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Abstract: This paper provides details of hardware and software conception and realization of a stereo
embedded system for underwater imaging. The system provides several functions that facilitate
underwater surveys and run smoothly in real-time. A first post-image acquisition module provides
direct visual feedback on the quality of the taken images which helps appropriate actions to be
taken regarding movement speed and lighting conditions. Our main contribution is a light visual
odometry method adapted to the underwater context. The proposed method uses the captured
stereo image stream to provide real-time navigation and a site coverage map which is necessary to
conduct a complete underwater survey. The visual odometry uses a stochastic pose representation
and semi-global optimization approach to handle large sites and provides long-term autonomy,
whereas a novel stereo matching approach adapted to underwater imaging and system attached
lighting allows fast processing and suitability to low computational resource systems. The system is
tested in a real context and shows its robustness and promising future potential.

Keywords: image processing; underwater imaging; embedded systems; stereo vision; visual odometry;
3D reconstruction

1. Introduction

Mobile systems nowadays are undergoing a growing need for self-localization to determine their
absolute/relative position over time accurately. Despite the existence of very efficient technologies
that can be used on-ground (indoor/outdoor), such as the Global Positioning System (GPS), optical
signals, and radio beacons, in the underwater context, most of these signals are jammed so that
similar techniques cannot be used. On the other hand, solutions based on active acoustics, such as
imaging sonars, water linked GPS or Doppler Velocity Log (DVL) devices remain expensive and
require high technical skills for deployment and operation. Moreover, their size specifications prevent
their integration within small mobile systems or even the ability to be handheld. The research for an
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alternative is ongoing; notably, recent advances in embedded systems have led to relatively small,
powerful and cheap devices. This opens promising potential to adopt a light visual odometry approach
that provides a relative trajectory in real-time using image sensors, and this describes our main research
direction. The developed solution is integrated within an underwater archaeological site survey where
it plays an important role in facilitating image acquisition.

In underwater survey tasks, mobile underwater vehicles (or divers) navigate over the target site
to capture images. The obtained images are treated in a later phase to obtain various information and
also to form a realistic 3D model using photogrammetry techniques [1]. In such a situation, the main
problem is covering the underwater site totally before ending the mission. Otherwise, we may obtain
incomplete 3D models, and the mission cost will rise significantly as further exploitation will bw
needed. However, the absence of an overall view of the site, especially under bad lighting conditions,
makes the scanning operation blind. In practice, this leads to over-scanning the site which is a waste of
time and cost. From another perspective, the quality of the taken images may go below an acceptable
limit. This mainly happens in terms of lightness and sharpness, which is often hard to quantify visually
on the fly. In this work, we propose solutions for the aforementioned problems. Most importantly,
we propose to guide a survey based on a visual odometry approach that runs on a distributed system
in real-time. The output ego-motion helps to guide the site scanning task by showing approximate
scanned areas. Moreover, overall subjective lightness and sharpness indicators are computed for each
image to help the operator control the image quality.

Overall, we provide a complete hardware and software solution for the problem through
the conception and realization of a stereo embedded system dedicated to underwater imaging.
Two configurations are considered: first, a handheld system to be used by a diver (see Figure 1),
and second, a system attached to a customizable Remotely Operated underwater Vehicle (ROV) from
BlueRobotics [2] (see Figure 2). Both configurations share similar main architecture (all provided
details are for both configurations unless otherwise stated). The system, equipped with two high
definition cameras (three cameras in the ROV-attached configuration), can take and store hardware
synchronized stereo images while having long-term autonomy. In contrast to other commercially
available off-the-shelf products where the system’s role ends with image storage, the designed system
is based on distributed embedded systems with ARM processors and a Linux operating system and is
capable of running most image processing techniques smoothly in real-time. The available optimized
open source libraries, such as OpenCV [3] and OpenCL [4], allow straightforward extension of the
provided functions and full customization of the system to suit different contexts.

In common approaches of visual odometry, a significant part of the overall runtime is spent on
feature point detection, description, and matching, whereas another significant part is dedicated
to the optimization process, namely, the bundle adjustment (BA) [5] procedure. In the tested
baseline algorithm, feature point matching represents ≈65% of runtime in the local/relative bundle
adjustment (BA) approach. Despite their accuracy and successful broad application, modern feature
descriptors, such as Scale Invariant Feature Transform (SIFT) [6] and Speeded Up Robust Features
(SURF) [7], rely on differences of Gaussians (DoG) and fast Hessian, respectively, for feature
detection. These methods are two times slower than the traditional Harris detector [8]. Further,
the sophisticated descriptors that are invariant to scale and rotation, which is not necessary for stereo
matching, slow down the computation. Moreover, brute force matching is often used which is also
time-consuming. In our proposed method, we rely on low-level Harris-based detection and a template
matching procedure which significantly speeds up the point matching. Further, whereas in traditional
stereo matching the search for correspondence is done along the epipolar line within a specific fixed
range, in our method, we proceed first by computing, a priori, a rough depth belief based on image
lightness and following the law of light divergence over distance. This is only valid for a configuration
in which the only light source is fixed to the system, which is the case here. Hence, our first contribution
is that we benefit from rough depth estimation to limit the point correspondence search zone to reduce
the processing time. It is worth mentioning that even for the surveys in shallow water where the
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sunlight provides good visibility, it is preferable to wait for sunset before starting the survey because
of the sunlight ripple effect on the scanned site [9] which misleads the photogrammetry process,
as it disturbs the photometric consistency.

From another perspective, traditional visual odometry methods based on local BA suffer from
rotation and translation drift that grow with time [10]. In contrast, solutions based on using features
from the entire image set, such as global BA [5], require more computational resources which are
very limited in our case. Similarly, simultaneous localization and mapping (SLAM) approaches [11],
which are known to detect loop closure, although being efficient in most robotics applications, suffer
from a growing processing time [12], or are not suitable for raster scan trajectories such as hierarchical
approaches [13,14]. In our method, we adopt a semi-global approach which proceeds in the same way
as local methods for optimizing a subset of image frames. However, it differs in terms of selecting the
frame subset, as local methods use the Euclidean distance and deterministic pose representation to
select frames, but ours represents the poses in a probabilistic manner and uses a divergence measure to
select such subset of frames. The uncertainty of each newly-estimated pose is computed using a novel
approach that uses a machine learning technique on the simulated pose estimation system. This is
handled by a neural network that is trained to handle a wide range of ego-motion vectors. This will be
addressed in detail in Section 5.4.

Figure 1. The handheld stereo system design and prototype.

Figure 2. The built trifocal system integrated within a blueROV 2 (the front enclosure).



