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ABSTRACT
This paper has two parts. The mathematical part provides gen-eralized versions of the 
robust Ekeland variational principle in terms of set-valued EVP with variable preferences, 
uncertain parameters and changing weights given to vectorial perturba-tion functions. The 
behavioural part that motivates our findings models the formation and stability of a 
partnership in a changing, uncertain and complex environment in the context of the 
variational rationality approach of stop, continue and go human dynamics. Our 
generalizations allow us to consider two very important psychological effects relative to 
ego depletion and goal gradient hypothesis.
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1. Introduction

Ekeland’s variational principle [1] (briefly, denoted by EVP) is a well-known
theorem that has several versions, extensions and applications in nonlinear
analysis, optimization, psychology and the behavioural sciences; see [2–17]
and the references therein. Since EVP provides the existence of a strict mini-
mum of a perturbed lower semicontinuous function on complete metric spaces
and it has several applications in mathematics and behavioural sciences, many
authors have extended EVP to vector-valued functions, and, more recently, to
set-valued maps and bimaps. We refer the reader to books [8,11,13] and sev-
eral recent articles [2–7,10,12,14–16,18–28] for a good reporting of the results
and various approaches. Moreover, inspired by set-valued optimization, there
are two approaches to extend EVP to set-valued maps, the vector approach,
see, for example, [2,5–7,19,20,24] and the set approach, see, for example,
[3,17,18,21–23,26,28]. The vector criterion provides the existence of an approx-
imate minimal (efficient) point of the range set of a set-valued map. In the set
approach, it is necessary to introduce an ordering for sets and it provides the exis-
tence of an optimum of a perturbed set optimization problem. Since these two
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types criteria of set-valued optimization are not comparable [26,29], there is no
direct comparison between the two types of EVP extensions to set-valued maps.
On the other hand, the equilibrium problem is a unified method for solving sev-
eral problems in nonlinear analysis; see [30]. In order to study the equilibrium
problem and the vector equilibrium problem in the setting of nonconvex sets,
many authors have been interested in obtaining the equilibrium versions of EVP,
see [31–37] and the references therein. Recently, some authors have obtained
the equilibrium versions of EVP for set-valued bimaps and given their applica-
tions in the set-valued equilibrium problems and the behavioural sciences, see,
for example, [14,38–41].

Our interest in studying EVP for set-valued bimaps with variable ordering
in the setting of quasi-metric spaces was motivated mainly by modelling the
dynamic of the formation and stability of a partnership in a changing, uncer-
tain and complex environment within the context of the variational rationality
approach. Further extensions of EVP for set-valued bimaps, where the perturba-
tions need not satisfy the triangle inequality, are necessary for their own sake and
for later applications. We now turn to the two parts mentioned above.

Mathematical part. Themathematical part provides generalized versions of the
robust Ekeland variational principle in terms of set-valued formulations of EVP
with variable preferences, uncertain parameters and changing weights given to
vectorial perturbation functions. This sequence of challenges works as follows.
We start with:

– an optimization (minimizing) problem min{f (y) : y ∈ X} where f : X → R
is a real valued function defined on a metric space (X, d). The maximizing
counterpart being max{g(y), y ∈ X} with g = −f ;

– a perturbed optimization problemmin{f (y)+ εd(x, y) : y ∈ X}where, start-
ing from some x ∈ X, the perturbation function is Q(·, x) = f (·)+ εd(x, ·).
The size of the weight ε ∈ R++, where R++ = ]0,+∞[, models the impor-
tance of the perturbation. In this perturbed setting, the EVP shows that, even
if the initial optimization problem has no solution, then, for each x ∈ X, the
perturbed optimization problem will have an optimal solution:

– a vectorial EVP problem, suppose that the image of f is a subset of a linear
space Y ;

– a vectorial robust optimization problem min{h(y, η) : y ∈ X, η ∈ H} models
a situationwhere, for each y ∈ X, the vector of objectives h(y, η) ∈ Y depends
on uncertain parameters. The problem being that the decision relative to the
choice of ymust bemade before the realization of any of the uncertainties η ∈
H [42]. It was originally used to protect optimization problems from infea-
sibility caused by uncertainties in the model parameters. In this setting, the
objective is an uncertainty set of vectors f (y) = {h(y, η) ∈ R, η ∈ H} ⊆ Y ,
the problem is a set-valued optimization problem;
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– a vectorial robust EVP optimization problem considers a perturbation of a
robust optimization problem [14].

– a variable preference formulation of an EVP optimization problem models
variable preferences as changing cones C(x) [4];

– an adaptive EVP optimization problem considers changing weights given to
perturbation functions.

A behavioural formulation of the EVP requires, in the context of the variational
rationality approach, the introduction of an asymmetric generalizedmetric space
like a quasi-metric space. This model the fact that costs and inconveniences of
moving from x to y are different from the opposite [14].

If we introduce all these challenges in the same formulation, the reason is
that we have in mind a nice application in behavioural sciences. In contrast, the
problem with the vast majority of generalized EVP formulations is that general-
izations seem to have been done just for the sake of generalizations. Most of the
time, there are no applications, relative to mathematics, physics, or behavioural
sciences. Hopefully, recently, the (VR) variational rationality approach of stop,
continue and go human dynamics [43–48] has many applications to most gen-
eralized variational principles and optimizing algorithms as a way to provide a
general and (for the first time) formalized theory of motivation and emotion in
the behavioural sciences.

Behavioural part. The behavioural part that motivates our generalizations of
the EVPmodels the formation and stability of a partnership in a changing, uncer-
tain and complex environment within the context of the VR approach [46,47].
Our generalization allows us to consider two very important psychological effects
relative to ego depletion and goal gradient hypothesis.

The article is structured as follows. In Section 2, some notions, notations and
basic results that will be used in the following are given. Section 3 is devoted to
the mathematical part. Following Fakhar et al. [9] and Qiu et al. [14], and driven
by behavioural applications, we give new formulations of the robust Ekeland
variational principle in terms of set-valued EVPwith variable preferences, uncer-
tain parameters and changing weights given to vectorial perturbation functions.
Section 4 is devoted to modelling the formation and stability of a partnership in
a changing, uncertain and complex environment in the context of the variational
rationality approach of stop, continue and go human dynamics.

2. Preliminaries

In this section, we introduce somenotions andnotationswhichwill be used in the
sequel. A quasi-metric q on a nonempty set X is a bifunction q : X × X → R+,
where R+ denotes the set of non-negative real numbers, such that

(i) q(x, y) = 0 if and only if x = y,
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(ii) q(x, y) ≤ q(x, z)+ q(z, y), for all x, y, z ∈ X.

A set X equipped with a quasi-metric q is said to be a quasi-metric space and it is
denoted by (X, q). Let (X, q) be a quasi-metric space. A sequence {xn} in X is said
to be left convergent to x ∈ X, if limn→∞ q(xn, x) = 0. The sequence {xn} is said
to be left Cauchy if for every ε > 0, there exists Nε ∈ N such that q(xn, xm) < ε

for allm ≥ n ≥ Nε. A quasi-metric space (X, q) is said to be left-complete if every
left Cauchy sequence is left convergent.

