
problem consists in assigning a shift for each nurse and day, while ensuring that
each shift has enough nurses and that nurses do not work too many days in a
week. Also, the nurses have some preferences regarding their shift assignments,
and there is a penalisation for each preference that is not satisfied. The sum of
such penalisations must be minimised. For the decision version of the problem,
this objective function becomes an upper bound on the total penalisation, which
can be modelled with a PB constraint. AMO constraints appear since each nurse
can only work in one shift each day.

The instances we solve are a set of 200 instances taken at random from
the N25 set from NSPLib [29]. Again, each instance is solved with two upper
bounds.

39

1175

1180

1185

1190

1195

1200

1205

1210

1215

11.2. Comparison Between PB and PB(AMO) Encodings

All instances of all sets have been encoded into SAT using the PB(AMO)
encodings introduced in this paper, as well as using the corresponding original
PB encodings. For completeness we also report results on the BDD- and MDD-
based encodings from [5] and [12] summarised in Section 4.

The generated SAT formulas have been solved with a timeout setting of 600
seconds using two different SAT solvers. The first solver is CaDiCaL [1], which
was the system that solved more instances than any other competitor in the
SAT Race 2019 [40]. The second solver is Glucose version 4.1 [2], which has also
obtained top positions in previous SAT competitions and is currently the core
of many other state-of-the-art solvers such as MapleLCMD. All formulas have
been solved on the same machine: an 8GB, 3.10GHz Intel® Xeon® E3-1220v2.

11.2.1. Formula Size Comparison

Table 3 contains the sizes of the encodings of PB and PB(AMO) constraints.
For each benchmark set and for each encoding we report, in thousands, the
mean number of variables (vars.) and clauses (cl.) required to encode one
PB or PB(AMO) constraint. We omit the number of variables and clauses
required to encode the AMO constraints because it is the same for each encoding
and negligible in magnitude. Column g¢.t. contains the mean computation time
required to generate the SAT encoding of the instances of the benchmark set. A
long dash (—) means that the encoding has been discarded for that benchmark
set, because the formulas are too large and the generation of most instances
either ran out of memory or did not finish in less than 600 seconds. We highlight
in boldface the smallest number of variables and clauses among all encodings
for each benchmark set and also distinguishing between PB and PB(AMO)
encodings.

In all sets, using PB(AMO) encodings lets us reduce both the number of
clauses and the number of variables w.r.t. their counterpart PB encodings. The
reduction rate ranges from one half to three orders of magnitude. It is noticeable
that we obtain a high reduction even in the sets with the smallest AMO con-
straints, with only 4 and 5 variables per AMO. The decrease in size also clearly
affects positively the generation time in MMKP and CA sets, which is at least
halved in most encodings. However the sets where formulas are generated with
Savile Row have generally higher generation times, and the difference between
PB and PB(AMO) encodings is not always significant. This is because the au-
tomatic AMO detection requires more time than the ad-hoc methods used in
CA and MMKP. The generation times are particularly large in RCPSP/Tj120,
where a huge number of mutexes are detected.

The use of PB(AMO) encodings is crucial in some cases. For instance, with
GSWC and GLPW in MMKP1 we are able to generate instances that run out
of memory with their counterpart encodings SWC and LPW. Similarly, with
RGGT in MMKP1 we obtain a reasonable generation time compared to the one
of RGT.

We also observe that GGPW and GMTO, which digit-wise decompose the
coefficients of the PB, produce dramatically smaller sizes compared to the other

40

1220

1225

1230

1235

1240

1245

1250

1255

1260

encodings. This difference is of approximately two orders of magnitude in the
number of clauses and variables in MMKP1 and CA. This is because these
benchmark sets have large coefficients (and also large K) and this fact pe-
nalises the encodings with a size proportional to the value of K. Although
LPW and GLPW also use a digit-wise decomposition, they produce signifi-
cantly larger encodings than GGPW and GMTO. This is particularly noticeable
in RCPSP/Tj120 and NSP, where the generated formulas are many orders of
magnitude larger than those obtained with other encodings. This is because
GLPW needs to encode many polynomial watchdog formulas. Nevertheless,
GLPW generates smaller formulas than the other GAC encodings in CA and
MMKP1, which have large coefficients. Recall that GLPW is the only GAC
encoding that generates polynomial size formulas w.r.t. the size of the PB. We
have observed that the refinements of GLPW proposed in Section 9.2.1 and
Section 9.2.2 are crucial, since a naive implementation generates huge formulas
in all sets, as is the case with LPW.

Regarding the reduction process applied in RGT/RGGT, we observe that
it generally reduces the sizes of the formulas w.r.t. GT/GGT encodings, in
some cases halving the number of variables and clauses. Also, comparing the
minRatio heuristic to the default with GT and GGT encodings, we observe that
the minRatio heuristic produces smaller formulas than the default (i.e. GT is
smaller than GTd, and GGT is smaller than GGTd) in terms of the number of
clauses. For MMKP1 and CA, GT and GGT are able to generate formulas but
GTd and GGTd are not. However, the minRatio encodings generally produce
more variables.

11.2.2. Solving Time Comparison

Tables 4 and 5 contain statistics regarding the solving times using the SAT
solvers CaDiCaL. and Glucose respectively. The tables contain, for each bench-
mark set and encoding: first quartile (Q1), median (med) and third quartile
(Q3) of solving time in seconds, where t.0. means execution aborted at 600 sec-
onds; and the number of instances that timed out before being solved (t.0.). We
highlight in boldface the best encoding regarding number of timeouts, breaking
ties with Q3, for each solver, for each benchmark set, and also distinguishing
between PB and PB(AMO) encodings. The globally best values for each dataset
considering both solvers are underlined.