Sensors 2018, 18, 2313 4 of 25

The rest of the paper is organized as follows: We survey related works in Section 2. In Section 3,
we describe the designed hardware platform and the two configurations that we used to implement
our solution. The image acquisition and the quality estimation procedure are explained in Section 4.
Our proposed visual odometry method is presented in Section 5. The analytical results of the
underwater experiments are presented in Section 6. Finally, we present a summary and conclusions.
We note that parts of this work have been presented in [15,16].

2. Related Works

In this section, we review related works concerning the two aspects that we mainly aim to improve
in our framework: feature point matching and ego-motion estimation.

2.1. Feature Point Matching

Common ego-motion estimation methods rely on feature point matching between several
poses [17–24]. Real-time methods tend to use fast feature detectors. The most popular are Features
from Accelerated Segment Test (FAST) [25], as in [19,20,23], and Harris-based [26], as in [18,21,22].
These types of detectors are frequently associated with patch descriptors. In general, the choice of
approach for matching feature points depends on the context. For instance, feature matching between
freely-taken images (six degrees of freedom) with baseline toleration has to be invariant to scale and
rotation changes. Scale Invariant Feature Transform (SIFT) [6] and the Speeded Up Robust Features
(SURF) [7] are well used in this context [17,24,27,28]. In this case, besides being more computationally
expensive, the search for a point’s correspondence is generally done using brute force matching.

A new family of feature descriptors that aims to accelerate the extraction process makes use of
binary representation computed from image intensity differences tests. The Binary Robust Independent
Elementary Features (BRIEF) method [29] is the first in this direction. The method measures the
intensity difference on a fixed chosen location pairs around the keypoints which are commonly
detected using FAST. An improvement to BRIEF is the Binary Robust Invariant Scalable Keypoints
(BRISK) [30], which adds scale and rotation invariance features. This is achieved by introducing
multi-scaling and using regular circular pattern around the keypoint. Another difference to BRIEF
is that BRISK proposes its own detector, an extension of the AGAST detector [31] (based on FAST)
that performs a scale-space search for saliency. Overall, using this over-sampled representation of the
keypoint neighborhood makes these methods more sensitive to noise. As this does not has significant
inference on terrestrial images, underwater images suffer mostly from turbidity and dust which makes
the use of these methods less robust based on our experiments.

In certain situations, some constraints can be imposed to facilitate the matching procedure,
in particular, limiting the correspondence search zone. For instance, in the case of pure forward motion,
where the focus of expansion (FOE) is a single point in the image, the search for the correspondence
of a given point is limited to the epipolar line [32]. Similarly, in the case of sparse stereo matching,
the correspondence point lies on the same horizontal line in the case of a rectified stereo or on the
epipolar line otherwise. This speeds up the matching procedure, firstly by having fewer comparisons
to perform and secondly because low-level features can be used [33,34]. According to our knowledge,
no method proposes an adaptive search range following a rough depth estimation from lightness
in underwater imaging. We refer to [8] for a comprehensive study of feature point detection and
matching.

It is worth mentioning that direct visual odometry methods are well-established when a depth map
is available, such as using RGB-D cameras [35]. These featureless methods use geometry transformation
between rigid objects in several views to infer ego-motion. Methods that deal with stereo cameras
proceed by computing a dense depth estimation that is used to establish a relationship between
objects within adjacent views [36], whereas monocular methods [37,38] use a variational approach for
estimating pixel-wise depth. The problem is solved under convex assumption using GPU. The main
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inconvenience of those approaches is the required high computational power and the small baseline
between adjacent images which are hard to guarantee in our context.

2.2. Ego-Motion Estimation

Estimating the ego-motion of a mobile system is an old problem in computer vision. Two main
categories of methods are developed in parallel, namely, simultaneous localization and mapping
(SLAM) [34] and visual odometry [18]. In the following text, we highlight the main characteristics of
both approaches.

The SLAM family of methods uses probabilistic models to handle a vehicle’s pose. Although this
kind of method was developed to handle motion sensors and map landmarks, it works efficiently with
solely visual information [24]. In this case, a map of the environment is built, and, at the same time,
it is used to deduce the relative pose which is represented using probabilistic models. Several solutions
to SLAM involve finding an appropriate representation for the observation model and motion model
while preserving an efficient and consistent runtime. Most methods use additive Gaussian noise to
handle the uncertainty which is imposed using the extended Kalman filter (EKF) to solve the SLAM
problem [34]. In cases where visual features are used, EKF may fail to estimate the trajectory accurately
due to the significant uncertainties that appear in large loops [13]. Additionally, runtime and used
resources grow constantly for large environments. Later works tried mainly to handle scalability issues.

A remarkable improvement of SLAM is the FastSLAM approach [12] which aims at greater
scalability. It uses recursive Monte Carlo sampling to directly represent the non-linear process model.
Although the state-space dimensions are reduced when the Rao–Blackwellisation approach is used [39],
the method remains not scalable to large autonomy. In the context of long trajectories, several solutions
have been proposed to handle relative map representations, such as [22,24,40,41]. In particular,
these involve breaking the estimation into smaller mapping regions, called sub-maps, and then
computing individual solutions for each sub-map. In the same manner, hierarchical SLAM [13] divides
the map into two levels—a lower level that is composed of a set of a sequence of local maps of
limited size and an upper level that handles the relative relations between local maps, which are
maintained using a stochastic approach. Although these solutions perform well in large environments,
sub-mapping is not efficient for raster scanning/motion as this will cause very frequent sub-maps
switches. Also, there are some issues in defining the size, overlapping, and the fusion of sub-maps.

In all reviewed SLAM methods, in case of using pure visual information, the measurement noise
(such for relative motion estimation) is modeled by a diagonal covariance matrix with equal variances
that are set empirically [14]. This modeling leads to the production of uncorrelated measurement
error among dimensions. However, the estimated pose should have an associated full degrees of
freedom (DOF) uncertainty. Although several works exist in the literature that studied the uncertainty
of 3D reconstructed points based on their distance from the camera and the baseline distance between
frames, such as [19,42], or the matching error propagation in 3D, such as [9], the effect of the relative
motion parameters on the uncertainty of the pose estimation has not been taken into account.

From another perspective, visual odometry methods use structure from motion (SfM)
methodology to estimate the relative motion [18]. Based on multiple view geometry fundamentals [43],
an approximate relative pose can be estimated. This is followed by a BA procedure to minimize
re-projection errors, which yields an improvement in the estimated structure. Fast and efficient BA
approaches are proposed to be able to handle a large number of images [44]. However, in the case
of longtime navigation, the number of images increases constantly and prevents the application of
global BA if real-time performance is needed. Hence, several local BA approaches have been proposed
to handle this problem. In local BA, a sliding window copes with motion and select a fixed number
of frames to be considered for BA [10]. This approach does not suit the raster scans commonly
used in surveys, since the last n frames to the current frame are not necessarily the closest. Another
local approach is relative BA, proposed in [45]. Here, the map is represented as a Riemannian
manifold-based graph with edges representing the potential connections between frames. The method
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selects the part of the graph where the BA will be applied by forming two regions—an active region that
contains the frames with an average re-projection error changes by more than a threshold, and a static
region that contains the frames that have common measurements with frames in the active region.
When performing BA, the static region frames are fixed, whereas active region frames are optimized.
The main problem with this method is that distances between frames are deterministic, whereas the
uncertainty is not considered when computing inter-frame distances.