For anynonempty subsetAof a linear spaceY, the vector closure ofA is defined
as follows:

vcl(A) = {y ∈ Y : ∃ν ∈ Y , ∃λn ≥ 0, λn → 0 such that y + λnν ∈ A, ∀n ∈ N}.
For any k0 ∈ Y , we define the k0-vector closure of A as follows:

vclk0(A) = {y ∈ Y : ∃λn ≥ 0, λn → 0 such that y + λnk0 ∈ A, ∀n ∈ N}.
The set A is called k0-closed if and only if A = vclk0(A), for more details, see
[15,49,50]. Let K be a nonempty subset of a linear space Y and k0 ∈ Y \ {0}. The
nonlinear scalarization function ξk0 : Y → R ∪ {±∞} is defined as follows:

ξk0(y) :=
{+∞ if y �∈ Rk0 − K,
inf{t ∈ R : y ∈ tk0 − K} otherwise.

The function ξk0 is also called Gerstewitz’s function generated by K and k0. For
its main properties one can refer to [8,11,12,14,15,51] and the references therein.
Also, according to Lemma 2.6 in [15], ξk0(y) > −∞, for each y ∈ Y if and only
if k0 /∈ −vcl(K).

Suppose thatC is a nonempty subset ofY, we say that ξk0 isC-nondecreasing, if
ξk0(y1) ≤ ξk0(y2) for all y1, y2 ∈ Y , y2 − y1 ∈ C. If K is a closed convex cone of a
topological vector space Y and k0 ∈ K \ (−K), then ξk0 is subadditive, positively
homogeneous, lower semicontinuous,K-nondecreasing and ξk0(y) > −∞ for all
y ∈ Y ; see [8,15]. LetA be a nonempty set of a linear space Y, we say thatA is free
disposal with respect to a convex cone D ⊆ Y if A+D = A. This notion was
introduced by Debreu [52] and it has been used in mathematical economics and
optimization. Recall that the cone generated by a nonempty set B ⊆ Y is the set
cone(B) := {ty : t ∈ R+, y ∈ B}.

Proposition 2.1 (see [12,50,51]): Let K, C be two nonempty subsets of a lin-
ear space Y and k0 ∈ Y \ {0}. Then the Gerstewitz function ξk0 has the following
properties:

(i) ξk0(y) < +∞ if and only if y ∈ Rk0 − vclk0(K);
(ii) ξk0 is C-nondecreasing if and only if K + C ⊆ cone({k0})+ vclk0(K);
(iii) for any real number r, ξk0(y + rk0) = ξk0(y)+ r.
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Definition 2.2: Let Y be a linear space and� be a nonempty set.

(i) A nonempty set S of Y is said to be a domination set in Y, if S + S ⊆ S.
(ii) A set-valued map D : � ⇒ Y is called a domination structure in Y, if D(x)

is a domination set, for each x ∈ �.

The notion of domination structure was introduced by Yu [53], in the case
where D : Y ⇒ Y and D(y) is a convex cone, for every y ∈ Y . Notice that every
convex cone subset of a linear space is a domination set but the converse is not
necessarily true, for example, the integer numbers set Z in R is a domination set
but it is neither convex nor cone.

In order to obtain our main results, we need to state a pre-order principle pro-
vided by Qiu [16]. A binary relation� onX is called a pre-order if the transitivity
property is satisfied. Let (X,�) be a pre-order set. An extended real-valued func-
tion η : (X,�) → R ∪ {±∞} is called monotone with respect to � if and only if
for any x1, x2 ∈ X,

x1 � x2 ⇒ η(x1) ≤ η(x2).

For any given x0 ∈ X, denotes S(x0) the set {x ∈ X : x � x0}.
Theorem2.3 ([16]): Let (X,�) be a pre-order set, x0 ∈ X such that S(x0) �= ∅ and
η : (X,�) → R ∪ {±∞} be an extended real-valued function which is monotone
with respect to �. Suppose that the following conditions are satisfied:

(A) −∞ < inf{η(x) : x ∈ S(x0)} < +∞;
(B) for any x ∈ S(x0) with −∞ < η(x) < +∞ and x′ ∈ S(x) \ {x}, one has

η(x) > η(x′);
(C) for any sequence {xn} ⊆ S(x0) with xn ∈ S(xn−1), ∀n ∈ N, such that η(xn)−

inf{η(x) : x ∈ S(xn−1)} → 0, (n → ∞), there exists x̄ ∈ X such that x̄ ∈
S(xn), for all n ∈ N.

Then there exists u ∈ X such that

(a) u ∈ S(x0);
(b) S(u) ⊆ {u}.

3. Robust Ekeland variational principle

Inspired by [9,14], we are going to obtain general forms of the robust Ekeland
variational principle in terms of set-valued EVPwith variable preferences, uncer-
tain parameters and changing weights given to vectorial perturbation functions.

Motivated by the notion of sequentially lower monotonicity for vector-valued
and set-valued maps; see [10,14,15,50], we extend this notion for set-valued
bimaps with variable ordering.
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Definition 3.1: Let Y be a linear space, C : X ⇒ Y be a set-valued map, (X, q)
be a quasi-metric space,ψ : X × X → R++ be a bifunction, and F : X × X ⇒ Y
be a set-valued bimap with nonempty values.

(i) F is said to be left-C(·)-sequentially lower monotone (briefly, denoted left-
C(·)-slm) if for any sequence {xn} that left converges to an element x̄ such
that F(xn, xn+1) ⊆ −C(xn), for any n ∈ N, we have F(xn, x̄) ⊆ −C(xn), for
all n ∈ N.

(ii) ψ is called C-F-decreasing in the first argument (resp., C-F-increasing in
the second argument) if and only if for all x, x′ ∈ X with F(x, x′) ⊆ −C(x)
we have ψ(x′, y) ≥ ψ(x, y) (resp., ψ(y, x′) ≤ ψ(y, x)), for all y ∈ X.

Example 3.2: Let F : R2 ⇒ R3, C : R ⇒ R3, and ψ : R2 → R++ be defined as
follows:

F(x, y) =] − ∞, 1 − x[×{y}×] − ∞,−x + y[ ∀x, y ∈ R,

C(x) = R3
+ ∀x ∈ R,

and

ψ(x, y) = e−x(ey + 1) ∀x, y ∈ R.

Now, if F(x, x′) ⊆ −C(x), then x′ < x, and so ψ is both C-F-decreasing in the
first argument and C-F-increasing in the second argument.

In what follows, we give some elementary results which will be used in the
sequel.

Proposition 3.3: Let F be left-C(·)-slm and ψ : X → R++ be C-F-increasing in
the second argument. Let {xn} ⊆ X be left convergent to x̄ ∈ X, and F(xn, xn+1) ⊆
−C(xn), for all n ∈ N. Then ψ(x, x̄) ≤ ψ(x, xn), for all n ∈ N and for each x ∈ X.

Proof: Assume on the contrary that there exist n0 ∈ N and x ∈ X such that
ψ(x, xn0) < ψ(x, x̄). Since ψ is C-F-increasing in the second argument, then
F(xn0 , x̄) �⊆ −C(xn0) which contradicts the left-C(·)-sequentially lower mono-
tonicity of F. �

The following example shows that a C-F-increasing function ψ is not neces-
sarily lower semicontinuous or sequentially lower monotone.
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Example 3.4: Let F : R2 → R and ψ : R2 → R++ be defined as follows:

F(x, x′) = x′ − x ∀(x, x′) ∈ R2

and

ψ(y, x) =
{
1 if x > 0,
2 if x ≤ 0.

