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ABSTRACT

The first cave-dwelling Solenogastres—marine shell-less worm-like mollusks—were
sampled from Mediterranean marine caves floor silt in the Marseille area. The mollusks
were 1.5 mm in length, had a transparent body with shiny spicules and appear to
represent a new Tegulaherpia species. Electron microscopy revealed a high number
of microbial cells, located on the surface of the spicules as well as in the cuticle of
Tegulaherpia sp. The observed microbial cells varied in morphology and were unequally
distributed through the cuticle, reaching a highest density on the dorsal and lateral sides
and being practically absent on the ventral side. Next Generation Sequencing (NGS)
of V4 region of 16S rRNA gene amplicons, obtained from the DNA samples of whole
bodies of Tegulaherpia sp. revealed three dominating microorganisms, two of which
were bacteria of Bacteroidetes and Nitrospirae phyla, while the third one represented
archaea of Thaumarchaeota phylum. The Operational Taxonomic Unit (OTU), affil-
iated with Bacteroidetes was an uncultured bacteria of the family Saprospiraceae (93—
95% of Bacteroidetes and 25—44% of the total community, depending on sample), OTU,
affiliated with Nitrospirae belonged to the genus Nitrospira (8—30% of the community),
while the thaumarchaeal OTU was classified as Candidatus Nitrosopumilus (11-15% of
the community). Members of these three microbial taxa are known to form associations
with various marine animals such as sponges or snails where they contribute to nitrogen
metabolism or the decomposition of biopolymers. A similar role is assumed to be played
by the microorganisms associated with Tegulaherpia sp.

Subjects Marine Biology, Microbiology, Molecular Biology, Zoology
Keywords Microbial symbionts, Solenogastres, Marine cave, Thaumarchaeota, NGS

INTRODUCTION

Although the northwestern Mediterranean marine biota is one of the best-studied in
the world, some remote, less-accessible ecosystems are still likely hotspots of unknown
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diversity. Underwater marine caves are numerous in the Marseille area (SE France) due
to the karstic nature of the seashore that cannot be accessed by standard oceanographic
gear and can only be explored by speleo-divers (Harmelin, Vacelet & Vasseur, 1985). Due
to the darkness and low water circulation, these caves are characterized by oligotrophy, in
a very similar way to the deep sea. As a consequence, some of the microorganisms from
marine caves are also deepwater species, or species belonging to taxa for which deepwater
representatives are known (Calado, Chevaldonné ¢ Santos, 2004; Bakran-Petricioli et al.,
2007; Janssen, Chevaldonné ¢ Martinez-Arbizu, 2013; Chevaldonné et al., 2015; Cdrdenas
et al., 2018; Chevaldonné ¢ Pretus, 2021). Moreover, some exceptional caves further provide
a cold thermal regime (mean ca. 13—15 °C), similar to that of the Mediterranean deep sea
areas (Vacelet, Boury-Esnault ¢ Harmelin, 1994; Bakran-Petricioli et al., 2007).

Our knowledge of the benthic communities of marine caves is still incomplete. Most
emphasis has been devoted to the most conspicuous components of either the fixed fauna,
such as sponges or bryozoans (e.g., Harmelin, Vacelet ¢ Vasseur, 1985; Harmelin, 1997,
Grenier et al., 2018), or the mobile fauna such as teleost fish and crustaceans (e.g., Ledoyer,
1989; Chevaldonné & Lejeusne, 2003; Bussotti, Di Franco A. Francour & Guidetti, 2015).
Some studies have focused on cave sediment meiofauna, often with an emphasis on
targeted taxonomic groups (see examples in Janssen, Chevaldonné & Martinez-Arbizu,
2013; Zeppilli et al., 2018). Meiofauna proved to be a good indicator of ecological processes
in marine caves. Near Marseille, Janssen, Chevaldonné ¢» Martinez-Arbizu (2013) studied
the meiofauna of the 3PP marine cave (depth 25-30 m below sea level) sediment, one of
such exceptional cold-water caves. The 3PP cave was characterized by very low abundances
of meiofaunal organisms usually found at abyssal sites (Janssen, Chevaldonné & Martinez-
Arbizu, 2013). Moreover, they noted significant differences in meiofauna community along
the transect from the outside to the innermost part of the cave: tardigrades were restricted
to the inner parts of the cave, while copepod diversity decreased towards the inner parts.
Such interesting findings prompted further investigations of the macro- and meiofauna,
especially of yet poorly-studied groups.