In the context of underwater robotics, SLAM solutions based on active sensors, such as DVL,
the Inertial Navigation Unit (INU) and Side Scan Sonars (SSS) have mostly been proposed [46,47].
An early attempt to use a vision system was proposed in [48], where a fusion is performed between
sonar and visual information, and a Lucas Kanade feature tracking is applied to the image stream—
it is used to only extract robot’s bearing observation which does not generalize to free motion. A more
general solution was proposed in [49], in which the ego-motion is estimated by finding the rigid
transformation between two point clouds which are generated using a stereo system at two time
intervals. The relative motion is then integrated with SLAM which uses an SSS as well. Works relying
solely on visual sensors are surprisingly rare; noticeably, they use the same terrestrial SLAM techniques
as those reviewed above [50]. The majority of these methods rely on stereo vision to estimate metric
trajectory [9,28,51].

3. Hardware Platform

Throughout our hardware design and implementation, we were committed to a low-cost solution.
Thanks to the latest developments of single-board computers, power-efficient systems equipped with
a high-performance multi-core CPUs, and most modern peripheral networking interfaces are available
in the size of a credit card. Being increasingly available and cheap, we chose the popular Raspberry Pi
(RPi) [52] (a credit card-sized ARM architecture-based computer with 1.2 GHz 64-bit quad-core CPU
and 1 GB of memory, running Rasbain, a Linux-based operating system. We used RPi version 3 in
this project) as the main processing unit of our platform. This allowed most image processing and
computer vision techniques to be run smoothly. As already mentioned, we designed and implemented
two configurations of our system that we present in the following text.

3.1. ROV-Attached Trifocal System

The design here is based on the BlueROV2 from BlueRobotics [2], Figure 2 shows the full system
design and implementation. The ROV is equipped with six thrusters (four vectored and two vertical),
controlled by a Pixhawk autopilot [53] which allows 4 DoF navigation to be performed—all but pitch
and yaw. The ROV is operated from a surface computer (laptop) that also receives the live video
feedback. We used 4× 1500 lumens diffuse led torches for lighting oriented at a tilt of 135◦.

A cylindrical enclosure (34 × 15 cm) is attached to the front side of the ROV, as shown in
Figure 2. It hosts the designed trifocal system, which is composed of three RPi computers; each is
connected to one camera module (Sony IMX219 8M Pixel 1/4′′ CMOS Image Sensor, 3 mm focal length,
f/2 aperture). Using the trifocal system allows three stereo pairs with different baseline distances (set
to 5, 10 and 15 cm in our implementation) to be present, which helps to handle image acquisition
at different distances. Figure 3 (right) shows the range of each baseline distance. Here, we can
deduce that a short baseline is preferred in close-range image acquisition. For instance, with the used
configurations, it is difficult to get closer than 80, 53 and 26 cm to the scene using 15, 10 and 5 cm
baseline distances, respectively. From another perspective, small baseline distances are less accurate for
larger distances. We note here that the visibility limit underwater (≈5 m using our lighting system) is
much smaller than the stereo range whatever the used baseline distance. The cameras are synchronized
using a hardware trigger connected to the general-purpose input/output (GPIO) interface of the RPi
computers. The latter are finally connected to an Ethernet switch that is connected to the surface
computer. Figure 4 shows the ROV-attached trifocal system in action.
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Figure 3. Illustration of stereo disparity ranges (left): (1) impossible due to stereo constraint;
(2) impossible in deep underwater imaging due to light fading at far distances; (3) possible disparity;
(4) the point is very close, so it becomes overexposed, undetectable, or out of focus. At (right),
the disparity evaluation in pixels as a function of distance (in meters) to the camera for the 3 available
baseline distances.

Figure 4. The built trifocal Remotely Operated underwater Vehicle (ROV)-attached system in action.

3.2. Handheld Stereo System

An illustration of the built handheld system is shown in Figure 1. It is composed of two RPi
computers; each is connected to one camera module to form a stereo pair. The cameras are synchronized
using a hardware trigger in the same manner as the previous system. Both RPi computers are connected
through Ethernet to the surface. A high contrast monitor is embedded in the same enclosure and is
visible from outside (see Figure 5). The monitor is attached to one of the RPi computers and shows
real-time preview and diverse information, such as image quality, storage, and connections.

Figure 5. The built handheld stereo system in action.

In both designed systems, the embedded computers are responsible for image acquisition.
The captured stereo images are first partially processed on the fly to provide image quality information,
as will be detailed in Section 4. Images are then transferred to a central computer which handles the
computation of the ego-motion that the system undergoes. This will be detailed in Section 5. We note
that our implementation assumed calibrated stereo pairs. Therefore, we employed a traditional but
efficient approach that uses an underwater target of chessboard pattern and the camera calibration
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toolbox in OpenCV [3]. The procedure was performed offline before the mission. After observing
stable extrinsic parameters of two trials, we did not perform any further recalibration.

4. Image Acquisition and Quality Estimation

Since underwater images do not tend to be in the best condition, a failing scenario in computing the
ego-motion is expected and has to be considered. Here, we could encounter two cases. First, when there
is a degenerated configuration that causes a failure to estimate the relative motion, this can be due to
poor image quality (blurred, dark or overexposed), lack of textured areas or large camera displacements.
This may raise ill-posed problems at several stages. Second, imprecise estimation of the relative
motion due to poorly distributed feature points or the dominant presence of outliers in the estimation
procedure may occur. While a mathematical analysis can identify the first failure case, the detection of
the second case is not trivial. Nevertheless, small errors can be corrected later using the BA procedure.

A real-time image quality estimation provides two benefits: first, it can alert the visual odometry
process of having poor image quality. Two reactions can be taken in this case, either pausing the
process until the taken image quality goes above a certain threshold or producing position estimation
based on previous poses and speed. We went for the first case while leaving the second for further
development in the future. Second, the image quality indicator provides direct information to the
operator to avoid it going too fast in case of a blur or changing the distance to the captured scene when
it is under or over-exposed.