For every x ∈ R, we considerC(x) = R+. It is obvious that F is left-C(·)-slm, and
ψ is C-F-increasing in the second argument but ψ is not lower semicontinuous
and it is not even sequentially lower monotone in the second argument. Suppose
xn = 1

n , for every n ∈ N. Then, we have F(xn, xn+1) ⊆ −C(xn), for all n ∈ N and
xn → 0, but 2 = ψ(y, 0) �≤ ψ(y, 1n) = 1.

Proposition 3.5: Let Y be a linear space, k0 ∈ Y \ {0} and S ⊆ Y be free disposal
with respect to cone({k0}). Suppose that t1, t2 ∈ R and t1 ≤ t2, then t1k0 − S ⊆
t2k0 − S.

Proof: Since t2 − t1 ≥ 0 and S is free disposal with respect to cone({k0}), then
t1k0 − S = t2k0 + (t1 − t2)k0 − S ⊆ t2k0 − S.

�

In the following, we give our main result.

Theorem 3.6: Let (X, q) be a left-complete quasi-metric space, Y be a real lin-
ear space, k0 ∈ Y \ {0} and K be a nonempty subset of Y. Suppose that vclk0(K) is
free disposal with respect to cone({k0}). Let C : X ⇒ Y be a set-valued domination
structure with nonempty values. Suppose that for every x ∈ X, C(x) is k0-vectorially
closed, free disposal with respect to cone({k0}) and C(x)+ K ⊆ vclk0(K). Sup-
pose that F : X × X ⇒ Y be a set-valued bimap with nonempty values satisfy the
following conditions:

(i) there exists x0 ∈ X such that F(x0, x0) ⊆ −C(x0);
(ii) there exist α ∈ R and s0 ∈ Rk0 − K such that F(x0,X) ∩ (−s0 + αk0 −

C(x0)) = ∅;
(iii) F(x, z) ⊆ F(x, y)+ F(y, z)− C(x), for all x, y, z ∈ X;
(iv) F is left C(·)-slm;
(v) F(x, y) ⊆ −C(x) implies C(x)+ C(y) ⊂ C(x),for all x, y ∈ X.

Assume that ψ : X × X → R++ is C-F-decreasing in the first argument and C-F-
increasing in the second argument, then there exists x̂ ∈ X such that

(a) F(x0, x̂)+ ψ(x0, x̂)q(x0, x̂)k0 ⊆ −C(x0);
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(b) F(x̂, x)+ ψ(x̂, x)q(x̂, x)k0 � −C(x̂), for each x ∈ X \ {x̂}.

Proof: Weprove this result by applying Theorem 2.3. For this purpose, we define
a relation � on X as follows: for any x, x′ ∈ X,

x′ � x ⇐⇒ F(x, x′)+ ψ(x, x′)q(x, x′)k0 ⊆ −C(x).

In the first step, we show that � is a pre-order. Suppose that x′ � x, x � y, then

F(x, x′)+ ψ(x, x′)q(x, x′)k0 ⊆ −C(x), (1)

F(y, x)+ ψ(y, x)q(y, x)k0 ⊆ −C(y). (2)

Since C(x) and C(y) are free disposal with respect to cone({k0}), then F(x, x′) ⊆
−C(x) and F(y, x) ⊆ −C(y). Therefore, since ψ is C-F-decreasing in the first
argument and C-F-increasing in the second argument we have

ψ(y, x′) ≤ ψ(x, x′) and ψ(y, x′) ≤ ψ(y, x). (3)

On the other hand, by condition (iii), the triangle property for q and Proposi-
tion 3.5, we have

F(y, x′)+ ψ(y, x′)q(y, x′)k0 ⊆ F(y, x)+ F(x, x′)− C(y)+ ψ(y, x′)q(y, x′)k0
⊆ F(x, x′)+ F(y, x)− C(y)+ ψ(y, x′)(q(y, x)+ q(x, x′))k0. (4)

Furthermore, from (3) and Proposition 3.5, we get

F(x, x′)+ F(y, x)− C(y)+ ψ(y, x′)(q(y, x)+ q(x, x′))k0
⊆ F(x, x′)+ ψ(x, x′)q(x, x′)k0 + F(y, x)+ ψ(y, x′)q(y, x)k0 − C(y)

⊆ F(x, x′)+ ψ(x, x′)q(x, x′)k0 + F(y, x)+ ψ(y, x)q(y, x)k0 − C(y). (5)

Also, by (1) and (2), we have

F(x, x′)+ ψ(x, x′)q(x, x′)k0 + F(y, x)+ ψ(y, x)q(y, x)k0
⊆ −C(x)− C(y)− C(y). (6)

Since F(y, x) ⊆ −C(y), then by condition (v) and since C is a domination
structure, we get

− C(x)− C(y)− C(y) ⊆ −C(y). (7)

Therefore, from (4), (5), (6) and (7), we have

F(y, x′)+ ψ(y, x′)q(y, x′)k0 ⊆ −C(y).

This shows that x′ � y, and so � has the transitive property. Hence, the relation
� is a pre-order.
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Now, we set

S(x) := {x′ ∈ X : x′ � x} ∀x ∈ X,

and we define η : (X,�) → R ∪ {±∞} as follows:

η(x) := sup{ξk0(y + s0) : y ∈ F(x0, x)} ∀x ∈ X.

By condition (i), x0 ∈ S(x0), and so S(x0) �= ∅. We now show that η is monotone
with respect to �. Let x, x′ ∈ X and x′ � x, then F(x, x′)+ ψ(x, x′)q(x, x′)k0 ⊆
−C(x), and so F(x, x′) ⊆ −ψ(x, x′)q(x, x′)k0 − C(x). Therefore, by condition
(iii), we have

F(x0, x′) ⊆ F(x0, x)+ F(x, x′)− C(x0)

⊆ F(x0, x)− ψ(x, x′)q(x, x′)k0 − C(x0)− C(x).

Hence, for every y′ ∈ F(x0, x′) there exists y ∈ F(x0, x) such that

y′ ∈ y − ψ(x, x′)q(x, x′)k0 − C(x0)− C(x).

Therefore,

y′ + s0 ∈ y + s0 − ψ(x, x′)q(x, x′)k0 − C(x0)− C(x). (8)

Since C(x0)+ C(x)+ vclk0(K) ⊆ C(x)+ vclk0(K) ⊆ vclk0(K), then by (8) and
parts (ii), (iii) of Proposition 2.1, we have

ξk0(y
′ + s0) ≤ ξk0(y + s0)− ψ(x, x′)q(x, x′)

≤ sup{ξk0(z + s0) : z ∈ F(x0, x)} − ψ(x, x′)q(x, x′)

= η(x)− ψ(x, x′)q(x, x′).

Thus,

η(x′) = sup{ξk0(y′ + s0) : y′ ∈ F(x0, x′)} ≤ η(x)− ψ(x, x′)q(x, x′).