Even though both are CDCL solvers, CaDiCal. incorporates many inpro-
cessing techniques that modify the formula on the fly, as well as local search.
These are not included in Glucose, and this might explain that in some cases
they perform quite differently. In any case, the results clearly show that using
PB(AMO)s substantially improves the solving times. This solving time reduc-
tion is consistent with the observed reduction in the sizes of the formulas. In
most cases the solving times are reduced by approximately one order of mag-
nitude. Also the number of timeouts is significantly reduced, sometimes more
than halved. There are cases where this improvement is even more evident, as in
RCPSP/Tj120 with CaDiCalL, and especially in NSP where almost no solutions
are found with original PB encodings with any solver.

41

Table 3: Number of variables and clauses in thousands and generation time in seconds, for
each set and PB(AMO) encoding.

PB PB(AMO)
enc. vars. cl. g.t. enc. vars. cl. g.t.
BDD 596.60 1193.20 19.84 MDD 25.09 263.37 2.68
SWC — — — GSWC 104.84 | 1072.04 5.97
— GTd — — — GGTd — — —
I~ GT 831.49 1805.75 88.71 GGT 61.91 676.54 6.52
é RGT 634.81 1411.53 | 116.13 RGGT 25.00 275.01 4.53
s MTO 3.56 10.30 0.17 GMTO 0.49 1.95 0.09
GPW 5.90 76.93 0.48 GGPW 0.99 4.43 0.04
LPW — — — GLPW 30.52 220.56 2.09
BDD 40.60 81.20 1.10 MDD 2.04 19.59 0.19
SWC 68.11 135.49 0.82 GSWC 6.41 61.64 0.36
~ GTd 10.00 1639.65 10.47 GGTd 1.93 120.67 0.82
2B GT 47.85 101.03 4.01 GGT 4.15 41.65 0.36
E RGT 37.34 80.00 3.99 RGGT 2.01 20.94 0.24
E MTO 2.40 7.15 0.08 GMTO 0.33 1.19 0.02
GPW 3.48 42.33 0.26 GGPW 0.59 2.46 0.03
LPW — — — GLPW 13.26 90.08 0.80
BDD 3.27 6.55 0.37 MDD 0.46 2.18 0.11
SWC 6.05 12.02 0.40 GSWC 1.16 5.52 0.18
» GTd 1.31 30.90 1.03 GGTd 0.38 4.58 0.17
A GT 4.27 8.78 1.10 GGT 0.80 3.89 0.18
é RGT 3.15 6.54 1.04 RGGT 0.45 2.32 0.13
S MTO 0.83 1.78 0.10 GMTO 0.21 0.58 0.04
GPW 0.82 5.11 0.17 GGPW 0.33 1.17 0.05
LPW 19.38 213.59 7.45 GLPW 4.38 24.04 1.04
BDD 155.96 312.06 0.44 MDD 38.60 160.71 0.22
SWC 376.91 747.11 0.45 GSWC 109.55 381.73 0.23
GTd — — — GGTd — — —
GT 166.92 458.77 1.07 GGT 78.94 247.68 0.35
8 RGT 116.17 349.09 1.62 RGGT 34.90 150.98 0.52
MTO 1.21 6.04 0.02 GMTO 0.41 1.35 0.01
GPW 1.86 17.96 0.02 GGPW 0.72 3.81 0.01
LPW 67.03 1327.85 0.84 GLPW 16.60 154.37 0.12
BDD 0.42 0.81 5.37 MDD 0.06 0.21 5.33
. SWC 0.85 1.68 5.35 GSWC 0.15 0.50 5.30
® [GTd 0.18 1.60 5.46 GGTd 0.06 0.41 5.35
% GT 0.50 1.03 5.70 GGT 0.11 0.33 5.37
ol RGT 0.34 0.73 5.68 RGGT 0.05 0.21 5.36
g MTO 0.26 0.85 5.37 GMTO 0.06 0.16 5.30
S GPW 0.28 1.32 5.35 GGPW 0.08 0.21 5.30
LPW 4.77 42.24 5.64 GLPW 0.72 2.57 5.40
BDD 2.61 5.19 35.52 MDD 0.30 1.03 | 33.27
g SWC 3.92 7.97 34.88 GSWC 0.42 1.39 32.92
= [GTd 0.78 4.77 35.15 GGTd 0.21 2.09 | 33.55
i GT 2.44 4.99 81.93 GGT 0.44 1.37 34.25
o RGT 2.24 4.59 78.65 RGGT 0.34 1.20 | 34.12
E MTO 1.79 22.30 36.86 GMTO 0.19 0.59 | 33.29
O GPW 2.27 43.82 34.96 GGPW 0.26 1.12 33.16
~ LPW 190.51 11269.63 60.49 GLPW 5.51 46.33 35.41
BDD 113.28 226.31 2.03 MDD 4.22 12.38 1.70
SWC 175.64 351.48 1.85 GSWC 5.06 14.74 1.72
GTd 6.59 249.81 2.09 GGTd 1.28 15.96 1.78
n, GT 143.97 288.45 14.30 GGT 4.80 13.77 2.34
2] RGT 112.45 225.41 14.36 RGGT 4.23 12.55 2.36
& MTO 7.72 14.12 1.85 GMTO 1.34 7.19 1.74
GPW 7.93 242.72 1.87 GGPW 1.91 26.99 1.73
LPW 1180.69 | 101527.19 4.47 GLPW 109.52 | 3961.55 2.35

42

1265

1270

1275

1280

1285

1290

1295

1300

1305

Regardless of which solver is used, the GMTO encoding is clearly the best
in MMKP1 and MMKP2, and is very close to the best encoding for CA, namely
GGPW. As mentioned before, all encodings except GMTO and GGPW generate
huge formulas for MMKP1 and CA, and large formulas for MMKP2. These large
sizes adversely affect the solving times. Among GAC encodings, the best one
in MMKP1 and CA is GLPW, which is among the smallest GAC encodings for
those benchmark sets. For datasets with smaller coefficient values, i.e. MMKP3,
MRCPSPj30, RCPSP/Tj120 and NSP, there is not a clear winner, although
GGPW, RGGT and GMTO perform the best in many cases.