Although Sorensen, Jorgensen ¢ Boesgaard (2000) and Boesgaard & Kristensen (2001)
pointed to the presence of unknown aplacophoran species in one cave system in Australia,
there has been no mention of Solenogastres in marine cave studies so far. Solenogastres
(Mollusca) is a small group of marine shell-less worm-like mollusks that inhabit various
depths, from the sublittoral to the abyssal, including hydrothermal vents (Scheltemna, 2008).
They are mostly epibenthic or epizoic organisms living and feeding on cnidarians, while
some groups feed on other organisms such as polychaetes, nemerteans, and bryozoans
(Todt & Salvini-Plawen, 2005; Salvini-Plawen ¢ Oztiirk, 2006; Garcia-Alvarez & Salvini-
Plawen, 2007; Bergmeier, Ostermair & Jorger, 2021). Most species are less than 5 mm in
length with the smallest being less than a millimeter long and the biggest reaching over
300 mm (Todt, 2013). One of the significant morphological characteristics of Solenogastres
is the integument with a thick cuticle composed of a glycoprotein complex with high
concentration of acid mucopolysaccharides, low concentrations of protein (Beedham
& Trueman, 1968) and chitin (Furuhashi et al., 2009). The cuticle of Solenogastres
contains calcareous spicules of different shapes, originated from the epidermal epithelium
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(Scheltema, Tscherkassky ¢ Kuzirian, 1994). The surface of most Solenogastres remains
clean from bacteria, but microbial associations have been found in three Solenogastres
species including Neomenia carinata from soft bottoms at 18-565 m depth (Scheltema,
Tscherkassky & Kuzirian, 1994) and two species from hydrothermal vents, Helicoradomenia
cf. acredema and Helicoradomenia sp. (Katz, Cavanaugh & Bright, 2006). The bacterial
symbionts of the two hot vent Helicoradomenia species had similar morphology and epi-
and endocuticular localization (Katz, Cavanaugh ¢ Bright, 2006). Since the epidermis
of Solenogastres contains secretory cells (Schelterma, Tscherkassky & Kuzirian, 1994), it is
possible that the epicuticular bacteria can obtain energy or/and nutrients from the secreted
compounds (Katz, Cavanaugh ¢ Bright, 2006). In its turn, endocuticular bacteria might be
chitinolytic, as it is known for many marine heterotrophic bacteria (Cottrell et al., 2000).
The present work was aimed to investigate the diversity of microbial community
associated with a new species of Solenogastres, living in marine caves in the area of Marseille
(NW Mediterranean Sea). The possible Sonegostres-microorganisms interactions are also
discussed.

MATERIAL AND METHODS

All material was sampled in the Calanques National Park, near Marseille, in the middle
(ca. 40 m from entrance) and the deep (ca. 60 m from entrance) parts of Jarre cave (17
m depth, 43°11'45'N, 5°22'55'E). Bottom sediment was collected by SCUBA diving with
a 20 cm-wide box on ca. one cm sediment depth and a length of 120 cm. In May 2019, 1
specimen was obtained from the middle part and 3 from the deep part of the cave, while in
October 2019, 2 were found in the middle and 2 in the deep part. Five specimens were used
for morphological studies (two for SEM and three for TEM) and three specimens fixed in
96% ethanol for molecular studies, of the latter one specimen was collected in May and
two in October.

Morphological studies

All studies specimens of Tegulaherpia sp. were relaxed before fixation using isotonic
to seawater magnesium chloride solution. For transmission electron microscopy, three
specimens were fixed in 2.5% glutaraldehyde (Electron Microscopy Supplies (EMS,
Pennsylvania, USA) and post-fixed in 1% osmium tetroxide (EMS, Pennsylvania, USA)
buffered with 0.1 mol sodium cacodylate buffer. Following steps, dehydration and
embedding to the Spurr resin (EMS, Pennsylvania, USA), were performed according
to Vortsepneva, Herbert & Kantor (2021).