This shows that η is monotone with respect to�. Moreover, if x′ � x, x �= x′ and
η(x) < ∞, then

η(x′) ≤ η(x)− ψ(x, x′)q(x, x′) < η(x). (9)

Now, it is enough to show that conditions (A), (B) and (C) in Theorem 2.3 hold.
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Checking condition A. Since s0 ∈ Rk0 − K, then ξk0(s0) < +∞. Hence, by
condition (i) and Proposition 2.1(ii), we have

ξk0(y + s0) ≤ ξk0(s0) < +∞ ∀y ∈ F(x0, x0).

Therefore,

η(x0) = sup{ξk0(y + s0) : y ∈ F(x0, x0)} ≤ ξk0(s0) < +∞.

On the other hand, from condition (ii) y /∈ −s0 + αk0 − K, for each x ∈ X and
y ∈ F(x0, x). Hence, from definition of ξk0(·), we have ξk0(y + s0) ≥ α, and so

η(x) = sup{ξk0(y + s0) : y ∈ F(x0, x)} ≥ α ∀x ∈ X.

Thus,

−∞ < α ≤ inf{η(x) : x ∈ S(x0)} ≤ η(x0) < +∞.

Hence, condition (A) holds.
Checking condition B. Consider x ∈ S(x0) with −∞ < η(x) < +∞, and let

x′ ∈ S(x) \ {x}. By relation (9), we have η(x′) < η(x) and so condition B holds.
Checking condition C. Let {xn} be an arbitrary sequence in S(x0) such that xn ∈

S(xn−1), for all n ∈ N. Therefore,

F(x0, x1)+ ψ(x0, x1)q(x0, x1)k0 ⊆ −C(x0),

F(x1, x2)+ ψ(x1, x2)q(x1, x2)k0 ⊆ −C(x1),
...

F(xn−1, xn)+ ψ(xn−1, xn)q(xn−1, xn)k0 ⊆ −C(xn−1).

Adding the current n inclusions up, we obtain

n∑
i=1

F(xi−1, xi)+
n∑

i=1
ψ(xi−1, xi)q(xi−1, xi)k0 ⊆

n∑
i=1

−C(xi−1) ⊆ −C(x0).

(10)

The last inclusion holds, because F(xn−1, xn)+ ψ(xn−1, xn)q(xn−1, xn)k0 ⊆
−C(xn−1), thus we have F(xn−1, xn) ⊆ −C(xn−1). Therefore, by condition (v),
we have C(xn) ⊆ C(xn−1), for each n ∈ N, and so

∑n
i=1 −C(xi−1) ⊆ −C(x0).
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On the other hand, by condition (iii), we have

F(x0, xn) ⊆
n∑

i=1
F(xi−1, xi)− C(x0). (11)

Since F(xi, xi+1) ⊆ −C(xi), ψ is C-F-decreasing in the first argument and C-F-
increasing in the second argument, we deduce that

ψ(x0, xn) ≤ ψ(x0, xn−1) ≤ ψ(x0, xn−2) ≤ · · · ≤ ψ(x0, x1)

and

ψ(x0, xk) ≤ ψ(x1, xk) ≤ ψ(x2, xk) ≤ · · · ≤ ψ(xk−1, xk) ∀k ≥ 2.

Hence,

ψ(x0, xn) ≤ ψ(xi−1, xi), 1 ≤ i ≤ n, ∀n ∈ N. (12)

Now, from (12) and Proposition 3.5 we deduce that

ψ(x0, xn)
n∑

i=1
q(xi−1, xi)k0 − C(x0) ⊆

n∑
i=1

ψ(xi−1, xi)q(xi−1, xi)k0 − C(x0).

(13)

Combining (10), (11), (13) and since C(x0) is a domination set, we have

F(x0, xn)+ ψ(x0, xn)
n∑

i=1
q(xi−1, xi)k0

⊆
n∑

i=1
F(xi−1, xi)− C(x0)+ ψ(x0, xn)

n∑
i=1

q(xi−1, xi)k0

⊆
n∑

i=1
F(xi−1, xi)+

n∑
i=1

ψ(xi−1, xi)q(xi−1, xi)k0 − C(x0)

⊆ −C(x0)− C(x0) ⊆ −C(x0).

Therefore,

F(x0, xn)+ s0 + ψ(x0, xn)
n∑

i=1
q(xi−1, xi)k0 ⊆ s0 − C(x0). (14)

If yn ∈ F(x0, xn), then by condition (ii), yn /∈ −s0 + αk0 − K, and so

ξk0(yn + s0) ≥ α. (15)

Hence, by (14) and parts (ii), (iii) of Proposition 2.1 we have

ξk0(yn + s0)+ ψ(x0, xn)
n∑

i=1
q(xi−1, xi) < ξk0(s0) < +∞. (16)
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Therefore, from (15) and (16), we get
n∑

i=1
q(xi−1, xi) ≤ 1

ψ(x0, xn)
(ξk0(s0)− ξk0(yn + s0))

≤ 1
ψ(x0, xn)

(ξk0(s0)− α) < +∞ ∀n ∈ N.

Thus,
∞∑
i=1

q(xi−1, xi) ≤ 1
infx∈X ψ(x0, x)

(ξk0(s0)− α) < +∞.

So, for everym>n,

q(xn, xm) ≤
m−1∑
i=n

q(xi, xi+1) → 0(m > n → ∞).

This means that the sequence {xn} is a left-Cauchy sequence in (X, q) and since
(X, q) is left-complete, there exists x̄ ∈ X, such that q(xn, x̄) → 0(n → ∞). Since
F(xn−1, xn) ⊆ −C(xn−1), condition (iv) implies

F(xn−1, x̄) ⊆ −C(xn−1) ∀n ∈ N. (17)

Now, for fixed n andm > n, we have xm ∈ S(xn), and so

F(xn, xm)+ ψ(xn, xm)q(xn, xm)k0 ⊆ −C(xn). (18)

Hence, by condition (iii), relations (17), (18), Propositions 3.3, 3.5 and since
q(xn, x̄)− q(xn, xm) ≤ q(xm, x̄), we have

F(xn, x̄)+ ψ(xn, x̄)q(xn, x̄)k0
= F(xn, x̄)+ ψ(xn, x̄)q(xn, xm)k0 + ψ(xn, x̄)(q(xn, x̄)− q(xn, xm))k0
⊆ F(xn, xm)+ F(xm, x̄)− C(xn)+ ψ(xn, x̄)q(xn, xm)k0

+ ψ(xn, x̄)(q(xn, x̄)− q(xn, xm))k0
⊆ F(xn, xm)+ F(xm, x̄)− C(xn)+ ψ(xn, xm)q(xn, xm)k0

+ ψ(xn, x̄)(q(xn, x̄)− q(xn, xm))k0
⊆ −C(xm)− C(xn)− C(xn)+ ψ(xn, x̄)(q(xn, x̄)− q(xn, xm))k0
⊆ −C(xn)+ ψ(xn, x̄)q(xm, x̄)k0.

Since q(xm, x̄) → 0(m → ∞), and C(xn) is a k0-closed, we obtain

F(xn, x̄)+ ψ(xn, x̄)q(xn, x̄)k0 ⊆ −C(xn).

Therefore, x̄ � xn, for each n ∈ N, and so x̄ ∈ S(xn), for each n ∈ N. Then, con-
dition C is satisfied. Hence, by Theorem 2.3, conditions (a) and (b) hold, and the
proof is completed. �
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Let us show an example to illustrate Theorem 3.6.