In all of our benchmark sets, GGPW is better than GLPW even though the
latter is GAC. This is possibly because GLPW always generates significantly
larger formulas.

Looking at the crafted MMKP datasets, instances in MMKP3 contain more
PB constraints than the others, and the values of K are distributed around the
transition value from unsatisfiable instances to satisfiable instances. We have
observed empirically that it is in this transition where the instances become
harder. It is precisely in MMKP3 where we can observe that non-GAC encodings
worsen significantly their performance with respect to MMKP1 in comparison
to GAC encodings, such as RGGT.

The picture regarding the minRatio heuristic is somewhat complicated. For
MMKP1 and CA, it was not even possible to generate the formulas for GTd
and GGTd. However, for MMKP2, MMKP3 and MRCPSPj30 with the PB
encodings (comparing GT to GTd), the default heuristic is superior with both
solvers. In this case minRatio causes GT to generate many more variables than
GTd. In other datasets, there is no clear best option. When using the PB(AMO)
encodings, the sizes of GGT and GGTd are more similar than the sizes of GT
and GTd. Overall it seems that the minRatio heuristic avoids catastrophic
worst-case behaviour when the range of coefficients is large, but otherwise is not
clearly better or worse than the default heuristic for the PB(AMO) encodings.

Finally, we observe that the reduction technique introduced in the RGT and
RGGT encodings improves the solving times in all MMKP and CA sets and
with both solvers compared to GT and GGT respectively, and the number of
timeouts is also reduced in all cases.

11.2.3. RGT and RGGT

Figure 11 illustrates how the reduction step of RGGT affects the number
of variables required to encode the PB(AMO) constraint (in comparison with
GGT). We omit the root node because GT, GGT, RGT, and RGGT all use only
one SAT variable at the root. Figure 11a shows how much reduction happens

on average at different depths in the RGGT tree. The reduction factor (defined

% for each node A) is largest close to the root. It is interesting that

considerable reduction is still taking place beyond depth 10 for some benchmark
sets. This may be the result of the minRatio heuristic which tends to produce
unbalanced trees (as described in Section 6.4), spreading the leaf nodes over
a wide range of depths. GGT leaf nodes typically have smaller vals sets than

as

43

Table 4: Solving times and number of timeouts using CaDiCalL.

PB PB(AMO)
enc. Q1 med Q3 t.o. enc. Q1 med Q3 | t.o.
BDD 27.75 47.62 t.0. 149 MDD 3.63 5.64 | 274.05 118
SWC — — — — GSWC 21.32 37.32 292.34 107
= GTd — — — — GGTd — — — —
= GT 48.86 65.47 t.0. 146 GGT 14.60 19.83 | 314.57 116
é RGT 31.93 49.30 t.0. 146 RGGT 3.90 5.75 | 181.21 110
s MTO 0.21 0.97 7.75 43 GMTO 0.03 0.07 1.03 27
GPW 1.79 2.08 24.87 68 GGPW 0.07 0.11 4.30 55
LPW — — — — GLPW 5.64 6.38 90.49 89
BDD 1.95 2.90 | 346.01 116 MDD 0.25 0.48 20.38 73
SWC 3.17 4.43 | 110.42 78 GSWC 1.27 1.91 11.14 51
~ GTd 39.46 58.30 | 192.44 91 GGTd 1.93 2.22 39.48 65
o) GT 2.35 3.88 | 487.41 120 GGT 0.89 1.16 16.69 69
é RGT 2.06 2.86 | 445.05 118 RGGT 0.27 0.47 12.58 66
s MTO 0.13 0.60 5.98 43 GMTO 0.02 5 0.78 23
GPW 0.83 1.10 18.74 71 GGPW 0.04 0.07 2.98 52
LPW — — — — GLPW 1.92 2.32 35.59 71
BDD t.o. t.o. t.o. 318 MDD 84.74 248.11 t.o. 135
SWC 167.89 | 558.67 t.0. 189 GSWC 32.97 | 127.61 t.o. 101
. GTd 213.55 t.0. t.0. 223 GGTd 71.75 | 259.29 t.0. 142
& GT t.0. t.0. t.0. 330 GGT 48.68 | 208.53 t.0. 131
é RGT t.0. t.0. t.0. 329 RGGT 46.53 | 202.19 t.o. 126
s MTO 81.57 447.52 t.o. 170 GMTO 22.91 100.24 551.00 98
GPW | 114.80 | 507.51 t.0. 194 GGPW | 78.22 | 374.97 t.0. 172
LPW t.0. t.o. t.o. 349 GLPW t.0 t.0 t.0. 311
BDD 0.01 0.05 9.77 28 MDD 0.01 0.04 5.33 14
SWC 0.03 0.20 27.05 37 GSWC 0.02 0.09 10.89 23
GTd — — — — GGTd — — — —
GT 0.02 0.11 13.77 18 GGT 0.02 0.08 6.32 17
S RGT 0.02 0.08 8.65 18 RGGT 0.02 0.07 3.18 13
MTO 0.02 0.05 0.35 0 GMTO 0.01 0.03 0.22 0
GPW 0.01 0.04 0.23 0 GGPW 0.01 0.03 0.14 0
LPW 0.03 0.57 6.02 0 GLPW 0.02 0.08 1.53 0
BDD 0.03 0.07 2.17 20 MDD 0.02 0.04 0.11 8
. SWC 0.04 0.11 3.03 24 GSWC 0.03 0.06 0.17 7
® [GTd 0.04 0.09 2.57 40 GGTd 0.02 0.05 0.14 8
% GT 0.03 0.07 1.95 19 GGT 0.02 0.05 0.14 8
[a RGT 0.02 0.06 1.55 21 RGGT 0.02 0.05 0.12 7
(é MTO 0.04 0.09 3.19 41 GMTO 0.02 0.05 0.16 7
s GPW 0.03 0.08 2.04 25 GGPW 0.02 0.05 0.12 8
LPW 0.06 0.48 20.67 49 GLPW 0.04 0.09 0.38 10
BDD 0.21 4.87 257.43 117 MDD 0.16 1.03 70.42 41
S SWC 0.30 8.44 479.54 162 GSWC 0.19 1.70 85.12 41
= [GTd 0.26 3.33 | 177.85 75 GGTd 0.16 1.79 76.00 35
i GT 0.25 4.83 | 311.58 142 GGT 0.19 1.52 76.98 38
A, RGT 0.23 4.56 | 346.34 154 RGGT 0.16 1.28 83.68 38
(QIZ MTO 0.39 25.64 t.o. 223 GMTO 0.15 6.39 209.17 66
O GPW 0.32 7.91 t.o. 187 GGPW 0.18 1.10 73.26 26
~ LPW 10.48 t.0. t.o. 467 GLPW 0.32 12.53 | 599.24 180
BDD t.0. t.0. t.0. 394 MDD 0.03 0.18 1.89 15
SWC t.0. t.0. t.0. 374 GSWC 0.06 0.34 1.76 17
GTd t.0. t.0. to. | 333 || GGTd 0.04 0.15 1.56 17
o GT t.0. t.o. t.o. 389 GGT 0.05 0.33 3.36 29
<£ RGT t.0. t.0. t.0. 391 RGGT 0.03 0.23 3.31 27
MTO t.0. t.0. t.0. 375 GMTO 0.08 0.32 1.92 23
GPW t.0. t.0. t.0. 336 GGPW 0.05 0.16 1.32 15
LPW t.0. t.o. t.o. 400 GLPW 0.73 5.71 27.49 22