Ultrathin (70-80 nm) sections were made using a diamond knife (Diatome, Jumbo)
and Leica EM UC6 and UC7 ultramicrotomes. All ultrathin sections were contrasted using
1% uranyl acetate and 0.4% lead citrate according the protocol (Vortsepneva, Herbert
¢ Kantor, 2021). Ultrathin sections were examined using a Jeol JEM 1011 transmission
electron microscope.

For scanning electron microscopy (SEM) two specimens were fixed using the same
protocol as for the TEM, followed by dehydrating and drying as it was performed by
(Vortsepneva, Herbert & Kantor, 2021). The specimens were mounted on aluminum stubs,
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sputter coated with platinum and palladium, and examined using JEOL JSM-6380L (JEOL,
USA) and CamScan S2 (Cambridge Instrument Scientific Company, England) scanning

electron microscopes.

DNA isolation and sequencing

Three specimens were fixed in 96% ethanol and stored at —20 °C for four to six months. The
whole bodies of three Tegulaherpia sp. specimens were used for the study of their microbial
communities. Total DNA was isolated with DNeasy PowerLyzer Microbial Kit (Qiagen,
Germany) according to the manufacturer’s instructions using FastPrep-24™ 5G bead
beating grinder and lysis system (MP Biomedicals, USA). The concentration of isolated
DNA was measured using Qubit™ dsDNA HS Assay Kit (Thermo Fisher Scientific, USA)
and Qubit 2.0 fluorimeter (Thermo Fisher Scientific, USA). Purified DNA was stored at
—20 °C.

Amplicon libraries were prepared as described in Gohl et al. (2016). Two consecutive
rounds of PCR were performed on a StepOne Plus Real-Time instrument (Thermo Fisher
Scientific, USA) using qPCRmix-HS SYBR mixture (Evrogen, Russia). The primers for
the V4 region of 16S rRNA gene (Fadrosh et al., 2014) contained the Illumina TruSeq
sequencing primer adapters and 515F/Pro-mod-805R primer sequences (Hugerth et al.,
2014; Merkel et al., 2019) were used for the first amplification step: forward primer (5'-TCG
TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG NNN NNN GTG BCA GCM GCC
GCG GTA A-3'), and reverse primer (5'- GTC TCG TGG GCT CGG AGA TGT GTA
TAA GAG ACA GNN NNN NGA CTA CNV GGG TMT CTA ATC C-3’). The first PCR
amplification was performed as follows: 32 cycles of denaturation at 95 °C for 25 s; primer
annealing at 56 °C for 20 s; DNA synthesis at 72 °C for 30 s, and a final elongation at 72 °C
for 20 min. The second PCR stage was performed using barcoding primers as described
by Gohl et al. (2016). The second amplification was performed as follows: 10 cycles of
denaturation at 95 °C for 20 s, primer annealing at 59 °C for 20 s, DNA synthesis at 72 °C,
for 30 s, and a final elongation step at 72 °C for 20 min. The resulting PCR products were
used for the preparation of libraries for Illumina sequencing.

High-throughput sequencing of the libraries was performed with MiSeq Reagent Micro
Kit v2 (300-cycles) MS-103-1002 (Illumina, USA) on a MiSeq sequencer (Illumina, USA)
according to the manufacturer’s instructions.

The raw reads were processed as described in Gavrilov et al. (2019). All the reads of the
V4 region of 16S rRNA gene obtained in two replicates for each sample were analyzed
using the SILVAngs service with default parameters (https:/ngs.arb-silva.de/silvangs/)
and SILVA138.1 SSU database. NCBI BLASTn (https:/blast.ncbi.nlm.nih.gov/Blast.cgi)
with various parameters, and databases were used for manual curation of taxonomy
of the sequences of interest. The current version of the SILVAngs (as of August 2021)
uses the Silva taxonomy that is, in turn, based on the Genome Taxonomy Database
(GTDB, https:/gtdb.ecogenomic.org/) taxonomy. However, since this taxonomy is
still not generally accepted and unfamiliar to a wide range of readers we will use
the taxa approved by the Bergey’s Manual of Systematics of Archaea and Bacteria
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Figure 1 General morphology of sales of Tegulaherpia sp. (A) Photo light microscopy, (B-D) SEM.
a. General view of different in size specimens. b. View from above of the body surface. (C-D) Scales with
bacteria on the scales surface. Head arrows labeled bacterial cells.