To estimate the image sharpness, we rely on an image gradient measure to detect the high
frequencies often associated with sharp images. Thus, we used Sobel kernel-based filtering which
computes the gradient with a smoothing effect. This removes the effect of dust commonly present in
underwater imaging. Given an image, I, we start by computing the image gradient magnitude, G, as

G =
√
(SK> ∗ I)2 + (KS> ∗ I)2, (1)

where
S = [1 2 1]>

K = [−1 0 1]>

∗ is a convolution operator.
We consider our sharpness measure to be the mean value of G. A threshold can be easily learned

from images by solving a simple linear regression problem. First, we record the number of matched
feature points per image versus the sharpness indicator. Then, by fixing the minimum number of
matched feature points needed to estimate the ego-motion correctly, we can compute the minimum
sharpness indicator threshold (in our experiments, we fixed the number of matches to 100 matches;
the obtained threshold was ≈20). It is worth noting that several assumptions used in our work,
including this measure, do not hold for terrestrial imaging scenarios. In particular, the seabed texture
guarantees a minimum sharpness even in object-free scenes.

From another perspective, good scene lighting yields better images, so it influences the accuracy
of odometry estimation. Similar to the image sharpness indicator, an image lightness indicator can be
integrated into the odometry process as well as helping the operator to take proper actions. To estimate
the lightness indicator, we convert the captured images to the CIE-XYZ color space and then to the
CIE-LAB color space. We consider the lightness indicator to be the mean value of the lightness channel
L (using a percentile-based measure, such as the median, is more representative but it takes around
22 times longer to compute than the mean). The threshold is computed in the same way as for
the sharpness.

Both indicators are computed using a sub-sampled image without interpolation. This allows
the processing time to be decreased by 80%, with an average time of 60 ms on a single RPi computer,
while keeping the accuracy above 95% compared to using the full resolution images.
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5. Visual Odometry

After computing and displaying the image quality measures, the images are transferred over the
network to the surface computer (average laptop computer). This computer is responsible for hosting
the visual odometry process, which will be explained in this section. We begin by introducing the used
stereo matching approach, and then we present the ego-motion estimation. Finally, we explain the
semi-global BA approach.

5.1. Speeded Up Stereo Matching

Matching feature points between stereo images is essential for the estimation of ego-motion. As the
alignment of the two cameras is not perfect, we start by calibrating the camera pair. Hence, for a given
point on the right image, we are able to compute the epipolar line containing the corresponding point
in the left image. However, based on the known fixed geometry, the corresponding point position
is constrained by a positive disparity. Moreover, given that, in deep water, the only light source is
the one attached to our system, the farthest distance that feature points can be detected is limited
(see Figure 6 for illustration). This means that there is a minimum disparity value that is greater than
zero; the red dots in Figure 6 refer to the minimum disparity, for instance. It was at least 130 pixels for
the 10 cm baseline stereo pair. Furthermore, when going too close to the scene, parts of the image will
become overexposed, undetectable, or out of focus. Similar to the previous case, this imposes a limited
maximum disparity. Figure 3 illustrates the constraints mentioned above by dividing the epipolar
line into four ranges, in which only one was an acceptable disparity in our context. This range can be
directly identified by learning from a set of captured images (oriented at 30◦ for better coverage).

Figure 6. Examples of underwater images taken with our system and the computed rough depth
using only the luminance channel. The rough depth was used later to speed up the stereo matching
procedure. The red dots show the minimum detectable disparity (≈130 pixels in 10 cm baseline setup),
while the blue dots show the maximum disparity (≈450 pixels in 10 cm baseline setup). See Figure 3
for corresponding distances and conversion to other baselines.
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In our approach, we propose to constrain the so-defined acceptable disparity range further,
which corresponds to the third range in Figure 3(left). Given the used lighting system, we can
assume a light diffuse reflection model where the light reflects equally in all directions. Based on
the inverse-square law that relates light intensity over distance, image pixels intensities are roughly
proportional to their squared disparities. Based on such an assumption, we can use the pixel intensity
to constrain the disparity and hence, limit the range of searching for a correspondence. To do so,
we used a dataset of rectified stereo images. For each image pair, we performed feature point matching.
Moreover, for each matching pair of points (xi, yi) and (x′i , y′i), x being the coordinate in the horizontal
axis, we computed the squared disparity, d2

i = (xi − x′i)
2. Next, we associated each d2

i to the mean
lightness value, denoted l̄xi ,yi , of a window centered at the given point computed from the lightness
channel, L, in the CIE-LAB color space. We assigned a large window size of (≈15) to compensate
for using the Harris operator that promotes local minimum intensity pixels as salient feature points.
Several examples of the computed rough depth maps are shown in Figure 6. The computed (l̄xi ,yi , d2

i )

pair shows the linear relationship between the squared disparity and the average lightness. A subset
of such pairs is plotted in Figure 7(left).
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Figure 7. Disparity vs. lightness relationship for a subset of matched points. Left: local average pixel
lightness vs. squared disparity. Right: an illustration of disparity tolerance, t, for a given lightness, l.

In addition to finding the linear relationship between both variables, it was also necessary to
capture the covariance that represents how rough our approximation is. More specifically, given the
relation shown in Figure 7, we aim to define a tolerance, t, associated with the disparity as a function
of the lightness, l. In our method, we rely on the Principal Component Analysis (PCA) technique to
obtain this information. In detail, for a given lightness, l, we first compute the corresponding squared
disparity, d2, using a linear regression approach as follows:

d2 = −αl − β (2)

where

α =
Cov(L, D2)

Var(L)
(3)

β = l̄ − αd̄2, (4)

where D and L , both vectors of n× 1 with n being the data size, are the disparity and the lightness
training vectors, respectively, and d̄ and l̄ are their respective means. Second, let V2 = [v2,x v2,y]

> be
the computed eigenvector that corresponds to the smallest eigenvalue, λ2, of the n× 2 matrix [L D2].
Based on the illustration shown in Figure 7 (right), the tolerance, t, associated with d2 can be written as:
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t =

√√√√λ2
2(

v2
2,x

v2
2,y

+ 1). (5)

By considering a normal error distribution of the estimated rough depth and based on the fact
that t is related to the variance of D2, we define the effective disparity range as

d± γ
4
√

t, (6)

where γ represents the number of standard deviations. It is trivial that γ is a trade-off between the
runtime and the probability of having point correspondences within the chosen tolerance range. We set
γ = 2 which that means there is 95% probability of covering the data. In practice, this translates
to less than 100 pixels, which is a significant reduction of the searching range (the used camera has
a resolution of 3280× 2464, or 1640× 1232 in a faster binned-mode).