44

Table 5: Solving times and number of timeouts using Glucose.

PB PB(AMO)
enc. Q1 med Q3 t.o. enc. Q1 med Q3 t.o.
BDD 9.80 12.18 t.0. 138 MDD 3.60 8.66 | 144.55 104
SWC — — — — GSWC 4.42 5.83 249.15 112
= GTd — — — — GGTd — — — —
A GT 12.06 15.74 t.0. 137 GGT 2.57 2.77 97.69 103
é RGT 8.95 11.43 t.0. 136 RGGT 2.49 7.14 | 110.08 99
s MTO 0.23 0.93 24.53 68 GMTO 0.02 0.03 0.99 37
GPW 0.92 0.96 16.01 81 GGPW 0.04 0.04 6.39 69
LPW — — — — GLPW 2.06 2.16 66.93 90
BDD 2.94 3.52 | 403.91 119 MDD 0.19 0.29 15.79 69
SWC 4.08 5.53 | 145.60 102 GSWC 0.49 0.57 6.15 58
~ GTd 5.33 6.98 | 244.01 116 GGTd 2.49 8.78 71.88 99
A GT 2.79 3.47 491.06 122 GGT 0.32 0.37 18.47 73
é RGT 2.36 2.92 | 355.14 120 RGGT 0.16 0.25 11.83 69
s MTO 0.14 0.58 13.52 62 GMTO 0.02 0.02 0.56 38
GPW 0.46 0.48 14.08 80 GGPW 0.02 0.03 3.65 67
LPW — — — — GLPW 0.90 0.98 21.37 74
BDD t.o. t.o. t.o. 334 MDD 46.49 | 155.70 t.o. 104
SWC 228.59 t.o. t.o. 215 GSWC 33.69 140.21 584.10 100
. GTd 219.36 t.0. t.0. 215 GGTd 72.66 | 263.05 t.0. 146
& GT t.0. t.0. t.0. 333 GGT 47.52 | 153.11 t.0. 109
é RGT t.0. t.0. t.0. 332 RGGT 40.92 | 135.16 | 548.87 94
s MTO 118.02 521.95 t.o. 195 GMTO 74.93 411.42 t.o. 172
GPW 144.17 t.o. t.o. 214 GGPW 128.82 t.o. t.o. 226
LPW t.0. t.0. t.0. 349 GLPW 483.77 t.0. t.0. 286
BDD 0.01 0.03 5.16 20 MDD 0.01 0.02 1.88 12
SWC 0.01 0.35 14.47 34 GSWC 0.01 0.08 3.56 11
GTd — — — — GGTd — — — —
GT 0.01 0.09 5.23 15 GGT 0.01 0.05 2.05 9
5 RGT 0.01 0.04 4.36 11 RGGT 0.01 0.02 1.26 4
MTO 0.01 0.02 0.26 0 GMTO 0.01 0.01 0.13 0
GPW 0.01 0.02 0.09 0 GGPW 0.01 0.01 0.05 0
LPW 0.00 0.34 3.01 0 GLPW 0.01 0.04 0.56 0
BDD 0.00 0.07 1.17 34 MDD 0.00 0.02 0.07 13
. SWC 0.00 0.13 1.44 31 GSWC 0.00 0.03 0.09 13
® [GTd 0.00 0.13 1.51 49 GGTd 0.00 0.03 0.11 13
% GT 0.00 0.07 0.97 33 GGT 0.00 0.02 0.08 13
[a RGT 0.00 0.05 0.86 31 RGGT 0.00 0.02 0.07 11
(é MTO 0.00 0.04 2.51 56 GMTO 0.00 0.02 0.06 15
s GPW 0.00 0.05 1.09 34 GGPW 0.00 0.02 0.05 13
LPW 0.00 0.66 7.07 66 GLPW 0.00 0.11 0.38 14
BDD 0.34 7.62 t.o. 241 MDD 0.09 1.65 t.o. 201
S SWC 0.78 10.15 t.o. 269 GSWC 0.13 1.93 t.o. 194
= GTd 0.34 6.16 t.o. 237 GGTd 0.13 2.91 t.o. 198
i GT 0.39 5.40 t.o. | 201 GGT 0.11 1.68 t.0. 208
A, RGT 0.37 6.00 t.0. 203 RGGT 0.09 1.53 t.0. 204
gj MTO 0.44 67.49 t.o. 315 GMTO 0.12 8.24 t.o. 189
Q GPW 0.48 5.19 t.o. 282 GGPW 0.11 1.18 t.o. 245
~ LPW 3.70 t.0. t.0. 460 GLPW 0.37 6.49 t.o. 268
BDD t.0. t.0. t.0. 398 MDD 0.01 0.07 0.82 19
SWC t.0. t.0. t.0. 400 GSWC 0.02 0.09 1.27 19
GTd t.o. t.o. t.o. 398 GGTd 0.01 0.08 0.75 21
n GT t.0. t.0. t.o. 398 GGT 0.02 0.10 2.12 37
<£ RGT t.0. t.0. t.0. 398 RGGT 0.01 0.09 2.64 39
MTO t.0. t.0. t.0. 396 GMTO 0.03 0.12 2.61 27
GPW t.0. t.0. t.o. | 395 GGPW 0.02 0.07 0.52 13
LPW t.0. t.o. t.o. 400 GLPW 0.71 3.21 9.57 28