Full-size Gal DOI: 10.7717/peerj.12655/fig-1

(https:/onlinelibrary.wiley.com/doibook/10.10029781118960608) indicating the
correspondence of taxa in these two taxonomical systems in the results section.

All the obtained sequences were deposited into the NCBI under BioProject accession
number PRJNA773997.

RESULTS

External morphology and identification

The length of the Solenogastres specimens collected for this work varied from one to
two mm. The body was light-colored and covered by scales (Figs. 1A, 1B), which gave a
characteristic shine. The specimens had uniform scale-like sclerites, a distichous radula,
lateroventral foregut glands belonging to type A (with ducts and extraepithlial gland cells),
copulatory spicules, and the mouth opening separated from the vestibular cavity. These
morphological characteristics (Salvini-Plawen, 1986; Garcia-Alvarez ¢ Salvini-Plawen,
2007) allow us to propose a novel Solenogastres species, belonging to the Tegulaherpia
genus.
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Integument morphology and microbial cells

Two major morphotypes of microbial cells occurred on the surface of the body, identified
with scanning electron microscopy as rods and cocci (Figs. 1B, 1C). Bacterial cells were
present at the anterior end and absent at the posterior end of the mollusks (Figs. 1B, 1C).

The study of ultrathin sections of the cuticle, which was 6 um thick, revealed that the
prokaryotes are not only located on the mollusks’ surface but also within the deeper layers
of the cuticle of the anterior part (Fig. 2). The microorganisms were distributed unequally
through the cuticle: they reached a relatively high density on the dorsal and lateral sides
and were practically absent on the ventral side (Fig. 3).

Based on TEM, four main morphotypes of prokaryotes associated with Tegulaherpia
sp. were identified: short rods (Figs. 2, 3A, 3C), long rods (Fig. 3B), spirilla-like (Fig. 3D),
and cocci (Fig. 2D). Short rods were located inside the cuticle and also appeared to enter
the epithelial cells of the mollusk (Fig. 3B). Long rods were only located on the surface
of the cuticle (Fig. 3B). This type, as well as cocci, was the most numerous cells, found
on the cuticle surface. The average length of the spirilla was 2 pm, and they were located
exclusively inside the cuticle. Cocci (1 pm) were less common and were not found in the
epithelium.

