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Background: Disruptions in central autonomic processes in people with epilepsy have

been studied through evaluation of heart rate variability (HRV). Decreased HRV appears

in epilepsy compared to healthy controls, suggesting a shift in autonomic balance

toward sympathetic dominance; recent studies have associated HRV changes with

seizure severity and outcome of interventions. However, the processes underlying these

autonomic changes remain unclear. We examined the nature of these changes by

assessing alterations in whole-brain functional connectivity, and relating those alterations

to HRV.

Methods: We examined regional brain activity and functional organization in 28

drug-resistant epilepsy patients and 16 healthy controls using resting-state functional

magnetic resonance imaging (fMRI). We employed an HRV state-dependent functional

connectivity (FC) framework with low and high HRV states derived from the following four

cardiac-related variables: 1. RR interval, 2. root mean square of successive differences

(RMSSD), 4. low-frequency HRV (0.04–0.15Hz; LF-HRV) and high-frequency HRV

(0.15–0.40Hz; HF-HRV). The effect of group (epilepsy vs. controls), HRV state (low vs.

high) and the interactions of group and state were assessed using a mixed analysis

of variance (ANOVA). We assessed FC within and between 7 large-scale functional

networks consisting of cortical regions and 4 subcortical networks, the amygdala,

hippocampus, basal ganglia and thalamus networks.

Results: Consistent with previous studies, decreased RR interval (increased heart

rate) and decreased HF-HRV appeared in people with epilepsy compared to healthy

controls. For both groups, fluctuations in heart rate were positively correlated with

BOLD activity in bilateral thalamus and regions of the cerebellum, and negatively

correlated with BOLD activity in the insula, putamen, superior temporal gyrus

and inferior frontal gyrus. Connectivity strength in patients between right thalamus

and ventral attention network (mainly insula) increased in the high LF-HRV state

compared to low LF-HRV; the opposite trend appeared in healthy controls. A

similar pattern emerged for connectivity between the thalamus and basal ganglia.
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Conclusion: The findings suggest that resting connectivity patterns between the

thalamus and other structures underlying HRV expression are modified in people with

drug-resistant epilepsy compared to healthy controls.

Keywords: state-dependent functional connectivity, sympathovagal balance, SUDEP, thalamic connectivity,

ventral attention network, insula cortex

INTRODUCTION

Heart rate varies on a moment-to-moment basis in response
to changing physiological demands, and is regulated by
sympathetic and parasympathetic components of the autonomic
nervous system (ANS). Evaluation of the momentary changes
in heart rate variability (HRV) can provide insights into
the interplay of central mechanisms controlling sympathetic
and parasympathetic (vagal) activity (1, 2). A shift toward
parasympathetic dominance is typically accompanied by heart
rate declines and increased HRV; whereas, increased sympathetic
dominance is typically associated with an accelerated heart rate
and decreased HRV [although deviations from this generality
occur (3)]. Considerable evidence exists that HRV provides an
indication of sympathovagal balance and can be useful as a
marker for certain cardiovascular diseases (4), mortality, and
sudden death (5).

Epilepsy is accompanied by significantly different patterns
of HRV (6). A lower interictal HRV is often reported in
drug-resistant epilepsy, suggesting a shift toward sympathetic
predominance (6–9). In addition, a link between peri-ictal HRV
and major motor seizure severity (10) has been outlined, as
well as an indication of seizure reduction following vagal nerve
stimulation in patients with drug-resistant epilepsy (11). HRV
determination of low parasympathetic activity and increased
risk of sudden unexpected death in epilepsy SUDEP has been
described (12, 13), as well as altered circadian rhythms of HRV in
epilepsy (14, 15); the latter findingmay explain the larger number
of night-time SUDEP cases (16). However, a poor understanding
of the mechanisms underlying expression of cardiac functions in
epilepsy hampers interpretation of alterations in brain regulatory
sites controlling HRV and the potential to gain insights into
dysfunctions within those processes.

Functional magnetic resonance imaging (fMRI), a non-
invasive tool for probing brain activity and functional
connectivity (FC), has been used to study the neural substrates
of autonomic regulation (17–20). Initial studies primarily relied
on tasks to excite the ANS (21–26), while subsequent studies
have used resting-state fMRI (27–29), which has a benefit of
not being confounded by task-related changes in local brain
activity and FC. Differences in HRV across participants as
well as fluctuations in HRV within-individuals have been
related to spontaneous regional blood-oxygen-level-dependent
(BOLD) fluctuations and connectivity between distinct regions
(27–29). Regions found in fMRI studies to be associated with
autonomic regulation, such as the anterior cingulate (ACC),
medial prefrontal (mPFC) and insular cortices, form part of
the central autonomic network (CAN) described in preclinical

studies, a system of brain structures involved in ANS functions
(30, 31).