The proposed methodology deals with errors in the rough depth estimation. For example, the rock,
which appears in the first image of the second row in Figure 6, is farther away from where it is estimated
in the rough depth map. This is due, generally, to variable surface reflectance among underwater
objects or the angle of light incidence. We note that a general indication of the rough depth estimation
quality is the eigenvalue (a smaller value means better depth estimation) that corresponds to the
eigenvector, V2, as it represents a deviation in the lightness value from the linear relationship given
in Equation (2). An illustration of a true depth (computed from disparity) vs. the depth estimated
from the lightness is shown in Figure 8 (left). The residuals of this estimation are illustrated in Figure 8
(right). We reiterate that the range defined in Equation (6) leaves a sufficient margin to account for the
deviation from the true value.
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Figure 8. Lightness vs. true depth relationship for a subset of matched points (the same as that used in
Figure 7). Left: local average pixel lightness vs. true depth (10 cm baseline); the red line represents the
lightness to depth transformation—it is deduced from Equation (2). Right: the residuals of the depth
estimation from lightness vs. true depth.

5.2. Initial Ego-Motion Estimation

An initial ego-motion is calculated every time a new image pair is captured. Let ( f1, f2, f3, f4)

denote the previous left, previous right, current left, and current right frames, respectively (see Figure 9
for illustration). We consider here that the relative positions of the previous left frame to the current
left frame ( f1 → f3) represent the system motion. The pipeline of the ego-motion estimation proceeds
is as follows:

1. Feature point detection of f1 using the Harris-based Shi–Tomasi method [26].
2. Perform feature point matching using the patch descriptor (11× 11, as advised in [8]), and the

normalized sum of squared differences as a distance measure for the frames ( f1, f2). Given the
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camera calibration parameters, the search range across the epipolar lines is reduced using the
analysis presented in Section 5.1.

3. The feature points detected in f1 are tracked in f3 using the Pyramidal Lucas–Kanade (LK)
method [54].

4. The fundamental matrix is computed for the frames ( f1, f3) using the normalized eight point
method with RANSAC as described in [43]. The matrix is used to reject the tracking outliers.
This step is optional—although it improves the accuracy slightly, more computation time adds up.

5. Repeat Step 2 for frames ( f3, f4) using the tracked feature points found in Step 3.
6. Compute two 3D point clouds using triangulation for the matched feature points in frames ( f1, f2)

and ( f3, f4) respectively. We note that the correspondence between the two point clouds is known.
7. Compute the relative transformation between the two 3D point clouds, which represents the

ego-motion that the ROV undergoes (to be explained in the following text).

We note that starting from the second run of the procedure, Step 1 is appended so that the detected
feature points are first compared against those of the previous estimation (using a truncated resolution
of 0.1 pixel). This yields two groups of points: new detections and the points that have been already
processed from the previous run. Their correspondence is already established within the f2 frame,
and their 3D position is computed. Hence, Steps 2–6 will only be computed for new detections.
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Figure 9. Image quadruplet: the current (left and right) and previous (left and right) frames are used to
compute two 3D point clouds. The transformation, [R13|T13], between the two points clouds is equal to
the relative motion between the two camera positions.

The choice of using the LK approach is justified by the relatively slow scene change over time,
which is reasonably correct due to system mass and smooth motion underwater. Since the LK method
employs a closed-form formulation to measure the optical flow, it remains faster than a patch matching
scheme. However, it does not suit stereo matching due to the large disparity between corresponding
points (up to several hundreds of pixels, as seen earlier).

As there is no scaling problem between the two 3D point clouds, the relative transformation can be
expressed as a 3× 3 rotation matrix R and a 3× 1 translation vector, T, namely [R13|T13] (see Figure 9).
The method to compute this transformation is presented in the following text. Let P and P′ be the
point clouds associated with the image pairs ( f1, f2) and ( f3, f4), respectively. Let pi ∈ P and p′i ∈ P′

be two homologous points (correspondence relationship established in Step 3). We have:
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p′i = R13 pi + T13. (7)

We seek a transformation the minimizes the error, r, the sum of squared residuals:

r =
n

∑
i=1

∥∥R13 pi + T13 − p′i
∥∥2 . (8)

To solve this problem, we follow the method proposed in [55]. Briefly, a 3× 3 matrix C is formed as

C =
n

∑
i=1

(pi − p̄)(p′i − p̄′)>, (9)

where p̄ and p̄′ are the centers of mass of the 3D point sets, P and P′, respectively. Given C = USV>,
the singular value decomposition (SVD) of the matrix, C, the final transformation is computed as

R13 = VU> (10)

T13 = −R13 p̄ + p̄′. (11)

This solution could potentially return reflected rotations, where det(R13) = −1. This can be
corrected by multiplying the third column of R13 by −1.

Once the image pair ,( f3, f4), is expressed in the reference system of the image pair, ( f1, f2), the 3D
points can be recalculated using the four observations that we have for each point. A set of verifications
are then performed to minimize the pairing errors (verification of the epipolar line, the consistency of
the y-parallax, and re-projection residuals). Once validated, this initial ego-motion estimation is used
in the BA procedure that will be described later.

5.3. Uncertainty in Visual Odometery

As shown in the literature review, relative visual odometry represents a good solution for
long-term autonomy. This kind of approach deals with a selected region of the map at a time. The aim is
to reduce the optimization runtime for a new pose. In detail, given a set of frames resulting from camera
trajectory. For a new frame at time, t, the pose is estimated w.r.t. frame t− 1. Here, a relative approach
would perform a selection of frames within a certain distance. These frames are assumed to have the
largest potential overlap with the current frame. Using these frames, BA is performed to optimize the
trajectory. As we have seen earlier, most of the proposed methods assume equal and uncorrelated
Gaussian noise for all axes. This is illustrated in Figure 10 (right). In this case, when searching for
the nearest frames to be included in the optimization process, the distance, d2, is larger than d1, both
geometrically and statistically. However, having a full covariance representation of the pose, for
instance, as shown in Figure 10 (left), the Euclidean distance measure is no more appropriate. Here,
any divergence measure would estimate d2 to be smaller than d1, which is more realistic. Since the
visual odometry approach suffers from drifting, it is essential to consider an efficient uncertainty
measure to represent and determine adjacent frames.

Like any visual odometry estimation, the estimated trajectory using the method mentioned in
the previous section is exposed to a computational error, which translates to some uncertainty that
grows over time. A global BA may handle this error accumulation; however, it is time-consuming.
From another side, a local BA is a tradeoff for accuracy and runtime. The selection of n closest frames is
made using the standard Euclidean distance. Loop closure may occur when overlapping with already
visited areas which, in return, enhances the accuracy. This approach remains valid as soon as the
uncertainty is equal for all estimated variables. However, as the uncertainty varies, the selection of the
closest frames based on the Euclidean distance is not suitable. In the following text, we prove that it
is the case for any visual odometry method. Also, we provide a formal definition of the uncertainty
associated with ego-motion estimation.