45

internal nodes and are therefore more likely to permit non-trivial intervals to
be created in their sibling node.
Both plots show that less reduction occurs as we progress through sets
MMKP1, MMKP2, and MMKP3, just as in Table 3 the relative reduction in
o SAT variables and clauses from GGT to RGGT decreases across these three
problem sets. Recall that the coefficients are being sampled with a maximum
value of 1000, 60, and 10 respectively — this progression reduces the likelihood
of selecting close but distinct coefficients which can be merged into an inter-
val. The reduction appears to benefit all CA instances, the highest reduction
s factor being observed in the middle-sized instances. The reduction factors for
MRCPSP and RCPSP/t are modest compared to most of the other problem
classes. NSP has a significant average reduction factor even beyond depth 100,
but the trees are very deep and the reduction for entire trees (Figure 11b) is
modest.

120 12. Related Work

Encodings of PB constraints based on Multi-valued Decision Diagrams (MDDs)
have been extensively studied. It was in this context that PB(AMO) constraints
were first introduced by Bofill, Coll, Suy, and Villaret [11]. Originally PB(AMO)
constraints were defined in a slightly different way and were referred to as AMO-

s PB constraints. An MDD-based SAT encoding of AMO-PB constraints was in-
troduced and successfully applied to solve variants of the Resource-Constrained
Project Scheduling Problem (RCPSP). The MDD encoding approach was later
revisited by the same authors [12] within a more general framework named PB
modulo C, or PB(C), where C stands for any kind of collateral constraint over

10 the variables of the PB constraint. PB(AMO) constraints were presented as
a particular case of PB(C). Other collateral constraints were also considered,
such as ezactly-one and implication chains (i.e. monotonically non-decreasing
sequences) [12]. Earlier, Abio et al [41] studied decision diagram encodings of
PB constraints in conjunction with implication chains, and also showed that

s implication chains can be used to represent AMO constraints. Bofill et al [12]
compared their MDD encoding of PB(AMO) constraints to Abfo et al’s encod-
ing [41] (with AMOs represented as implication chains), and it was shown that
the two MDD-based techniques had similar performance.

A number of alternatives to decision diagrams exist for encoding PB con-

10 straints into SAT. In this work we have reviewed a large sample of state-of-
the-art SAT encodings for PB constraints, and the related work is presented in
detail from Section 4 to Section 9: an encoding based on decision diagrams in
Section 4; the Sequential Weight Counter (SWC) in Section 5; the Generalized
Totalizer (GT) in Section 6; the n-Modulo Level Totalizer (MTO) in Section 7;

s the Global Polynomial Watchdog (GPW) in Section 8; and the Local Polynomial
Watchdog (LPW) in Section 9. Each of these encodings have been generalized
to encode PB(AMO) constraints, either here or elsewhere [11].