Functional connectivity measures between brain sites are
altered in people with epilepsy (32–36); however, it is
unclear whether these alterations are linked to impaired
cardiac regulation. Here, we investigated alterations in brain
functional organization in relation to cardiac rhythms in
people with epilepsy. We employed an HRV state-dependent
FC framework with two levels of variability states estimated
from electrocardiogram (ECG) recorded during resting-state
fMRI. Given the association between HRV measures and time-
varying FC reported in the literature (27), a state-dependent FC
framework informed by concurrent cardiac recordings appeared
more suitable for studying cardiac dysfunction than static
FC approaches that do not utilize physiological recordings.
Moreover, we examined whole-brain FC in a data-driven manner
rather than restricting the analysis to interactions between
regions of the CAN, as recent studies suggested that the neural
correlates of cardiac regulation aremore widespread than initially
thought (17, 29, 37).

MATERIALS AND METHODS

Subjects
Thirty-two (32) patients with drug-resistant epilepsy were
selected from an ongoing investigation into the localization of
epileptic activity in the brain using simultaneous EEG-fMRI
with ECG (38), with a case ascertainment period between 2005
and 2014. The inclusion criteria were: (1) the availability of
a resting-state EEG-fMRI scan; and (2) a high-resolution T1-
weighted scan. The exclusion criteria were: (1) large brain lesion
or previous neurosurgery [we considered large to be anything
greater than a small area of focal cortical dysplasia (FCD) or
sclerosis – e.g., tumors, cavernomas] (2) incomplete clinical
or imaging data (e.g., abandoned scans). Sixteen (16) healthy
controls were also considered with comparable age and sex
characteristics; the group demographics and clinical details are
shown in Supplementary Tables 1, 2. The study was approved
by the National Research Ethics Committee (United Kingdom;
04/Q0502/89) and all patients gave written informed consent.

Simultaneous EEG-fMRI Acquisition
Scanning was performed at the Epilepsy Society (Chalfont St
Peter, Buckinghamshire, UK) on a 3.0 Tesla GE (Signa excite
HDX) scanner. A 20-min (400 vol) T∗

2-weighted fMRI scan
was collected from each subject except for two patients that
were scanned for 10-min instead. The fMRI scan was done
using a gradient-echo echo-planar-imaging with the following
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characteristics: repetition time (TR) = 3,000ms, echo time (TE)
= 30ms, flip angle = 90, matrix size = 64 × 64, field of view
(FOV) = 24 × 24 cm2, slice thickness = 2.4mm with 0.6mm
gap, 44 slices, and voxel size = 3.75 × 3.75 × 3 mm3. Subjects
were instructed to keep their eyes closed, avoid falling asleep,
and not think about anything in particular. A T1-weighted image
was also acquired using an FSPGR (fast spoiled gradient recalled
echo) sequence, with the following parameters: matrix size= 256
× 256, FOV= 24× 24 cm2, slice thickness= 1.5mm, 150 slices,
and voxel size= 0.94× 0.94× 1.5 mm3.

Scalp EEG signals and an ECG signal were simultaneously
acquired during fMRI scanning at 5 kHz using a 64 channel
MR-compatible EEG system with ring Ag/AgCl electrodes
(BrainAmp MR+; Brain Products GmbH, Munich, Germany).
The electrodes were placed according to the 10/20 system and
referenced to electrode FCz.

Preprocessing of fMRI Data
As described previously (38), preprocessing of fMRI data was
conducted using the Statistical Parametric Mapping software
(SPM12,Welcome Trust Centre for Neuroimaging, London, UK,
http://www.fil.ion.ucl.ac.uk/spm) (39) in a Matlab environment
(R2020a; Mathworks, Natick, Massachusetts, USA). The first
five functional volumes were discarded to allow steady-state
magnetization to be established, and the remaining volumes were
realigned to correct for head movements. The structural image of
each subject was co-registered to the mean realigned functional
volume and, subsequently, underwent tissue segmentation
into gray matter, white matter and cerebrospinal fluid tissue
compartments. The functional images as well as the coregistered
structural images and tissue compartment masks were spatially
normalized to the Montreal Neurological Institute (MNI)
reference space using non-linear transformation.