Example 3.7: Let F : R+ × R+ ⇒ R2, C : R+ ⇒ R2, and
ψ : R+ × R+ → R++ be defined as follows:

F(x, y) = conv({(−ey,−1), (0,−x), (0, 0)}),
C(x) = cone(conv({(ex, 1), (−1, 0), (0, 0)})),

andψ(x, y) = e−x(ey + 1). We show that all conditions of Theorem 3.6 are satis-
fied. Assume thatK := ] − ∞,+∞[×[0,∞[, k0 = (−1, 1), and (x0, y0) = (0, 0).
It is clear that F(0, 0) = conv({(−1,−1), (0, 0)}) ⊆ cone(conv({(−1,−1), (1, 0),
(0, 0)})) = −C(0), so condition (i) holds. Since F(0, y) = conv({(−ey,−1),
(0, 0)}), for every y ∈ R+, so for α = −3, s0 = −k0 = (1,−1), we have (−s0 +
αk0 − K) = (2,−2)− C(0). Hence, F(0, y) ∩ (−s0 + αk0 − C(0)) = ∅, and so
condition (ii) holds too. Also, it is clear that F(x, z) ⊆ F(x, y)+ F(y, z)− C(x).
Conditions (iv) and (v) can be obtained by the following fact:

F(x, y) ⊆ −C(x) ⇐⇒ y ≤ x ⇐⇒ C(y) ⊆ C(x).

Remark 3.1: Note that Theorem 3.6 reduces to Theorem 4.1 of [39], in the case
where (X, q) is a complete metric space, Y is a topological vector space, K is a
closed convex cone in Y, C(x) = K for all x ∈ X, k0 ∈ K \ (−K) andψ(x, y) = λ

for all x, y ∈ X, where λ is a positive real number. Hence, Theorem 3.6 extends
Theorem 4.1 in [39] to set-valued bimaps defined on quasi-metric spaces with
values in linear spaces ordered by variable preferences with the perturbation
function as the form λd(·, ·)k0 which satisfies the triangle inequality. Further-
more, by Remark 4.5 of [39], conditions (ii) and (iv) in Theorem 3.6 are strictly
weaker than conditions (ii) and (iii) in Theorem 3.1 of [38] and conditions (ii)
and (iv) in Theorem 3.1 of [41], respectively.

As a consequence of the above result, we can obtain the following consequence
which is a moving cone version of Theorem 3.1 of [14].

Theorem 3.8: Let (X, q), Y, K and C : X ⇒ Y be the same as in Theorem 3.6.
Let F : X × X ⇒ Y be a set-valued bimap with nonempty values that satisfies con-
ditions (i)–(v). Let δ : X → R++ be a C-F-decreasing function, in the sense that
F(x, x′) ⊆ −C(x) ⇒ δ(x) ≤ δ(x′). Then, there exists x̂ ∈ X such that

(a) F(x0, x̂)+ δ(x0)q(x0, x̂)k0 ⊆ −C(x0);
(b) F(x̂, x)+ δ(x̂)q(x̂, x)k0 � −C(x̂), for each x ∈ X \ {x̂}.

Proof: It is enough to consider ψ : X × X → R++ as ψ(x, y) = δ(x) for each
x, y ∈ X and apply Theorem 3.6. �

As another consequence of Theorem 3.6, we have the following result.
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Theorem 3.9: Let (X, q), Y, K and C : X ⇒ Y be the same as in Theorem 3.6.
Let F : X × X ⇒ Y be a set-valued bimap with nonempty values that satisfies
conditions (i)–(v). Let δ : X → R++ be a C-F-increasing function, in the sense
that F(x, x′) ⊆ −C(x) ⇒ δ(x′) ≤ δ(x), and let infx∈Xδ(x) > 0. Then, there exists
x̂ ∈ X such that

(a) F(x0, x̂)+ δ(x̂)q(x0, x̂)k0 ⊆ −C(x0);
(b) F(x̂, x)+ δ(x)q(x̂, x)k0 � −C(x̂), for each x ∈ X \ {x̂}.

Proof: It is enough to defineψ : X × X → R++ asψ(x, y) = δ(y) for all x, y ∈ X
and apply Theorem 3.6. �

In the sequel, we are going to obtain another version of Theorem 3.4 in [6]
from Theorem 3.6. For this purpose, we need the following notions.

Definition 3.10 (Limiting monotonicity condition [6]): Let (X, q) be a quasi-
metric space andY be a topological vector space. GivenG : X ⇒ Y and x̄ ∈ X, we
say thatG satisfies the limiting monotonicity condition at x̄ if for any sequence of
pairs {(xn, yn)} ⊂ gphG = {(x, y) ∈ X × Y : y ∈ G(x)}with q(xn, x̄) → 0 asn →
∞ one has the implication

[yn+1 ≤ yn for all n ∈ N] ⇒ [there is a ȳ ∈ MinG(x̄) with ȳ ≤ yn, n ∈ N].

Theorem 3.11: Let (X, q) be a left-complete quasi-metric space and Y be a topo-
logical vector space. Let G : X ⇒ Y be a set-valuedmapwith compact values, where
Y is partially ordered by a proper closed convex cone C ⊂ Y with C \ (−C) �= ∅.
Assume that G satisfies the limitingmonotonicity condition onX, ε > 0, λ > 0, κ ∈
C \ (−C), (x0, y0) ∈ gphG, G(X) ∩ (y0 + εκ − C) = ∅ and G(x) ∩ (y0 + Rκ −
C) �= ∅, for all x ∈ X. Then there exists (x̄, ȳ) ∈ gphG satisfying

ȳ − y0 + ε

λ
q(x0, x̄)κ ≤ 0, ȳ ∈ MinG(x̄), and (19)

y − ȳ + ε

λ
q(x̄, x)κ �≤ 0 for all (x, y) ∈ gphG with x �= x̄. (20)

Proof: Let ξκ(·) be the Gerstewitz function generated by C and κ . Since G(x) ∩
(y0 + Rκ − C) �= ∅ and κ ∈ C \ −C, then −∞ < ξκ(y − y0) < +∞ for all y ∈
G(x). Suppose that F : X × X → R andψ : X × X → R+ are defined as follows:

F(x, z) := min{ξκ(u − y0) : u ∈ G(z)} − min{ξκ(v − y0) : v ∈ G(x)},
and ψ(x, z) := ε

λ
, ∀x, z ∈ X.

Not that, since G is compact valued, the bifunction F is well defined. By con-
sidering K = C(x) = R+ for all x ∈ X and k0 = 1, we show that all conditions
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of Theorem 3.6 hold for bifunctions F and ψ . Since F(x0, x0) = 0, condition
(i) of Theorem 3.6 is satisfied. It is easy to see that conditions (iii) and (iv)
of Theorem 3.6 hold, and ψ is C-F-decreasing in the first argument and C-F-
increasing in the second argument. Now, we show that F is left C(·)-slm. Let
{xn} be a left convergent sequence to an element x̄ and F(xn, xn+1) ≤ 0, for every
n ∈ N. Since G is compact valued, then for every n ∈ N there exists yn ∈ G(xn)
such that

ξκ(yn+1 − y0) ≤ ξκ(yn − y0).