Microbial community composition
To identify the microbial community associated with Tegulaherpia sp., the amplicons of
the V4 region of the 16S rRNA (SSU) genes were sequenced from the total DNA, isolated
from the whole bodies of three individual mollusks. The representatives of bacterial phyla
Bacteroidetes (26-47%), Proteobacteria (10-32%), Nitrospirae (8—30%), as well as of the
archaeal phylum Thaumarchaeota (11-15%), predominated in all samples (Fig. 4).
Bacteroidetes were represented almost exclusively by an uncultured bacterium of the
family Saprospiraceae (93-95% of Bacteroidetes and 25-44% of the total community).
Results of manual BLAST of this most abundant OTU, belonging to Saprospiraceae, using
the nr/nt database with “type material” limitation resulted in Haliscomenobacter and
Lewinella members among the best hits (<89% of sequence identities with the query).
Nitrospirae were represented solely by one OTU, belonging to the genus Nitrospira, which
is a second after Saprospiraceae most abundant OTU (8-30% depending on the specimen
of Tegulaherpia sp). The classes Alphaproteobacteria and Gammaproteobacteria belonging
to the phylum Proteobacteria constituted 3—-7% and 7-25% of total reads, respectively.
As opposed to all other predominant phyla, Proteobacteria were represented by several
dominating OTUs. Alphaproteobacteria were represented by Rhodobacteraceae with 1-2%
of the total reads in all three samples, whereas Gammaproteobacteria were represented
by the UBA10353 marine group (2-62% of Gammaproteobacteria and 0-6% of the total
community), various Enterobacterales (4-69% of Gammaproteobacteria and 0-18% of
the total community) with Vibrio sp. as the most numerous representative (22—-44%
of Enterobacterales and 0-9% of the total community) and the deep lineage SS1-B-07-19
(0-9% of Gammaproteobacteria and 0-3% of total community, depending on the specimen
analyzed, Fig. 4). The Archaeal OTU identified in all samples as one of three dominating taxa
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Figure 2 Ultrastructure of the epithelium and cuticle of Tegulaherpia sp. Transversal section, TEM mi-
crographs. (A) Epithelium and cuticle containing bacteria. (B) Apical part of epithelium and bacteria im-
mersed in epithelial cells (arrow). (C) Epithelium with a hole from forming scale. (D) Cuticle with differ-
ent morphotypes of bacteria. bl, basal lamina; ep, epithelium; cu, cuticle; mu, muscles; n, nucleus; sc, scale.
Full-size Gl DOI: 10.7717/peerj.12655/fig-2
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Figure 3 Ultrastructure of bacteria associated with cuticle. TEM micrographs. (A) Cuticle with rods
inside and at the upper border of the cuticle. (B) Bacteria with Gram-negative cell-wall type at the upper
layer of the cuticle. (C) Rod-shaped or cocci bacteria located within the cuticle. (D) Spirilla, located within
the cuticle.

Full-size & DOI: 10.7717/peerj.12655/fig-3
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Figure 4 Relative abundance of prokaryotes, associated with three specimens of Tegulaherpia sp. ac-
cording to the 16S rRNA gene sequence (V4 region) analysis. (A) Total community, phylum level; (B)
Bacteroidetes (= Bacteroidota in Silva/GTDB) distribution on the level of families; (C) Proteobacteria dis-
tribution on the level of orders. Nitrospirae (= Nitrospirota in Silva/GTDB) and Thaumarchaeota (= Cre-
narchaeota/Nitrososphaeria in Silva/GTDB) were represented by single OTUs (see the text).

Full-size Bl DOI: 10.7717/peer;j.12655/fig-4
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was classified as Candidatus Nitrosopumilus (11-15% of the total community) belonging
to the phylum Thaumarchaeota.

DISCUSSION

The Tegulaherpia sp., collected during this work is the first Solenogastres species found in
underwater marine caves of the north-western Mediterranean. This species inhabits the
upper layer of soft sediment. According to the content of the intestine (the presence of
cnidarian nematocysts in the cells of the intestine), it was assumed that this species feeds on
small burrowing Cnidaria, which were also found in this biotope (our own observations).
The microscopic studies of all five specimens of Tegulaherpia sp. identified prokaryotes on
the surface of the scales and through all the thickness of the cuticle. The microorganisms
varied in morphology and localization: long rods and cocci were located on the surface of
the cuticle while short rods and spirilla were inside the cuticle. The short rods were also
numerous in the apical part of epithelial cells. This distribution of prokaryotes through
the body of the mollusk is similar to that of the hot vent Solenogastres belonging to
genus Helicoradomenia (Katz, Cavanaugh ¢ Bright, 2006). Despite the fact that all studied
individuals contained microorganisms and that microorganisms with different morphology
were unequally distributed in the cuticle, we did not find evidences indicating physiological
integration, such as would occur in specialized organs.

Association of Solenogastres and microorganisms has been poorly studied so far
and based on the Helicoradomenia species living in deep-sea hydrothermal vents (Katz,
Cavanaugh & Bright, 2006) and Neomenia carinata inhabiting soft sediments in moderate
depths. However, in the latter case the only known fact is that bacteria are associated with
the Neomenia carinata mantle epithelium (Scheltema, Tscherkassky ¢ Kuzirian, 1994).