To account for anatomical variability across participants and
reduce thermal noise, all individual functional volumes were
smoothed using a 5mm full-width half-maximum (FWHM)
Gaussian kernel. Subsequently, the Brainnetome atlas was used
to extract mean fMRI time-series from 210 cortical and 36
subcortical parcels (40). The parcel time-series were high-pass
filtered at 0.008Hz to avoid spurious correlations that arise from
low-frequency fluctuations (41).

We used the framewise displacement (FD) as defined in Power
et al. (42) to identify and exclude subjects with high levels of
motion, as motion can obscure neural-related BOLD activity
(43, 44) and lead to systematic biases in FC studies (45–47).
FD is calculated from the six motion realignment parameters
and reflects the extent of motion at each timepoint. Subjects
that were characterized by mean FD larger than 0.25mm were
excluded. In addition, for the remaining of the subjects that were
considered in the study, timepoints with FD larger than 0.2mm
were disregarded.

Finally, to further mitigate the effects of motion as well as
reduce the effects of physiological processes and scanner artifacts,
we regressed out the following nuisance regressors from all parcel
time-series: the first ten principal components from voxel time-
series within the white matter (48), six regressors related to
cardiac pulsatility artifacts obtained with the convolution model

proposed in Kassinopoulos and Mitsis (45), and the mean fMRI
time-series averaged across all voxels within the gray matter.

Preprocessing of ECG and Calculation of
HRV Measures
The ECG was corrected for gradient artifacts using adaptive
template subtraction (49) implemented in BrainVision Analyzer
2 software (Brain Products GmbH, Munich, Germany), and
band-pass filtered from 0.5 to 40Hz. The R-waves were detected
using Matlab’s function findpeaks with a minimum peak distance
varying between 0.5 and 0.9 s depending on the subject’s average
RR interval (time between successive R-waves).

The RR intervals were used to obtain time-series of the root
mean square of successive differences in RR intervals (RMSSD),
and the normalized low (0.04–0.15Hz) and high (0.15–0.40Hz)
frequency components of HRV. The aforementioned three HRV
measures were computed in adjacent time windows of 100 s
each, and a timestep of 1 s, to probe changes in sympathetic and
parasympathetic activity during the 20-min resting-state scan.
RMSSD is a time-domain HRVmeasure that is believed to reflect
parasympathetic activity (50), the low-frequency HRV (LF-HRV)
is a frequency-domain measure presumably sensitive to both
branches of the ANS, and the high-frequency HRV (HF-HRV)
is a frequency-domain measure that, similar to RMSSD, reflects
parasympathetic activity. To derive the normalized LF- and HF-
HRV measures, the time-series of successive differences in RR
intervals was uniformly resampled at 10Hz before estimating the
Welch power spectral density. Subsequently, the power within
the frequency ranges 0.04–0.15Hz (LF-HRV) and 0.15–0.40Hz
(HF-HRV) was divided by the power within the range 0.04–
0.50Hz and multiplied by 100%. Apart from the three HRV
measures, the moving average of RR intervals was also computed
across the time windows. Before the calculation of an HRV
measure or mean RR interval within a time window, outliers of
RR values, defined as three median absolute deviations (MAD)
away from the median, were linearly interpolated. To disentangle
fluctuations in HRV from fluctuations in RR interval, the three
HRV measures were orthogonalized with respect to fluctuations
in RR interval. Furthermore, heart rate was estimated as the
inverse of instantaneous RR interval multiplied by 60. The heart
rate was preferred over the instantaneous RR interval to facilitate
comparison with the activation maps shown in Valenza et al. (29)
that link regional BOLD fluctuations to heart rate.

Relationship Between BOLD Fluctuations
and Cardiac Dynamics
The three HRV measures (RMSSD, LF-HRV and HF-HRV),
moving-average RR interval and instantaneous heart rate were
convolved with the canonical hemodynamic response function
(HRF) from SPM12 (39) prior to resampling at the fMRI
acquisition rate. The association between the obtained time-
series and voxel-wise fMRI time-series within the gray matter
was quantified using one-sample t-test on the associated beta
parameters derived from the general linear model. Differences
in the activation maps between epilepsy patients and healthy
controls were assessed with a second-level, mixed-effects analysis
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with subjects as the random-effects factor, using a two-sample t-
test on the associated beta parameters. To control for potential
effects, sex, age and levels of head motion (i.e., mean FD) were
treated as covariates. Moreover, to account for false positives, the
statistical maps were thresholded with a voxel-wise threshold of
family-wise error (FWE) rate p < 0.05 corrected for multiple
comparisons using the random-field theory (51) and an extent
threshold≥ 10 voxels.