Therefore, yn+1 − yn ∈ −C. Since G satisfies the limiting monotonicity condi-
tion, there is ȳ ∈ MinG(x̄) with ȳ − yn ∈ −C, n ∈ N. Hence,

F(xn, x̄) ≤ ξκ(ȳ − y0)− ξκ(yn − y0) ≤ 0.

Also, since G(X) ∩ (y0 + εκ − C) = ∅, then ξκ(v − y0) ≥ ξκ(εκ) = ε for every
v ∈ G(x) and x ∈ X. Therefore, infx∈X F(x0, x) ≥ ε, and so F(x0,X) ∩ (− ε

3 −
ε
3 − K) = ∅, and therefore condition (ii) of Theorem 3.6 holds. Hence, there
exists x̄ ∈ X such that

(a1) F(x0, x̄)+ ε
λ
q(x0, x̄) ≤ 0;

(a2) F(x̄, x)+ ε
λ
(x̄, x)q(x̂, x) �≤ 0, for each x ∈ X \ {x̄}.

On the other hand, by Lemma 3.1 [54] there is ȳ ∈ G(x̄) such that ȳ ∈ MinG(x̄)
and min{ξκ(u − y0) : u ∈ G(x̄)} = ξκ(ȳ − y0). So, by condition (a1), we have
ξκ(ȳ − y0)+ ε

λ
q(x0, x̄) ≤ 0. Hence, ȳ − y0 + ε

λ
q(x0, x̄)κ ∈ −C. Also, condition

(a2) implies y − ȳ + ε
λ
q(x̄, x)κ �∈ −C for all x �= x̄. �

Remark 3.2: Notice that conditionG(X) ∩ (y0 − εκ − K) = ∅ is strictly weaker
than quasiboundedness from below condition, see Proposition 3.6 and Example
3.9 in [39]. Moreover, in Theorem 3.4 of [6] the set-valued map G is level-closed,
but in Theorem 3.11 we assume that G is compact valued. On the other hand,
the comparison of condition (20) with known results of this type for set-valued
mappings is discussed in Remark 3.4 of [6] and for further discussion the reader
may refer to Chapter 9 of Modukhovich’s book [13].

4. Application to the formation and stability of a partnership

4.1. The formation of partnerships: a variational rationality approach

A partnership is an arrangement in which two or more parties, known as part-
ners, agree to cooperate to advance their mutual interests. The partners may
be individuals, businesses, interest-based organizations, schools, governments
or combinations (see [55,56], for a survey). We are interested in the dynamical
formation of a partnership: ‘Coming together is a beginning, staying together is
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progress, and working together is success’, famously said Henry Ford. Very often,
a partnership is not so easy to form and unstable (rather easy to break). The for-
mation and stability of a partnership is collective action problem. It occurs when
a number of people work together to achieve some common objective. Because
taking part in a collective action can be costly, and if individuals believe that
the collective act will occur without their individual contributions, then they
may try to free ride. Then, this free-riding problem comes from disincentives
that tend to discourage joint action by individuals in the pursuit of a common
goal.

4.1.1. A simple variational rational model of a partnership
To save space, let us consider a simplified version of a model given in [48] to
explain more transparently the formation and stability of a partnership in the
context of the (VR) variational rationality approach [43–48].

Collective action within a partnership. Consider two partners j ∈ J = {1, 2}
and two tasks i ∈ T = {a, b} that they must do jointly. A collective action (task)
refers to how much of these two tasks x = (xa, xb) ∈ Xa × Xb the two partners
jointly do. This means that each partner can do a part of each of these two
tasks. For example, each partner performs one of these two tasks with some help
from the other partner. Suppose that each time they perform a collective task
x = (xa, xb) ∈ X they get a joint surplus S(x) = G(x)− �(x) ∈ R+, where, for
example, the joint benefit of the partnership is G(x) = θxaxb and joint costs of
production are �(x) ∈ R+ if Xa = Xb = R+. In this setting, for simplification,
doing a task (action) refers to spending some effort in order to provide a joint
surplus.

Utilities to participate in a partnership. For each partner j ∈ J, his individual
utility gj(y) to participate in the partnership in the current period must increase
with the surplus. A separable formulation gives gj(y) = sj(y)S(y), j ∈ J, with sj =
sj(y) ∈ R++. For a joint venture, s1 + s2 = 1. This formulation is linear if weights
sj are constant. The vectorial utility of the partnership is g(y) = (g1(y), g2(y))
∈ R2.

Moving: more or less engagements in the partnership. Consider three periods:
the previous, the current and the future periods. Suppose that partners want to
move from x = (xa, xb) ∈ X, i.e., having done the collective action x ∈ X in the
previous period to y = (ya, yb) ∈ X, i.e., doing the collective action y ∈ X in the
current period. What occurs in the future period will be examined later. This
means that partnersmake the collectivemove x = (xa, xb) � y = (ya, yb). Then,
yi − xi > 0 ( = , < 0) is an engagement (continuation or disengagement) of the
two partners in the collective task i ∈ T . To save space, we do not model the con-
comitant disengagements and engagements in activities of each partner outside
the partnership, when resources are limited; see [48]. A collective change is the
movem = x � y, y �= x and a collective stay is the move σ = x � x.
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Advantages to change rather than to stay. When partners consider changing,
that is, moving from having done x in the previous period to do y �= x in the
current period, they compare, in the current period,

(i) the expected utilities g(x) = (g1(x), g2(x)) of doing x for the second time if
they stay with,

(ii) the expected utilities h(y) = (h1(y), h2(y)) to do y �= x for the first time if
they change. Then, the expected vectorial advantages to move A(x, y) =
(A1(x, y),A2(x, y)) are A(x, y) = h(y)− g(x) if y �= x with A(x, x) = g(x)−
g(x) = 0 if y = x.

Fair advantages tomove. LetK ⊆ R2 be a convex pointed cone. Then,m = x � y
is a fair advantageous move if A(x, y) ∈ K. For example, consider the cone K =
R+ × R+ or an acute cone K =

{
(A1,A2)≥0,

with μA1≤A2≤μA1

}
, 0 < μ ≤ μ < +∞. This

models the fact that advantages to move must be not too different for the two
partners.

Inconveniences to moves as quasi-distances. A collective move x = (xa, xb) �
y = (ya, yb) requires that the two partners performmore or less of the two activ-
ities than previously. That is, they jointly spend more (less) collective efforts and
resources in task i ∈ T = {a, b} if yi − xi > 0 (xi − yi > 0). These joint engage-
ments and disengagements generate joint costs of moving qi(xi, yi) = ci+(yi −
xi) if yi − xi ≥ 0 and qi(xi, yi) = ci−(xi − yi) if xi − yi > 0. Hence, expected
joint costs of moving are, relative to each task i ∈ T = {a, b}, qi(xi, yi) =[
ci+(yi−xi),ifyi−xi≥0
ci−(xi−yi),ifyi−xi<0

where ci+, ci− > 0 model unit costs of engagement and

disengagement.
Expected joint costs of moving of the partnership are q(x, y) = qa(xa, ya)+

qb(xb, yb).
The two partners j ∈ J = {1, 2} share a part kj > 0, k1 + k2 = 1, j = 1, 2, of the

joint costs of moving q(x, y). That is, for each partner j, his expected inconve-
nience to move is Ij(x, y) = kjq(x, y). Let I(x, y) = (I1(x, y), I2(x, y)). Then, we
have I(x, y) = kq(x, y).