There are a number of other PB encodings that have not been generalized
to PB(AMO) constraints, but most likely could be using techniques similar to

46

10001
Problem set
—~ —o— CA
j=2)
8
z —— MMKP1
[¢]
c
2 —o— MMKP2
£ 1001
1]
g —— MMKP3
g
= —e— MRCPSP |30
o
g
= —o— NSP
c
8
S 104 —e— RCPSP/tj120
°
e
C
[
[}
=
l_
1 10 100
Node depth (log)
(a) The mean reduction factor per node as depth increases
CA & MMKP MRCPSP & NSP RCPSP/t
=)
8 1e+05
a
s
9 L
£ 1e+03 .
[«]
z
g £l
> 1e+01
1e+01 1e+03 le+05 1e+01 1e+03 1e+05 1e+01 1e+03 le+05

Number of values (log)

Problem set
CA e MMKPL e MMKP2 @ MMKP3 @ MRCPSPj30 @ NSP e RCPSP/tj120 e

(b) Comparison of # of values versus # of intervals for entire GGT resp. RGGT trees

Figure 11: Effects of reduction observed in RGGT (with MinRatio heuristic)

47

1350

1355

1360

1365

1370

1375

1380

1385

1390

the ones used here. For instance, Manthey et al [10] proposed an alternative
to GPW and LPW called Binary Merger, in which formulas ¢ and 1 are built
using sorting networks and odd-even merger circuits [42] respectively. The size
bound of formulas obtained with Binary Merger is asymptotically smaller than
that of GPW. However, in this work we have chosen the original GPW defi-
nition because in our preliminary experiments GPW has shown slightly better
performance. Eén and Sérensson [4] presented a BDD-based encoding very sim-
ilar to the one we use, and also two further SAT encodings for PB constraints.
The first, named Sorters, consists of a sequence of digit-wise sums similar to
GPW but also accepting mixed radix bases. A PB(AMO) version of this en-
coding could be easily defined by introducing auxiliary variables for each group
X; and bucket, as done in GGPW but considering mixed radix bases. The
other one, named Adders, performs digit-wise sums using a circuit of full adders
and hence introducing carry bits. Again, we could straightforwardly general-
ize Adders by introducing auxiliary variables for each bit and group X;. In
Eén and Sérensson’s own experiments the Adders encoding was inferior to their
BDD-based encoding and the Sorters encoding [4].

Conjunctions of PB constraints and AMO constraints have also been consid-
ered in the context of Mixed Integer Linear Programming. Achterberg et al [43]
describe a presolving step where an AMO constraint is used to replace a set
of 0/1 variables (taken from the scope of the AMO constraint) with an integer
variable, and to redefine a PB constraint to use the integer variable in place of
the 0/1 variables.

Ansétegui et al. [14] integrated the MDD-based PB(AMO) encoding (de-
scribed in Section 4) into the automatic reformulation pipeline of Savile Row [15].
Similarly to our work, the output of that reformulation process is a SAT for-
mula. However, in that case the input is a CP model written in Essence Prime,
which is an expressive constraint programming language that supports finite
domain variables and global constraints, among others. The input CP model
contains a set of linear constraints, and AMO constraints over their variables
are automatically detected. Some AMO constraints are detected by means of a
syntactic check. Other AMOs are retrieved by detecting cliques in a graph of
mutexes between pairs of literals. Mutexes are detected by probing: a literal is
set to true and constraint propagation is applied to detect other literals that are
incompatible with it. The focus of Ansétegui et al. is on automatic detection of
AMOs, therefore it is complementary to developing new PB(AMO) encodings.

13. Conclusions and Future Work

When solving a combinatorial problem with SAT, the size and properties
of the encoding are of vital importance. Arithmetic can be challenging to en-
code into SAT, and there has been a great deal of work on encoding the PB
constraint in particular. Our focus has been on PB(AMO) constraints, which
are conjunctions of one PB constraint and any number of AMO constraints.
We have defined five new encodings for PB(AMO) constraints by generalising
existing state-of-the-art encodings of PB constraints. In each case, the size of

48

1395

1400

1405

1410

1415

1420

1425

1430

1435

the PB(AMO) encoding is substantially reduced compared to its corresponding
PB encoding. Moreover, the propagation properties of the original encodings
are preserved in the new ones.

We performed experiments with two recent CDCL SAT solvers (Glucose
and CaDiCaL) using five problem classes: the Multi-Choice Multidimensional
Knapsack Problem where we can control the parameters of the PB(AMO)
constraints, the Combinatorial Auctions problem, the Multi-mode Resource-
Constrained Project Scheduling Problem, the Resource-Constrained Project
Scheduling Problem with Time-Dependent Resource Capacities and Requests,
and the Nurse Scheduling Problem. The new PB(AMO) encodings are dra-
matically smaller and more efficient than their counterpart PB encodings. We
have observed size reductions of an order of magnitude, and also solving time
improvements of an order of magnitude in several cases (comparing median
times). In almost every case, the PB(AMO) encoding solves more instances
within the time limit than its corresponding PB encoding.

We have also shown that there is no single best encoding for PB(AMO)
constraints, but it depends on the characteristics of the instances at hand. The
benchmark instances that we consider expose some strengths and weaknesses
of the different encodings. For example, the GGPW and GMTO encodings
generate extremely small formulas, and they represent the best choices for some
benchmark sets despite their poor propagation properties.

We also contribute a new encoding that improves the Generalized Total-
izer by collecting equivalent values into intervals. When applied to PB con-
straints, the new encoding is named Reduced Generalized Totalizer (RGT), and
for PB(AMO) constraints it is the Reduced Generalized Generalized Totalizer
(RGGT). In terms of size, RGT and RGGT are never worse than GT and GGT
respectively, and they are often significantly better. The improvement in for-
mula size translates into faster solving times, and in fact RGGT is the overall
best choice for two of the benchmark sets.

The success of the PB(AMO) encodings immediately suggests two avenues
of future work. The first is to investigate whether other constraints could be
exploited in addition to the set of AMO constraints to further reduce the size of
the encodings. For example, in the Combinatorial Auctions problem the AMO
constraints represent cliques in a mutex graph. Other mutexes (outside the
cliques) are not presently used in any way. In an encoding based on Generalized
Totalizer, the additional mutexes could potentially rule out values of internal
nodes, saving both variables and clauses. Similarly, in the MDD encoding the
additional mutexes could potentially rule out nodes and edges. The second
avenue is to automatically select an appropriate PB(AMO) encoding based on
properties of the PB(AMO) constraint, such as the number of variables, the
magnitude of the coefficients, and the sizes and number of the cells in the AMO
partition. Given that there is no single best encoding, and differences in perfor-
mance are often substantial, an accurate encoding selection method would be
valuable.