Whole-Brain HRV State-Dependent
Functional Connectivity
To investigate the effects of HRV state on brain functional
organization, a whole-brain state-dependent FC analysis was
performed on the parcellation of the Brainnetome atlas that
includes 246 parcels covering the neocortex and sub-cortical
regions (40). The connectivity strength between parcel pairs was
determined based on the pairwise Pearson correlation coefficient
of the parcel time-series. Cortical parcels were grouped into
the following seven large-scale functional networks described in
Yeo et al. (52): visual (34 parcels), somatomotor (33 parcels),
dorsal attention (30 parcels), ventral attention (22 parcels), limbic
(26 parcels), frontoparietal (26 parcels) and default mode (36
parcels), using the mapping provided on the Brainnetome atlas’
website (https://atlas.brainnetome.org/), and the subcortical
parcels were grouped into the following four networks: amygdala
(four parcels), hippocampus (four parcels), basal ganglia (12
parcels) and thalamus (16 parcels) (three cortical parcels were
excluded from the analysis as they were not assigned to any of
the networks). To better understand how FC depends on the
state of autonomic activity, we estimated FC in each individual
considering low or high HRV states separately. The low and high
HRV states were defined as the timepoints in a scan at which an
HRVmeasure (e.g., RMSSD) had values in the lowest and highest
quartile range for that given scan, respectively.

A mixed analysis of variance (ANOVA) was conducted with
the group (epilepsy patients / healthy controls) as a between-
subject factor and HRV state (low/high) as a within-subject
factor, which allowed us to examine the effect of the group
and HRV state on FC within and between networks as well as
their interactions. Potential effects of sex, age and levels of head
motion on FC were regressed out through linear regression at the
group level before conducting the mixed ANOVA. The levels of
head motion for the low and high HRV state were determined
separately considering only the timepoints corresponding to
each state. The connectivity strength between pairs of networks
that was used in the mixed ANOVA was defined as the mean
correlation averaged across all pairs of parcels that belonged to
the two corresponding networks. The HRV state-dependent FC
analysis was performed for the three HRV measures and the
moving-average RR interval. Statistical significance was set at p <

0.0125 (i.e., 0.05/4) adjusted formultiple comparisonwith respect
to pairs of networks using false discovery rate (FDR).

RESULTS

Data from four patients were excluded due to excessive motion
(mean FD > 0.25mm). The sex and age distributions were

similar between the epilepsy patients (n = 28, mean age of 28.7,
14 women) and healthy controls (n = 16, mean age of 30.6,
seven women;) (p > 0.48; two-sample permutation test; number
of permutations q = 10,000; Supplementary Table 2). Motion-
contaminated fMRI volumes (FD > 0.2mm) were also excluded,
resulting in an average of 353 ± 65 volumes per subject. Based
on a two-sample permutation test (q = 10,000) there were no
significant differences in the number of volumes between healthy
controls and epilepsy patients (p > 0.10), and the two groups
exhibited similar levels of motion during the fMRI scan (p >

0.10; Supplementary Figure 1). The consideration of a subset of
volumes for the low and high HRV states (average 88 volumes
per state) did not have any apparent effects on the estimates of
whole-brain FC as compared to the FC matrices obtained from
the entire scan (Supplementary Figure 2).

Heart Rate and HRV Measures
Comparisons of cardiac dynamic metrics between patients
and healthy controls were performed using a two-sample
permutation test (q = 10,000) after regressing out potential
effects of sex and age. The mean RR interval during the
20-min scan was significantly lower in patients compared to
healthy controls (950 ± 100ms vs. 1,100 ± 200ms; p <

0.003; equivalently, the mean heart rate was significantly higher)
(Figure 1). HF-HRV was also lower in epilepsy compared
to controls (71 ± 11% vs. 78 ± 8 %; p < 0.05) whereas
RMSSD and LF-HRV were similar in the two groups. The
LF-HRV (0.04–0.15Hz) and HF-HRV (0.15–0.40Hz) measures
demonstrated a strong negative inter-correlation (r = −0.56;
Supplementary Figure 3) whereas the correlations between the
remaining pairs of RR interval and HRVmeasures were relatively
low (<0.26; Supplementary Figure 3).

Relationship Between BOLD Fluctuations
and Cardiac Dynamics
Across all subjects, BOLD signal fluctuations were associated
(p < 0.05; FWE-corrected) with only one of the cardiac
dynamic metrics, namely instantaneous heart rate, in the
following regions: positive correlations in the thalamus and
several regions of the cerebellum (culmen, declive, uvula, nodulus
and inferior semilunar lobule); negative correlations in the
bilateral inferior frontal gyrus, orbitofrontal cortex, middle
temporal gyrus, precentral gyrus and claustrum, as well as
right insula and putamen (Figure 2). A more liberal threshold
of p < 0.001 uncorrected indicated positive correlations of
heart rate in bilateral caudate, and negative correlations in
left insula and putamen, as well as bilateral superior temporal
gyrus (Supplementary Figure 4). We did not find significant
differences in correlations between the two groups.