Sensors 2018, 18, 2313 14 of 25

d

1

d

2

X

7

X

8

d

1

d

2

X

7

X

8

X

3

X

3

Figure 10. Example of a trajectory with uncertainty modeled by the full covariance matrix (left).
The distance, d2, is statistically estimated to be smaller than d1. In contrast, it is the inverse when the
noise is modeled with equal variances (right).

Most visual odometry and 3D reconstruction methods rely on matched feature points to estimate
the relative motion between two frames. The error in the matched features is resulting from several
accumulated errors. These errors are due, non-exclusively, to the following reasons: optical distortion
modeling, the discretization of 3D points when projected to image pixels, motion blur, depth of field
blur, internal camera noise, salient points detection, and matching. By performing image undistortion,
and constraining the point matching with the fundamental matrix, the accumulation of the errors
mentioned above can be approximated with a Gaussian distribution. This is implicitly considered in
most computer vision fundamentals. Based on this assumption, we can prove that the error distribution
of the estimated relative pose is unequal among dimensions. Indeed, it can be fitted to a multivariate
Gaussian whose covariance matrix has unequal Eigenvalues, as we will see later.

To better demonstrate this idea, we will take the traditional example of computing the relative
pose by means of the fundamental matrix (the results of this analysis also hold for our method, which
will be considered in Section 5.4). Formally, a pair of matched points, m↔ m′, between two frames, can
be represented by a multivariate Gaussian distribution N (m, Σ)↔ N (m′, Σ), where Σ = diag(σ2, σ2).
The pose estimation procedure relies on the fundamental matrix that satisfies m′ F m = 0. Writing
m = [x y 1]> and m′ = [x′ y′ 1]> in homogeneous coordinates, the fundamental matrix constraint
for this pair of points can be written as

x′x f11 + x′y f12 + x′ f13 + y′x f21 + y′y f22 + y′ f23 + x f31 + y f32 + f33 = 0, (12)

where fij is the element at row i and column j of F. To show the estimated pose error distribution,
we consider one configuration example, the identity camera intrinsic matrix, K = diag(1 1 1). Let us
now take the case of pure translational motion between the two camera frames, T = [TX TY TZ]

>,
and θ = [θx θy θz]> = [0 0 0]>, where T and θ are the translation and rotation vectors respectively.
The fundamental matrix, in this case, is given as a skew-symmetric matrix of T, denoted [T]×. In this
case, Equation (12) is simplified to

− x′yTZ + x′TY + y′xTZ − y′TX − xTY + yTX = 0. (13)

By using enough matched points, we can recover the translation vector, T, by solving a linear
system. However, the Gaussian error associated with x, y, x′and y′ will propagate equally to variables
TX and TY, with a variance equal to 2σ2. In contrast to TZ where the error distribution is different
due to the product of two variables, each follows a Gaussian distribution. In addition to not being
Gaussian-distributed in general cases, their product’s variance is approximate (there is no analytical
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solution to find the variance of the product of two Gaussian distributed variables). The product of two
Gaussian distributed variables follows a normal product distribution; it has been proven that it tends
towards a normal distribution when µ/σ is large enough, which is not the case here. Alternatives
include numerical integration, Monte Carlo simulation and analytical approximation. The given
formula results from the latter case σ2(x2 + y′2 + x′2 + y2), which largely exceeds the error variance
associated with TX and TY.

Moreover, due to the usage of least square approach through an SVD decomposition, as in our
method, or two consecutive SVDs (used for fundamental matrix computation and essential matrix
decomposition) in traditional visual odometry, the error distributions associated with recovered pose
parameters are correlated (even though the observations are uncorrelated), as explained in [56]; this is
also demonstrated experimentally in the next sub-section. Overall, this leads to having the estimated
pose follow a Gaussian distribution with a full DOF covariance matrix (within the symmetric positive
semi-definite constraint).

5.4. Pose Uncertainty Modeling and Learning

Pose uncertainty is difficult to estimate analytically. This is due to the complexity of the pose
estimation procedure and the number of variables involved. In particular, the noise propagation
through SVD decomposition cannot be analytically modeled. Instead, inspired by the unscented
Kalman filter approach [57], we proceed similarly by simulating the noisy input and trying to
characterize the output error distribution in this case. This process is illustrated in Figure 11. In our
work, we propose to learn the error distribution based on finite but numerous pose samples. This is
done using a neural network approach which fits well with our problem as it produces a soft output.

Pose

 Estimation

m ~ N( μ,Σ )

θ

Z

θ

Y

θ

X

Ω ~ N([T X  TY  T Z  θ X  θY  θZ ]⊤ , Σ')

X

Y

X

Z

Y

Z

Estimated pose uncertainty

Figure 11. Illustration of error propagation through the pose estimation procedure. The estimated
pose uncertainty is shown for each of the six DOF. A full error covariance matrix could result from
uncorrelated error distribution of matched 2D feature points.

Two factors play a role in the estimated pose uncertainty. First, the motion, Ω = [T θ]>, between
the two frames is expressed by a translation T and a rotation θ, which is explained in the previous
section. Second, is the 3D location of the matched feature points. Although their locations are not
computed explicitly in our method, their distances from the camera affect the computation accuracy.
In particular, the further the points are from the camera the less accurate the estimated pose is. This is
because close points yield larger 2D projection disparity which becomes less sensitive to discretization
error. For instance, in a pure translation motion, if all matched points are within the blind zone of the
vision system (produce zero-pixel disparity after discretization), the estimated motion will be equal
to zero. This problem can be solved with points closer to the camera. Both mentioned factors are
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correlated to some extent. For instance, given some points in 3D (n > 7), the estimated pose accuracy is
a function of their depth, but also of the baseline distance and the angle between the two optical centers
of the cameras [43] (p. 323). Hence, considering one factor is sufficient. In our work, we consider the
motion as a base to predict the uncertainty.

Formally, given a motion vector, Ω = [T θ]>, ideally, we seek to find the covariance matrix that
expresses the associated error distribution. Being positive semi-definitive (PSD), an n× n covariance
matrix has (n2 + n)/2 unique entries. Having n = 6, in our case, yields 21 DOF, of which six are
variances. However, learning this number of parameters freely violates the PSD constraint. Whereas
finding the nearest PSD, in this case, distorts the diagonal elements largely because of being mush
less. At the same time, we found, experimentally, that the covariance between T and θ variables is
relatively small compared to that of intra T and intra θ. Thus, we consider the estimation of two
distinct covariance matrices, ΣT and Σθ . So, in total, we have 12 parameters to learn, of which six are
the variances.