49

1440

1445

1450

1455

1460

1465

1470

1475

Acknowledgements

Work partially supported by grant RTT12018-095609-B-100 (MCIU/AEI/FEDER,
UE). Jordi Coll is supported by grant Ayudas para Contratos Predoctorales 2016
(grant number BES-2016-076867, funded by MINECO and co-funded by FSE),
and partially funded by the French Agence Nationale de la Recherche, reference
ANR-19-CHIA-0013-01, and by Archimedes institute, Aix-Marseille University.
Felix Ulrich-Oltean is supported by grant EP/R513386/1 from the UK Engi-
neering and Physical Sciences Research Council.

[1] A. Biere, CaDiCal. at the SAT Race 2019, in: M. Heule, M. Jarvisalo,
M. Suda (Eds.), Proc. of SAT Race 2019 — Solver and Benchmark Descrip-
tions, Vol. B-2019-1 of Department of Computer Science Series of Publica-
tions B, University of Helsinki, 2019, pp. 8-9.

[2] G. Audemard, L. Simon, On the glucose SAT solver, International Journal
on Artificial Intelligence Tools 27 (1) (2018) 1-25.

[3] T. Philipp, P. Steinke, PBLib - A Library for Encoding Pseudo-Boolean
Constraints into CNF, in: Theory and Applications of Satisfiability Testing
- SAT 2015, 18th International Conference, Vol. 9340 of LNCS, Springer,
2015, pp. 9-16.

[4] N. Eén, N. Sorensson, Translating pseudo-Boolean constraints into SAT,
Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 1-
26.

[5] I. Abfo, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell, V. Mayer-
Eichberger, A new look at BDDs for pseudo-Boolean constraints, Journal
of Artificial Intelligence Research 45 (2012) 443-480.

[6] S. Holldobler, N. Manthey, P. Steinke, A compact encoding of pseudo-
Boolean constraints into SAT, in: KI 2012: Advances in Artificial Intel-
ligence - 35th Annual German Conference on Artificial Intelligence, Vol.
7526 of LNCS, Springer, 2012, pp. 107-118.

[7] S. Joshi, R. Martins, V. M. Manquinho, Generalized Totalizer Encoding
for Pseudo-Boolean Constraints, in: Principles and Practice of Constraint
Programming - CP 2015, 21st International Conference, Vol. 9255 of LNCS,
Springer, 2015, pp. 200-209.

8] A. Zha, M. Koshimura, H. Fujita, N-level modulo-based CNF encodings of
] g
pseudo-Boolean constraints for MaxSAT, Constraints 24 (2) (2019) 133-
161.

[9] O. Bailleux, Y. Boufkhad, O. Roussel, New Encodings of Pseudo-Boolean
Constraints into CNF, in: Theory and Applications of Satisfiability Testing
- SAT 2009, 12th International Conference, Vol. 5584 of LNCS, Springer,
2009, pp. 181-194.

50

1480

1485

1490

1495

1500

1505

1510

1515

[10]

[11]

[16]

[17]

[18]

N. Manthey, T. Philipp, P. Steinke, A More Compact Translation of
Pseudo-Boolean Constraints into CNF such that Generalized Arc Consis-
tency is Maintained, in: KI 2014: Advances in Artificial Intelligence - 37th
Annual German Conference on Al, Vol. 8736 of LNCS, Springer, 2014, pp.
123-134.

M. Bofill, J. Coll, J. Suy, M. Villaret, Compact MDDs for Pseudo-Boolean
Constraints with At-Most-One Relations in Resource-Constrained Schedul-
ing Problems, in: Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence - IJCAT 2017, ijcai.org, 2017, pp. 555-562.

M. Bofill, J. Coll, J. Suy, M. Villaret, An mdd-based sat encoding for
pseudo-boolean constraints with at-most-one relations, Artificial Intelli-
gence Review (2020) 1-32.

M. Bofill, J. Coll, J. Suy, M. Villaret, An Efficient SMT Approach to Solve
MRCPSP /max Instances with Tight Constraints on Resources, in: Princi-
ples and Practice of Constraint Programming - CP 2017, 23rd International
Conference, Vol. 10416 of LNCS, Springer, 2017, pp. 71-79.

C. Ansoétegui, M. Bofill, J. Coll, N. Dang, J. L. Esteban, I. Miguel,
P. Nightingale, A. Z. Salamon, J. Suy, M. Villaret, Automatic detection
of at-most-one and exactly-one relations for improved SAT encodings of
pseudo-Boolean constraints, in: Proceedings of 25th International Con-
ference Principles and Practice of Constraint Programming - CP, Vol.
11802 of Lecture Notes in Computer Science, Springer, 2019, pp. 20-36.
doi:10.1007/978-3-030-30048-7_2.

URL https://doi.org/10.1007/978-3-030-30048-7_2

P. Nightingale, 0. Akgiin, I. P. Gent, C. Jefferson, I. Miguel, P. Spracklen,
Automatically improving constraint models in Savile Row, Artificial Intel-
ligence 251 (2017) 35-61.

C. Basnet, J. Wilson, Heuristics for determining the number of warehouses
for storing non-compatible products, International transactions in opera-
tional research 12 (5) (2005) 527-538.