HRV State-Dependent Functional
Connectivity
When comparing whole-brain connectivity between patients and
healthy controls, for all cardiac dynamic metrics, the strongest
differences were observed in the connectivity strength between
the frontoparietal, limbic and default mode networks, albeit these
did not reach statistical significance (Figure 3 left column). The
connectivity strength of the thalamus with the ventral attention
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FIGURE 1 | Comparison of mean RR interval and heart rate variability (HRV) measures between epilepsy patients and healthy controls. The bottom and top of each

box correspond to the 25th and 75th percentiles of the sample distribution, the line in the box corresponds to the median and the crosses indicate outliers, defined as

values that are more than 1.5 times the interquartile range away from the edges of the box. The epilepsy patients showed significantly lower values of mean RR

interval and HR-HRV than healthy controls. n.s., not significant.

FIGURE 2 | Association of regional BOLD fluctuations with changes in heart rate at the group level. Statistical map of one-sample t-test considering patients and

controls (n = 44), thresholded with a voxel-wise threshold of family-wise error (FWE) rate p < 0.05 corrected for multiple comparisons using the random-field theory

(51). The unthresholded statistical map is available at https://neurovault.org/collections/9452/.

network and basal ganglia had strong interactions of group
and LF-HRV state (p < 0.0125, FDR corrected; Figure 3 right
column). The connectivity between the thalamus and ventral
attention network demonstrated also strong interactions of group
and RMSSD state.

To shed further light on the interactions of group and
HRV state in the connectivity of thalamus with the ventral

attention network and basal ganglia, we performed a post-hoc
analysis on the connectivity between the pairs of parcels of the
associated networks with the strongest interactions. Specifically,
we investigated the connectivity between the right caudal
temporal thalamus and left dorsal granular insula (parcel of the
ventral attention network; f -test for interactions = 17.5) and
the connectivity between the left posterior parietal thalamus
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FIGURE 3 | Mixed analysis of variance (ANOVA) for evaluating the effects of the group (epilepsy vs. controls; 1st column) and HRV state (low vs. high, patients and

healthy controls; 2nd column) on whole-brain connectivity, and their interactions (3rd column). The lower triangular matrix corresponds to the f-test for pairs of parcels

whereas the upper triangular matrix corresponds to the f-test for pairs of the eleven networks. The connectivity strength between pairs of networks that was used in

the mixed ANOVA was defined as the mean correlation averaged across all pairs of parcels that belonged to the two corresponding networks. Pairs of networks with

p < 0.0125 after FDR correction are indicated with an asterisk (*). Note that the lower triangular matrices are only shown to provide a qualitative description of the

interactions of networks at the parcel level, and that their significance levels are not assessed. We observe that the connectivity strength of the thalamus with the

ventral attention network and basal ganglia has strong interactions between the group and the LF-HRV state, which led us to examine thalamic connectivity with the

ventral attention network and basal ganglia more carefully.
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and left ventromedial putamen (parcel of the basal ganglia;
f -test for interactions = 17.7). For both connections of the
thalamus, healthy controls exhibited a lower (toward negative
values) connectivity strength in the high LF-HRV state compared
to the low LF-HRV state, whereas epilepsy patients exhibited the
opposite trend (Figure 4).

Figure 5 shows the degree to which the voxel-level
connectivity profile of the right caudal temporal and left
posterior parietal thalamus differs between low and high LF-
HRV state (red color corresponds to higher correlations in high
LF-HRV compared to low LF-HRV, and vice versa for blue color),
for both controls and patients as well as the differences between
the two groups. When comparing high with low HRV-state, in
controls we observe a decrease in the connectivity of the caudal
temporal thalamus with the bilateral anterior insula cortex
(AIC), the anterior cingulate cortex (ACC), middle frontal gyrus
(MFG) and supramarginal gyrus (SMG); whereas, in patients, we
observe a small decrease in the connectivity with MFG and an
increase with ACC. When examining the effect of LF-HRV state
in the connectivity of the posterior parietal thalamus, in controls,
a decrease in connectivity with the bilateral AIC, putamen and
caudate appears, and in patients, an increase in connectivity with
left putamen and AIC as well as bilateral caudate.