For the aim of learning ΣT and Σθ , we created a simulation of the pose estimation procedure.
For a fixed well-distributed 3D points Xi ∈ R3 : i = 1..8, we simulated two cameras (to form a stereo
pair) with known intrinsic and extrinsic values. The points were projected according to both cameras’
2D image points. A motion vector, Ω, was applied to the cameras. Then, the 3D points were projected
again. All projected points were then disturbed with random Gaussian noise. Next, the ego-motion
was estimated by applying the method proposed in Section 5.2 on the disturbed points. Let Ω̃ = [T̃ θ̃]>

be the estimated motion. Repeating the same procedure (with the same motion Ω) produced a set of
motion vectors which represented a point cloud of poses around the real one. Next, we computed the
covariance matrices, ΣT and Σθ , of the resulting motion vectors to obtain the uncertainty associated
with the given motion, Ω. Furthermore, this procedure was repeated for a large number of motion
vectors that covered a wide ranges of its six composing variables (in the performed simulation, we use
the range [0− 1] with a step size of 0.25 for the translation for each of the 3 dimensions. For rotations,
we used the range [0− π/2.5] with a step of π/10. This raised up to 15,625 training samples).

At this stage, having produced the training data by means of motion vectors and the corresponding
covariance matrices, we proceeded to build a system to learn the established correspondences (motion
⇔ uncertainty), so that, in the case of new motion, we would be able to predict the uncertainty.
Neural networks offer this soft output by nature, which is the reason why we adopted this learning
method. In our experiments, we found that a simple neural network with a single hidden layer [58]
was sufficient to fit the data well. The input layer had six nodes that corresponded to the motion
vector. The output layer had 12 nodes which corresponded to the unique entries in ΣT and Σθ . Thus,
we formed our output vector as

O = [Σ11
T Σ22

T Σ33
T Σ12

T Σ13
T Σ23

T Σ11
θ Σ22

θ Σ33
θ Σ12

θ Σ13
θ Σ23

θ ]>, (14)

where Σij
· is the element of row i and column j of a covariance matrix. In the learning phase, we used

the Levenberg–Marquardt backpropagation which is a gradient-descent based approach, as described
in [59]. Further, by using the mean-squared error as a cost function, we were able to achieve around
a training error rate of 3%. The obtained parameters were rearranged into two symmetric matrices.
In practice, the obtained matrix is not necessarily PSD. We proceeded to find the closest PSD as QΛ+Q−1,
where Q is the eigenvector matrix of the estimated covariance matrix, and Λ+ is the diagonal matrix of
eigenvalues, in which negative values are set to zero.

To validate the training phase, the procedure to generate the training set was repeated but using
different values of motion vectors. The validation of this test set using the trained neural network
showed an accuracy of 87.6% and a standard deviation of 6.1, which is reasonably acceptable in
this context.
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5.5. Semi-Global Bundle Adjustment

After initiating the visual odometry, the relative pose estimation at each frame is maintained
within a table that contains all poses’ related information (18 parameters per pose, in which 6 for
the position, and 12 for two covariance matrices). At any time, it is possible to identify the poses in
the neighborhood of the current pose being estimated to find potential overlaps to consider while
performing BA. Since we were dealing with a statistical representation of the observations, a divergence
measure had to be considered. Here, we chose the Bhattacharyya distance as suitable for our problem
(modified metric variation could be also used [60]). Formally, the distance between the two poses,
{Ω1, Σ1

T , Σ1
θ} and {Ω2, Σ2

T , Σ2
θ}, is given as:

D =
1
8
(Ω1 −Ω2)>Σ−1(Ω1 −Ω2) +

1
2

ln(
det Σ√

det Σ1 + det Σ2
), (15)

where

Σ· =

[
Σ·T 0
0 Σ·θ

]
, Σ =

Σ1 + Σ2

2
. (16)

Having selected the set of frames, F, in the neighborhood of the current pose statistically,
we performed BA as follows; First, we divided F into two subsets similar to [45]. The first subset,
Fd, contained the current and previous frames in time, whereas the other subset Fs contained the
remaining frames, mostly resulting from overlap with an already scanned area. Second, BA was
performed on both subsets. However, the pose parameters related to Fs were masked as static, so they
were not optimized, in contrast to Fd. This strategy was necessary to reduce the number of variables
to optimize.

After determining the error distribution arising with a new pose, it has to be compounded with
the error propagated from the previous pose. Similar to SLAM approaches, we propose to use a Kalman
filter like gain which allows controllable error fusion and propagation. Given an accumulated previous
pose estimation, defined as {Ωp, Σp

T , Σp
θ }, and a current one, {Ωc, Σc

T , Σc
θ}, an updated current pose,

{Ωu, Σu
T , Σu

θ }, is calculated as:

Ωu = Ωc (17)

Σu
θ = (I − Σp

θ (Σ
p
θ + Σc

θ)
−1)Σp

θ (18)

Σu
T = (I − Σp

T(Σ
p
T + Σc

T)
−1)Σp

T . (19)

6. Experimental Results

The first experiments were carried out to test the hardware platform stability, reliability,
and autonomy. Snapshots of the operations for both systems are shown in Figures 4 and 5, whereas
examples of the taken images are shown in Figure 6. An underwater site was scanned, and the taken
images were processed using photogrammetry techniques to validate the quality of the taken images.
We use Agisoft Photoscan [61] to perform the 3D reconstruction. Examples of resulting 3D models are
shown in Figure 12. Stereo image synchronization was also validated by observing the relative pose
estimation between each pair and comparing it with the stereo calibration extrinsic parameters.

It was desired that the proposed visual odometry method would represent a trade-off between
accuracy and runtime, the maximum accuracy being the case for global BA, whereas the fastest
runtime was an optimization free visual odometry. Moreover, a performance improvement was
expected w.r.t the local optimization method due to a better selection of neighboring observations.
Therefore, we analyzed the performance of our method from two points of view: runtime and accuracy.
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Figure 12. 3D reconstructed models using images captured with the handheld system.

6.1. Runtime Evaluation

We implemented our method using OpenCV [3] bindings in Java. The BA scheme was
implemented using the speed optimized BA toolbox proposed in [44]. The image stream processing
on the embedded systems including the image quality assessment took around 100 ms per stereo pair
to execute. The maximum image acquisition frequency was 3 per second, due to hardware limitations.
Therefore, a mid-range laptop computer (with Intel Core i5-7300U CPU @3.50GHz with 16GB RAM)
was enough to handle the visual odometry process.

The major improvement that reduced the processing time was the proposed stereo matching
method. To demonstrate the time gain, we started by comparing the runtime of our method with an
implementation that does not employ any range reduction. The method with range reduction showed
an average gain of 72% processing time. Then, we compared this to methods using high-level feature
descriptors, in particular, SIFT, SURF, and BRISK. At the same time, we monitored the accuracy for
each run. The evaluation was done using the same set of images. In this test, the computational times
increased to 342%, 221%, and 142% for SIFT, SURF, and BRISK, respectively. Nevertheless, we noticed
a slight gain in accuracy of 1.1% for the average translational error and 0.6% for the average rotational
error when using SIFT and SURF, which we do not judge as significant. On the contrary, BRISK
performed less accurately, with an increase of 4.1% in average translational error and 0.8% in average
rotational error, which is probably due to its sensitivity to water turbidity and dust.