P. R. Ma, E. Y. S. Lee, M. Tsuchiya, A Task Allocation Model for Dis-
tributed Computing Systems, IEEE Trans. Computers 31 (1) (1982) 41-47.

D. Pisinger, Budgeting with bounded multiple-choice constraints, European
Journal of Operational Research 129 (3) (2001) 471-480.

R. Watson, Packet networks and optimal admission and upgrade of service
level agreements: applying the utility model. ma sc, Ph.D. thesis, Depart-
ment of ECE, University of Victoria (2001).

S. De Vries, R. V. Vohra, Combinatorial auctions: A survey, INFORMS
Journal on computing 15 (3) (2003) 284-309.

o1

1520

1525

1530

1535

1540

1545

1550

[21]

[22]

[23]

[28]

[29]

C. E. Miller, A. W. Tucker, R. A. Zemlin, Integer programming formulation
of traveling salesman problems, Journal of the ACM 7 (4) (1960) 326-329.

M. Bofill, J. Coll, J. Suy, M. Villaret, SAT encodings of pseudo-Boolean
constraints with at-most-one relations, in: Proceedings of the 16th In-
ternational Conference on Integration of Constraint Programming, Ar-
tificial Intelligence, and Operations Research - CPAIOR, Vol. 11494 of
Lecture Notes in Computer Science, Springer, 2019, pp. 112-128. doi:
10.1007/978-3-030-19212-9_8.

URL https://doi.org/10.1007/978-3-030-19212-9_8

O. Bailleux, Y. Boufkhad, Efficient CNF Encoding of Boolean Cardinality
Constraints, in: Principles and Practice of Constraint Programming - CP
2003, 9th International Conference, Vol. 2833 of LNCS, Springer, 2003, pp.
108-122.

A. Darwiche, P. Marquis, A knowledge compilation map, Journal of Arti-
ficial Intelligence Research 17 (2002) 229-264.

A. Van Gelder, Toward leaner binary-clause reasoning in a satisfiability
solver, Annals of Mathematics and Artificial Intelligence 43 (1) (2005) 239
253.

A. Biere, M. J. H. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of
Satisfiability, Vol. 185 of Frontiers in Artificial Intelligence and Applica-
tions, IOS Press, 2009.

P. Brucker, A. Drexl, R. Mohring, K. Neumann, E. Pesch, Resource-
Constrained Project Scheduling: Notation, Classification, Models, and
Methods, European Journal of Operational Research 112 (1) (1999) 3 —
41.

S. Hartmann, Project scheduling with resource capacities and requests
varying with time: a case study, Flexible Services and Manufacturing Jour-
nal 25 (1-2) (2013) 74-93.

M. Vanhoucke, B. Maenhout, NSPLib: a nurse scheduling problem library:
a tool to evaluate (meta-)heuristic procedures, in: S. Brailsford, P. Harper
(Eds.), Operational research for health policy: making better decisions,
Peter Lang, 2007, pp. 151-165.

P. Nightingale, A. Rendl, Essence’ description, arXiv:1601.02865 (2016).
arXiv:1601.02865.
URL https://arxiv.org/abs/1601.02865

P. Nightingale, 0. Akgiin, I. P. Gent, C. Jefferson, I. Miguel, P. Spracklen,
Automatically improving constraint models in Savile Row, Artificial Intel-
ligence 251 (2017) 35-61. doi:10.1016/j.artint.2017.07.001.

92

1555

1560

1565

1570

1575

1580

1585

[32]

[33]

[34]

[35]

J. Chen, A new sat encoding of the at-most-one constraint, Proc. Constraint
Modelling and Reformulation.

B. Han, J. Leblet, G. Simon, Hard multidimensional multiple choice knap-
sack problems, an empirical study, Computers & Operations Research
37 (1) (2010) 172 — 181.

C. Ansétegui, F. Manya, Mapping problems with finite-domain variables
to problems with boolean variables, in: International conference on theory
and applications of satisfiability testing, Springer, 2004, pp. 1-15.

M. Bofill, M. Palahi, J. Suy, M. Villaret, Solving Intensional Weighted
CSPs by Incremental Optimization with BDDs, in: CP: Principles and
Practice of Constraint Programming, LNCS 8656, Springer, 2014, pp. 207—
223. doi:10.1007/978-3-319-10428-7_17.

K. Leyton-Brown, Y. Shoham, A test suite for combinatorial auctions, in:
Combinatorial auctions, The MIT Press, 2006, Ch. 18, pp. 451-478.

R. Kolisch, A. Sprecher, PSPLIB - A Project Scheduling Problem Library,
European Journal of Operational Research 96 (1) (1997) 205-216.

M. Bofill, J. Coll, J. Suy, M. Villaret, Smt encodings for resource-
constrained project scheduling problems, Computers & Industrial Engi-
neering 149 (2020) 106777.

P. De Causmaecker, G. Vanden Berghe, A categorisation of nurse roster-
ing problems, Journal of Scheduling 14 (1) (2011) 3-16. doi:10.1007/
s10951-010-0211-z.

M. J. Heule, M. Jarvisalo, M. Suda, Proceedings of sat race 2019, SAT
RACE 2019.

I. Abio, V. Mayer-Eichberger, P. J. Stuckey, Encoding linear constraints
with implication chains to CNF, in: International Conference on Princi-
ples and Practice of Constraint Programming(CP), Vol. 9255 of LNCS,
Springer, 2015, pp. 3-11.

R. Asin, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell, Cardinality
Networks: a theoretical and empirical study, Constraints 16 (2) (2011)
195-221. d0i:10.1007/s10601-010-9105-0.

T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, D. Weninger, Presolve re-
ductions in mixed integer programming, INFORMS Journal on Computing
32 (2) (2020) 473-506.

93