Furthermore, q(·, ·) : (x, y) ∈ X × X �−→ q(x, y) ∈ R+ is a quasi-distance,
given that each qi(·, ·), i = a, b is a quasi-distance. For simplification, we can
suppose that inconveniences to move are known.

Worthwhile balances. Let B(x, y) = (B1(x, y),B2(x, y)) be the vector of
worthwhile balances Bj(x, y) = Aj(x, y)− ξ Ij(x, y) , j = 1, 2, with A(x, y) =
(A1(x, y),A2(x, y)) and I(x, y) = (I1(x, y), I2(x, y)). The scalar ξ > 0 weights
equally (for simplification) each inconvenience to move.

Then, given what has been said before, B(x, y) = [h(y)− g(x)] − ξkq(x, y).
Let us emphasize that, in this model, a worthwhile balance depends on two

kinds of sharing rules. That is, it depends of,
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(i) the shares s = (s1, s2) ∈ R+ × R+, given that gj(x) = sj(x)S(x) and gj(y) =
sj(y)S(y). These shares define how much is it beneficial for each partner j to
participate in the joint project;

(ii) the shares k = (k1, k2) ∈ R+ × R+ of the total inconveniences to move
q(x, y). They define how much it is costly to participate in the joint project.

The fair and worthwhile formation of a partnership. Fair collective worthwhile
moves satisfy B(x, y) ∈ K. For example, K = {(B1,B2) ≥ 0,μB1 ≤ B2 ≤ μB1},
with 0 < μ ≤ μ < +∞. This formulation means that worthwhile balances are
close enough.

4.1.2. A rational aspect of the status quo bias: when the repetition of collective
action (stay) is rewarding
Let us highlight the following simple, but important behavioural result given in
[48]. We give again the proof, because this will help us to generalize it later, when
uncertainty matters.

Result. Expected advantages tomove are superadditive when doing something
for the second time is better than doing it for the first time.

Proof: Advantages to move are superadditive when, for all x, y, z ∈ X, it exists
η ∈ K such that A(x, z) = A(x, y)+ A(y, z)+ η. This is true if g(y)− h(y) ∈ K,
i.e. if g(y) = h(y)+ η, for some η ∈ K for all y ∈ X. Let us consider three cases.

(i) z �= x and y /∈ {x, z} =⇒ A(x, z) = A(x, y)+ A(y, z)+ η, η ∈ K if and
only if, h(z)− g(x) = h(y)− g(x)+ h(z)− g(y)+ η(y), i.e. if and only if
g(y) = h(y)+ η ∈ K for all y ∈ X. This means that the expected utility
g(y) ≥K h(y) of doing an activity for the second time is high enough relative
to the expected utility h(y) of doing the same activity for the first time.

(ii) z �= x and y = x =⇒ A(x, z) = A(x, x)+ A(x, z) = A(x, z) because
A(x, x) = 0.

(iii) z �= x and y = z =⇒ A(x, z) = A(x, z)+ A(z, z) = A(x, z) because
A(z, z) = 0. �

The inequality h(y) = g(y)− η(y) where η = η(y) ∈ K occurs when, in a
partnership, partners have optimistic expectations relative to an expanding mar-
ket, or higher productivities (learning by doing). In this way, the utility of doing
something new is penalized with respect to the utility of doing something for the
second time (from increased benefits due to repetition). This effect has to dowith
the famous exploration–exploitation trade-off [57]. We can also see this effect as
a rational aspect of the famous status quo bias ([58]).

In this context, given that A(x, x) = 0 and A(x, y) = h(y)− g(x) if y �= x, we
get two formulations of expected advantages to move,
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(i) A(x, y) = [g(y)− η(y)] − g(x) = g(y)− g(x)− η(y) = v ∈ K; or,
(ii) A(x, y) = h(y)− [h(x)+ η(x)] = h(y)− h(x)− η(x) = v ∈ K.

That is, if y �= x, A(x, y) ∈ K if and only if g(y)− g(x) ≥K η(y) or h(y)−
h(x) ≥K η(x).

Then, a worthwhile balance can be B(x, y) = [g(y)− g(x)− η(y)] −
ξkq(x, y), or B(x, y) = [h(y)− h(x)− η(x)] − ξkq(x, y).

4.1.3. A formulation of a worthwhile move in terms of frustration feelings

Aspiration levels and frustration feelings. Let h
j = sup{hj(x), x ∈ X} < +∞ be

the aspiration level of partner j ∈ J = {1, 2} when, for example, the two part-
ners perform the collective action x for the first time (the case of doing the
collective action for the second time being similar). Then, h = (h

1
, h

2
) is the

aspiration (ideal) point of the partnership. Let f j(x) = h
j − hj(x) ∈ R+ be the

frustration feeling of partner j of not doing his best for the first time. Thus,
the vector f (x) = (f 1(x), f 2(x)) defines the unsatisfaction levels of the two part-
ners when they do x for the first time. We have f (x) = h − h(x) ∈ R+ × R+.
Then, when moving from x to y �= x, f (x)− f (y) = h(y)− h(x) while, as seen
before, advantages to move are A(x, y) = h(y)− h(x)− η(x). As a consequence,
advantages to move are the difference between frustration feelings f (x) and f (y),
i.e.A(x, y) = f (x)− f (y)− η(x).

Loss to move. They are the opposite of advantages to move, i.e.F(x, y) =
−A(x, y) = f (y)− f (x)+ η(x).

Worthwhile moves in term of frustration feelings. The opposite of a worthwhile
balance is L(x, y) = −B(x, y) = −A(x, y)+ ξkq(x, y) = F(x, y)+ ξkq(x, y).

Then, a worthwhile move m = x � y is such that B(x, y) = A(x, y)−
ξkq(x, y) ∈ K, i.e. such that L(x, y) = F(x, y)+ ξkq(x, y) ∈ −K.

4.2. First result of this paper: the formation of a robust partnership in a
changing and complex environment

In this paper, taking advantage of the previous example relative to the formation
of a partnership, we give a new application of our generalized and robust varia-
tional principles in the context of the variational rationality approach. This appli-
cation is relative to the formation and stability of a partnership that generalizes
Qiu et al. [14] in different contexts. We,

(i) give a new and explicit set-valued formulation of the subadditive inclusion
F(x, z) ⊆ F(x, y)+ F(y, z)− K;

(ii) provide with a new set-valued formulation of a worthwhile move F(x, y)+
ψkq(x, y) ⊆ −K that models the worthwhile formation of a partnership.
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(iii) consider changing weights on resistance to move leading to two different
formulations of a robust worthwhilemove, F(x, y)+ ψ(x, y)kq(x, y) ⊆ −K.
This formulation is new;

(iv) introduce changing preferences (moving cones C(x)). This formulation is
new in the context of robust variational principles.

4.2.1. A new set-valued formulation of the superadditivity of advantages to
move
Let us give a behavioural interpretation of the superadditivity of a set-valued loss
to move function, i.e. F(x, z) ⊆ F(x, y)+ F(y, z)− K.