The microbial communities associated with Tegulaherpia sp., detected by 16S rRNA gene
amplicons sequencing, are dominated by prokaryotes of the bacterial phyla Bacteroidetes,
Nitrospirae and Proteobacteria as well as the archaeal phylum Thaumarchaeota. Similarly
to morphological observations, the microbial associates composition was consistent
among the three individuals collected at different time, suggesting these associations
were not artifactual. The presence of Thaumarchaeota and Bacteroidetes members makes
these communities different from the Helicoradomenia sp. where these taxa were not
detected (Katz, Cavanaugh ¢ Bright, 2006). In the case of Thaumarchaeota this result
seems to be solid since the FISH probe Arch915, used by Katz and co-authors in 2006, is
covering (86.1%) Candidatus Nitrosopumilus, what was verified using Silva TestProbe 3.0
(https:/www.arb-silva.de/search/testprobe/). In the case of Bacteroidetes,the FISH probe
CF319a does not cover (coverage = 1.5%) the Saprospiraceae family. On the other hand a
large portion of cells of Helicoradomenia sp. symbionts were unknown bacteria (hybridized
with universal bacterial primers but did not hybridize with any of the group-specific primer
used by Katz, Cavanaugh & Bright (2006 ), suggesting at least some of them might be closely
related to Tegulaherpia sp. bacterial symbionts including Bacteroidetes representatives.

The most abundant OTUs in Tegulaherpia sp. were related to Saprospiraceae (Lewinella
and Haliscomenobacter), Nitrospira and Candidatus Nitrosopumilis. For each of them,
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symbiotic relationships with higher organisms are known. For instance, members of
the genus Lewinella, were isolated from marine mollusks (sea snails) and were able to
degrade polysaccharides and proteins (Khan et al., 2007). Their presence in the mollusks
might indicate a symbiotic or parasitic relationship with Tegulaherpia sp. based on

the degradation of cuticle polymers as chitin (Furuhashi et al., 2009) or glycoproteins
with mucopolysaccharides (Beedham ¢ Trueman, 1968). In turn, Haliscomenobacter
representatives are widespread in a number of habitats including that of marine origin as
marine waters, guts of marine fish (Gao et al., 2020), red algae healthy tissues (Fernandes
et al, 2012) and others. Moreover, the dominating microorganisms in Tegulaherpia sp.
microorganisms are known to form similar associations with other hosts: the community
of a sponge, Cymbastela concentrica, was composed of the chemolithotrophic nitrite-
oxidizing bacterium Nitrospira sp., a representative of the family Phyllobacteriaceae
(Alphaproteobacteria) and the chemolithotrophic ammonia-oxidizing archaeon Candidatus
Nitrosopumilus sediminis AR2 (Thaumarchaeota) (Moitinho-Silva et al., 2017). The
sponge-microbial interaction might include production and sharing of various nutrients,
e.g., vitamins, as well as redox sensing and response. For instance, Cymbastela concentrica
was supposed to contribute to the nitrogen metabolism of these microorganisms by
supplying them with organic nitrogen compounds which they convert to ammonium,
nitrite and nitrate during nitrification, denitrification and nitrate respiration (Moitinho-
Silva et al., 2017).

In this respect the Thaumarchaeota and Nitrospira symbionts of Tegulaherpia sp.
most probably contribute to a common nitrogen metabolism with their host whereas
Bacteroidetes and Alphaproteobacteria and Gammaroteobacteria members are feeding on the
mollusks cuticle polymers or secreted compounds as it was proposed for Helicoradomenia
sp. (Katz, Cavanaugh & Bright, 2006).

Altogether, our results document a novel Solenogastres species inhabiting environments
so far unknown for these mollusks and possessing unique microbial associations on
and within its cuticle. The observed microbial community is different from that found
in Helicoradomenia species inhabiting deep sea hot vents. This is likely linked with the
difference in the level of energy supply between these two habitats. Both are (almost)
light-independent, however, unlike hot vents, underwater caves typically do not provide a
constant inflow of reduced compounds needed for chemosynthesis, making cave species
solely dependent on scarce organic compounds imported from the outside, which makes
these caves similar to deep sea bottom sediments. Further studies are needed to reveal
in more details the metabolic characteristics of the dominating microbial symbionts of
Tegulaherpia sp. and their functional interactions with their host.
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