DISCUSSION

We examined the association of autonomic cardiac regulation
with spontaneous fluctuations in fMRI and whole-brain FC
in people with drug-resistant epilepsy, compared to healthy
controls. In both groups, heart rate was positively correlated
with fMRI signal intensity in bilateral thalamus and regions of
the cerebellum, and negatively correlated with lateral regions,
including bilateral inferior frontal gyrus, orbitofrontal cortex,
middle temporal gyrus and right insula and putamen (Figure 2;
Supplementary Figure 4). In addition, fluctuations in RMSSD
and LF-HRV exhibited strong associations with changes in FC
(Figure 3), despite the absence of correlation with brain activity
in individual regions. Importantly, these relations differed
between healthy controls and epilepsy patients. In controls,
increased levels of RMSSD and LF-HRV were associated with
declines in connectivity between thalamus and ventral attention
network, whereas in patients, similar HRV changes accompanied
increases in connectivity. The different patterns between the
two groups were more pronounced for the connectivity
between right caudal temporal thalamus and left dorsal granular
insula (Figure 4). Note, however, that the interactions between
ipsilateral regions [left (right) caudal temporal thalamus with left
(right) dorsal granular insula] were also statistically significant,
albeit with slightly higher p-values (p < 0.01). Therefore, it
is unclear whether the stronger interactions observed between
the right caudal temporal thalamus and left dorsal granular
insula compared to ipsilateral interactions have some biological
significance. Similar altered interactions emerged for changes in
LF-HRV levels and connectivity between the thalamus and basal
ganglia, with more pronounced effects for the connectivity of left
posterior parietal thalamus and ventromedial putamen.

These findings support the role of thalamus, insula and
putamen in autonomic control, as shown in previous studies
(17, 20, 30, 53), and add roles for the temporal gyrus whose
role in cardiac regulation has been recently suggested (29, 37).
Despite the well-established association of activity in amygdala
with heart rate fluctuations in task-based experiments (17, 54),
no association was observed here. Valenza et al. (29), who also
investigated the neural substrates of heart rate in task-free fMRI,
found no association of amygdala activity with heart rate either,
which may indicate that recruitment of amygdala activity with
heart rate occursmainly during emotional processing tasks rather
than the neutral conditions studied; the amygdala traditionally
serves affective roles. The neural correlates of heart rate found in
our work and in Valenza et al. (29) were not entirely consistent,
which may result from the more aggressive physiological
correction applied in our work. Artifacts due to cardiac pulsatility
were removed using the newly proposed cardiac pulsatility model
(55) and systemic low-frequency oscillations were removed
through gray matter signal regression (47, 56).

In healthy controls, a seed-to-voxel connectivity analysis
revealed that thalamic activity was anticorrelated with core
regions of the ventral attention network such as the insula,
anterior cingulate cortex (ACC) and supramarginal gyrus, and
this anti-correlation was enhanced during elevated levels of HRV
(Figure 5). However, the HRV-dependent interplay between the
thalamus and ventral attention network was absent in epilepsy.
Burianová et al. (57) previously demonstrated a disturbed (static)
connectivity between thalamus and the ventral attention network
(also referred to as the salience network) in patients with mesial
temporal lobe epilepsy which is consistent with our findings (i.e.,
the insula exhibited increased connectivity with the thalamus
and decreased connectivity with the dorsal ACC). However, the
present study also shows a strong relationship within healthy
individuals between autonomic cardiac regulation and thalamus
– ventral attention network connectivity, in line with findings of
Chang et al. (27), which is altered in epilepsy.

The thalamus consists of a series of nuclei which are
responsible, among others, for the relay of information from
cardiovascular receptors to the insular cortex (31). In turn,
the insular cortex integrates this information with inputs from
ACC, amygdala and high-order polysensory cortex, providing
interoceptive awareness. Stimulation of the insula (58, 59), basal
ganglia or thalamus (60) lead to marked changes in heart rate and
blood pressure. Any impairment in connectivity between these
regions, such as found here, may be involved in cardiac rate and
variability dysfunction.