Suppose now that partners do not know how much it is rewarding to repeat a
collective action x before doing it again. That is, they do not know g(x), i.e. they
do not know the difference g(x)− h(x) = η(x) ∈ K, given that h(x) is known.
Then, set g(x) = h(x)+ η, with η ∈ K, η unknown. In this setting advantages
to move A(x, y) = h(y)− g(x) from x to y can be written as A(x, y) = h(y)−
[h(x)+ η] = h(y)− h(x)− η = A(x, y, η).

Then, the superadditive condition A(x, z) = A(x, y)+ A(y, z)+ v, v ∈ K
means that

A(x, z, η) = A(x, y, η′)+ A(y, z, η′′)+ v (∗∗), where,
A(x, z, η) = h(z)− h(x)− η, η ∈ K,
A(x, y, η′) = h(y)− h(x)− η′, η′ ∈ K, and
A(y, z, η′′) = h(z)− h(y)− η′′, η′′ ∈ K.
This shows that condition (∗∗) is satisfied if and only if it exists η, η′, η′′ ∈ K

such that
−η = −η′ − η′′+ v, i.e. if v = η′ + η′′ − η ∈ K. This is true if η′ = η.

Let A(x, z) = {A(x, z, η), η ∈ K}, A(x, y) = {A(x, y, η′), η′ ∈ K} and A(y, z) =
{A(y, z, η′′), η′′ ∈ K}, then, A(x, z) ⊆ A(x, y)+ A(y, z)+ K means that for
all η ∈ K, it exist η′, η′′ ∈ K and v ∈ K such that A(x, z, η) = A(x, y, η′)+
A(y, z, η′′)+ v.
This shows that A(x, z) ⊆ A(x, y)+ A(y, z)+ K. Then, given that F(x, y) =
−A(x, y), F(x, y) = F(x, y, η) and A(x, y) = A(x, y, η), we have F(x, y, η) =
−A(x, y, η). This shows that F(x, z, η) = F(x, y, η′)+ F(y, z, η′′)− v.
Let F(x, z) = {F(x, z, η), η ∈ K}, F(x, y) = {F(x, y, η′), η′ ∈ K} and F(y, z) =
{F(y, z, η′′), η′′ ∈ K}. Then, the inclusion A(x, z) ⊆ A(x, y)+ A(y, z)+ K is
equivalent to the inclusion F(x, z) ⊆ F(x, y)+ F(y, z)− K.

4.2.2. The formation of a robust andworthwhile partnership
Starting from having done the collective action x, a partnership evolves when it
canmake a collective worthwhile move x � y. That is, when B(x, y) = A(x, y)−
ξkq(x, y) ∈ K, i.e. when L(x, y) = −B(x, y) = F(x, y)+ ξkq(x, y) ∈ −K. Let
A(x, y) = h(y)− g(x) and g(x)− h(x) = η ∈ K as before. Then, A(x, y) =
A(x, y, η) = h(y)− h(x)− η. This implies F(x, y) = −A(x, y) = h(x)− h(y)+
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η = F(x, y, η) = −A(x, y, η). Then, B(x, y, η) = A(x, y, η)− ξkq(x, y) and
L(x, y, η) = −B(x, y, η) = F(x, y, η)+ ξkq(x, y).

Conclusion. Given that A(x, y) = {A(x, y, η), η ∈ K} and F(x, y) = {F(x, y, η),
η ∈ K}, a move x � y is worthwhile if B(x, y) = A(x, y)− ξkq(x, y) ⊆ K. That
is, if L(x, y) = −B(x, y) = F(x, y)+ ξkq(x, y) ⊆ −K.

4.2.3. Changing preferences
In this paper, preferences over worthwhile balances change with the status quo
x when the cone C = C(x) depends of x. For example, the acute cone C(x) =
{0, 0} ∪

{
(B1,B2)≥0,

with μ(x)B1≤B2≤μ(x)B1
}
, with 0 < μ(x) ≤ μ(x) < +∞, is a moving

cone. This formulation means that (i) the ratio between worthwhile balances is
bounded (a fair constraint between partners) and (ii) bounds are changing (the
fair constraint changes with the status quo). In this paper, K ⊆ x∈X C(x).

4.2.4. Variable weights given to resistance tomove
Weconsider now two different situations where, given amovem = (x, y), and the
worthwhile balance B(x, y, η) = A(x, y, η)− ξ I(x, y), the weight given to resis-
tance to move ξ = ψ(x, y) > 0 depends both of the status quo x and of the
desired end y. Consider, for an easier illustration, the two specific cases given
in Theorems 3.8 and 3.9.

First case: ξ = ψ(x, y) = δ(x) > 0. In this situation, we will suppose that the
weight ψ(·) is F-decreasing. This means that, if the given move m = (x, y) is
advantageous, i.e. if A(x, y, η) = −F(x, y, η) ∈ K, then the weight assigned to
resistance to the move increases when moving from x to y, i.e. δ(y) ≥ δ(x). This
model the famous ego depletion effect coming from physiological, physical and
mental fatigue after having done a succession of tasks [59].

Second case: ξ = ψ(x, y) = δ(y) > 0. In this situation, wewill suppose that the
weight δ(·) isF-increasing. Thismeans that if the givenmovem = (x, y) is advan-
tageous, i.e. ifA(x, y, η) = −F(x, y, η) ∈ K, then theweight assigned to resistance
to move decreases when moving from x to y, i.e. δ(y) ≤ δ(x). This model the
well-known goal gradient effect ([60]). The goal-gradient hypothesis states that
the tendency to approach a goal increases with proximity to the goal. This is the
case if an individual gives less importance to the resistance to move.

4.3. Second result of this paper: robust variational principles and the stability
of partnership

4.3.1. Robust EVP principles and the stability of a partnership: robust traps
We are now in a good position to show how the mathematical part of our paper
provides the existence of two periods go and stop worthwhile dynamic. That is,
in the context of our example, how it proves the formation (go) and the stability
(stay) of a partnership in a changing and complex environment, when,
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(i) vectorial advantages to change depend on an uncertain status quo bias η;
(ii) preferences are changing: they are defined by a moving cone C(x), x ∈ X;
(iii) the importance of resistance tomoving depends on the starting or endpoint

of a move.

In this way, our set-valued Ekeland equilibrium theorem gives sufficient con-
ditions for the existence of robust traps in a partly unknown and changing
environment.

Behavioural interpretations of our robust EVP theorems. Given what we have
shown before, the behavioural signification of our set-valued Ekeland equilib-
rium theorems, for example Theorem 3.6, is the following. It tells us that, starting
from any initial position x0, there exists a robust trap x̂ ∈ X such that,

(a) it is worthwhile to directly move from x0 to x̂. That is,
F(x0, x̂)+ ψ(x0, x̂)q(x0, x̂)k0 ⊆ −C(x0).

(b) it is not worthwhile to move from x̂ to any x �= x̂. That is,
F(x̂, x)+ ψ(x̂, x)q(x̂, x)k0 � −C(x̂), ∀ ∈ x �= x̂.

To save space, we will leave it to the reader to interpret the technical hypothesis
of Theorem 3.6 in terms of the VR approach ([46,47]). This is easy.
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