A growing body of evidence from functional and structural
studies suggests thalamic dysfunction in epilepsy which may
underlie the abnormal connectivity of the thalamus with the
ventral attention network and the basal ganglia observed in
our study (Figures 4, 5). Allen et al. (32), using resting-state
fMRI, showed that the nodal participation of thalamus, a
measure that reflects the connectivity strength of a region with
regions from separate large-scale networks, was increased in
epilepsy patients compared to healthy controls, and particularly
in patients that succumbed to SUDEP or were at high-risk.
Similarly, two recent studies reported altered thalamocortical
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FIGURE 4 | Functional connectivity (FC) for pairs of parcels with strong group (epilepsy vs. controls)-LF-HRV interactions. In the healthy controls (n = 16), the

connectivity strength between the right caudal temporal thalamus and left dorsal granular insula [region of ventral attention (VA) network] was lower in times with high

levels of LF-HRV (i.e., levels of LF-HRV in the highest quartile of a scan) compared to times with low levels of LF-HRV (i.e., levels of LF-HRV in the lowest quartile of a

scan), whereas in people with epilepsy (n = 28) the connectivity strength was higher in times with high levels of LF-HRV. Similar results were observed for the

connectivity strength between the left posterior parietal thalamus and the left ventromedial putamen [region of the basal ganglia (BG)].

connectivity (61) as well as impaired connectivity between
thalamus and basal ganglia (62) in individuals with focal to
bilateral tonic-clonic seizures (FBTCS), a group of epilepsy
patients associated with increased risk of seizure-related injuries
and sudden unexpected death. Structural studies have revealed
association of thalamic volume loss with SUDEP and high-
risk patients (63) as well as with patients that present severe
hypoxia during generalized tonic-clonic seizures (64). Moreover,
electrical stimulations of the anterior nucleus of the thalamus
has been shown in clinical trials to reduce seizure frequency
even when seizures are remote from the stimulation site (65–
67). The body of thalamic evidence on mediating seizure
processes, and especially the altered FC between the thalamus
and ventral attention network in epilepsy suggest a target for
intervention. Specialized regions within the thalamus can be
modified by peripheral somatosensory stimulation; activation
of those thalamic sites by active stimulation has the potential

to modify these FC networks, and thus alter the dysfunction
patterns we found here.

RR intervals and, to a less extent, the high frequency
component of HRV (i.e., HF-HRV), were on average lower in
patients compared to controls (Figure 1) which is consistent with
the increased interictal heart rate and decreased HRV reported
in several studies (6–9). A major component of HF-HRV (0.15–
0.40Hz) is respiratory sinus arrhythmia, a phenomenon where
heart rate fluctuates in synchrony with the breathing cycle at
around 0.3Hz, and is often considered to reflect parasympathetic
influences on heart rate (68). Therefore, the findings may
indicate reduced parasympathetic influences on the heart in
the patients of our cohort. Interestingly, although RMSSD and
LF-HRV had similar levels in the two groups, when state-
dependent FC was assessed based on these twometrics it revealed
different connectivity patterns between the groups, suggesting
that HRV-state dependent FC has the potential to lead to more
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FIGURE 5 | Differences in seed-based FC between low and high LF-HRV state with seeds placed in the (top) right caudal temporal thalamus and (bottom) left

posterior parietal thalamus. The first and second rows of each panel show the fisher-transformed correlations average across all healthy controls and epilepsy

(Continued)
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FIGURE 5 | patients, respectively. Red color indicates higher (toward positive values) connectivity with the seed region in high LF-HRV state whereas blue color

indicates lower connectivity. The last row of each panel shows the two-sample t-test thresholded at p < 0.001 (uncorrected). Even though no significant differences

were found between the two groups after correcting for multiple comparison (FWE; p < 0.05), the differences observed with p < 0.001 (uncorrected) are consistent

with the results obtained with the analysis in the atlas space (Figures 3, 4) where the spatial autocorrelation between voxels of the same parcel are implicitly taken into

account. The unthresholded statistical maps are available at https://neurovault.org/collections/9452/.

sensitive biomarkers for cardiac dysfunction processes than HRV
quantification alone.

This study has limitations that should be considered. While
cardiovascular mechanisms are likely impaired in epilepsy and
contribute to SUDEP (69), breathing disturbances also appear
(70), and may contribute to alterations in FC. Cardiorespiratory
arrests monitored via video-electroencephalogram (VEEG)
suggest that terminal cardiac arrest was preceded by central
apnea in the majority of the cases (71), indicating a potential
mediator role for disturbed breathing in cardiac dysfunction.
To obtain a more holistic understanding of the neural processes
underlying autonomic dysregulation in epilepsy, recognition
of the close coupling of respiratory and autonomic control
mechanisms should be incorporated in the analysis which
was not possible in the present study, as breathing was
not monitored during the fMRI scans. Respiratory measures
would also be helpful in distinguishing parasympathetic from
sympathetic activity in frequency-based HRV measures. HRV
parasympathetic activity, lying within the high-frequency range
(0.15–0.40Hz) and associated with respiratory sinus arrhythmia,
can decline below 0.15Hz during periods with low breathing
rate, and apnea can completely disrupt respiratory sinus
arrhythmia measures. As a consequence, HRV-based measures of
parasympathetic and sympathetic activity may be blurred when
considering solely cardiac recordings (72).

Several studies describe an inverse relationship between
heart rate and HRV measures (73–76). However, as this
relationship is not well-understood and heart rate (or RR
interval) is already a good measure of ANS activity that can
be easily measured, further research is needed to understand
the additional information provided with HRV compared to
heart rate (73, 77). To this end, in this study, the power
spectral density of the HRV that the LF-HRV and HF-HRV
measures were derived from, was estimated using the successive
difference in RR intervals rather than the RR intervals as
this was found to yield HRV measures less correlated with
fluctuations in RR interval. In addition, to further disentangle
fluctuations in HRV from fluctuations in RR interval, the three
HRV measures were orthogonalized with respect to fluctuations
in RR interval.

An important caveat of this study in the use of fMRI as
a means to study the neural correlates of ANS activity is
that there are not well-established methods for disentangling
neuronal from physiological effects of autonomic activity (18,
19). While the BOLD (T2∗) contrast mechanism used in fMRI
is a measure sensitive to changes in blood oxygenation induced
by local neuronal activity (78), it is also prone to sources
of noise that can be categorized to scanner artifacts, motion
artifacts, high-frequency physiological artifacts and systemic
low-frequency oscillations (79–81). Sources from the first three
categories, including fast effects of cardiac pulsatility (∼1.0Hz)

and breathing motion (∼0.3Hz), can be mitigated to a large
degree using advanced pulse sequences (e.g., multi-echo fMRI)
and noise correction techniques (43–45, 47, 79, 82, 83). However,
systemic low-frequency (<0.1Hz) oscillations which typically
refer to BOLD fluctuations driven by changes in heart rate,
breathing patterns and blood pressure can be difficult to
be separated from neuronal fluctuations as they share the
same mechanism; i.e., both neuronal (in an attempt to satisfy
increased demands in oxygen) and physiological processes (e.g.,
heart rate) influence the levels of blood oxygenation (56, 84–
87). When studying the neural substrates of the ANS, this
is particularly problematic as brain regions not involved in
autonomic regulation may share similar BOLD activity with
core regions of the CAN due to effects of heart rate in global
cerebral blood flow, and therefore the physiological effects of
autonomic activity (e.g., fluctuations in heart rate) may lead to
artificial connectivity. In this study, to mitigate the effects of
systemic low-frequency oscillations, we employed gray matter
signal regression which outperforms alternative preprocessing
strategies (45, 47, 88, 89). Note that the effects of systemic
oscillations are more prominent in visual and sensorimotor areas
(85, 89), regions that did not appear to be correlated with heart
rate variations in the present study (Figure 2), suggesting that the
preprocessing strategy employed here successfully removed the
effects of systemic oscillations. However, we cannot exclude the
possibility that gray matter regression removed signal of interest
as well.

HRV impairment in epilepsy is more pronounced during
nocturnal periods (14, 15) and risk for SUDEP is increased
during night hours (16). These observations raise the question
whether alterations in FC are also enhanced by sleep or during
particular phases of the HRV circadian cycles. Note that even
though participants often fall asleep during resting-state fMRI
and, thus, there might be segments of fMRI data corresponding
to sleep in our dataset, the low sample size (N = 44) impedes
investigations in relation to sleep effects. The potential for more
exaggerated changes in FC during sleep mandates further studies
on this issue.

This study represents an exploratory, data-driven approach to
investigate whether large-scale networks are involved in cardiac
regulation, and is hampered by potential sleep, breathing, and
circadian interactions that could interfere with understanding
of important brain interactions. A hypothesis-driven analysis,
controlling for these interactions may elucidate more precisely
the key disruptions in autonomic processes found in epilepsy.

CONCLUSION

In healthy controls and people with drug-resistant epilepsy,
fluctuations in heart rate covaried with brain activity in key
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regions of the central autonomic network and in regions
associated with cardiac regulation. Functional connectivity
of the thalamus with the basal ganglia, a major autonomic
regulatory site, and the ventral attention network was strongly
linked to levels of LF-HRV, and that relationship differed
between healthy controls and epilepsy patients. These findings
support a significant role for thalamic contributions to
cardiovascular impairments in epilepsy which may lead to
cardiac rhythm and blood pressure failings implicated in
SUDEP. Because activity in regional thalamic structures
can be so readily modified by somatosensory peripheral
stimulation, we speculate that the findings suggest a means
to interfere with the deficient functional connectivity patterns
in epilepsy.
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