The results above (given in percentages) were more or less consistent across several processing
environments, including the running on an RPi computer. Nevertheless, in Table 1, we provide the
exact processing times using the same laptop computer mentioned above, applied to full resolution
images. The table also shows the percentage of correct matches for each method (our method is not
concerned here, as it uses the epipolar geometry to search for matches), which were obtained using the
first-order geometric error and a threshold of 0.005. We observe that BRISK features produced less
correct matches in underwater images than SIFT and SURF.

Table 1. Performance of used feature matching methods regarding processing time and correct matches.
The correct matches are defined as having a first-order geometric error [43] (p. 287) less than 0.005.

Method Detector Correct Matches (%) Processing Time (ms)

Ours Shi-Tomasi [26] - 220
Stereo matching (no range reduction) Shi-Tomasi [26] - 785
SIFT DoG 49.5 752
SURF Fast Hessian 48.7 486
BRISK AGAST [31] 34.3 313
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A break-up of the average time required to run the visual odometry is illustrated in Figure 13.
It shows that the stereo matching procedure occupies as little as 16.5% of the total runtime, whereas
the BA procedure occupies the majority of time with 42.2%. We note that this result is for using five
frames in the optimization phase. More frames can be used to improve the accuracy but with a cost of
more time complexity. This will be detailed in the next section.

4.7%

Feature points detection

16.5%

Stereo Matching

7.3%

LK tracking

5.9%

Point Clouds alignment

4.8%

Outliers rejection

4.3%

Pose map maintaining and selction

42.2%

Bundle adjustment

14.3%

others

Figure 13. Runtime analysis of the visual odometry system for new pose estimation.

6.2. Visual Odometry Evaluation

Unlike terrestrial odometry datasets that come with ground-truth, there is no such option for
underwater odometry. Alternatively, to validate the proposed visual odometry method, we conducted
an underwater survey using several scenarios, for instance, long trajectories with loop closures or
raster scans. We estimated the overtaken trajectories using Agisoft Photoscan which employs a global
optimization approach. We used the best available accuracy settings with large numbers of matching
points. We considered the estimated trajectories as a reference for comparison in our experiments.
An example of a dense reconstruction of such trajectories is shown in Figure 14. It measures around
5 m × 12 m and contains several loop closures. We followed a standard evaluation procedure,
as described in [62], where, for all test trajectories, we computed translational and rotational errors
for all possible sub-trajectories of one-meter length. The errors were measured as percentages for
translation and degrees per meter for rotation.

Figure 14. An example of the long trajectory 3D reconstructed model using images captured with
the ROV-attached system. Such trajectories were used as ground truths to validate and tune the
proposed method.

We first evaluated the effect of varying the number of frames considered in the optimization
phase in our method. Table 2 shows the trajectory errors for using 3, 5, and 11 frames. Although the
BA running time for the case of using five frames was around half that of using 11 frames, the accuracy
gain was not significant for this latter case. Hence, we found that using five frames is the best accuracy
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vs. runtime trade-off, and also it is the limit to remain within a real-time performance. The caused drift
of 3.8% remained acceptable even for large sites. Figure 15 (right) shows the effect of using different
numbers of frames on trajectory estimation for the example shown in Figure 14.
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Figure 15. Comparison of trajectory estimation using several methods and parameters. The trajectory
obtained using Agisoft Photoscan was considered a reference. It was compared to our method,
local optimization using 5 frames, and EFK-SLAM [50] (left column). It was also compared to our
method in cases where 3, 5, or 11 frames were used for optimization (right column). All units are
in meters.

Second, we compared our semi-global BA to three cases—using local BA with the same number
of frames, using the underwater EFK-SLAM method [50], and without using any BA. Our method
(using five frames) remained ahead of these three variations. From another perspective, although we
managed to run a BA-free approach entirely on the third RPi computer in the ROV-attached system.
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The trajectory drifts were large (with large variance) as shown in Table 2. Trajectory estimation using
these methods is shown in Figure 15. From another perspective, although the EFK-SLAM performed
better than the local approach, the runtime grew constantly.

Table 2. A comparison of translational and rotational errors for several methods and parameters.
The trajectory estimation performed in Agisoft Photoscan was considered to be a reference.

Translation Error (%) Rotation Error (deg/m)

Ours (11 frames)—slow 3.8 0.024
Ours (5 frames) 4.3 0.026
Ours (3 frames) 8.2 0.088
EFK-SLAM [50] 5.7 0.032
Local (5 frames) 8.4 0.079
No BA 16.1 0.137

7. Conclusions and Perspectives

In this work, we introduced several improvements to the current traditional visual odometry
approach to serve in the context of underwater surveys. The goal was to adapt the approach to
low resource systems. The sparse feature points matching, guided with a rough depth estimation
using lightness information, is the main factor associated with most of the gain in computation time
compared to sophisticated feature descriptors combined with brute-force matching. Also, using
stochastic representation and the selection of frames in the semi-global BA improved the accuracy
compared to local BA methods while remaining within real-time limits.

The developed hardware platforms represent efficient low-cost solutions for underwater surveys.
The live feedback of image quality and navigation helps to achieve better performance and leads to
faster reactions on site. Both systems are flexible for upgrades and modifications; new functionalities
can be easily added thanks to the compatible optimized image processing libraries.

Our future perspectives are mainly centered on performing the visual odometry within the system.
Further code improvements and parallelism are to be considered. Furthermore, at the time of writing
this article, new embedded systems that have double the computational power of the used ones have
been released, which makes our objective even closer.

On the other hand, dealing with visual odometry failure is an important challenge, especially
in the context of underwater imaging, which is mainly due to bad image quality. The ideas of
failing scenarios discussed in this paper can be extended to deal with the problem of interruptions in
an obtained trajectory.
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Abbreviations

The following abbreviations are used in this manuscript:

ROV Remotely Operated underwater Vehicle
ARM Advanced RISC Machine
GPS Global Positioning System
DVL Doppler Velocity Logs
3D Three Dimensional
GPU Graphics Processing Unit
DOF Degree Of Freedom
BA Bundle Adjustment
SLAM Simultaneous Localization And Mapping
RANSAC RANdom SAmple Consensus
RGB-D Red Green Blue Depth
RPi Raspberry Pi
INU Inertial Navigation Unit
SONAR SOund Navigation And Ranging
SSS Side Scan Sonar
SVD Singular Value Decomposition
CPU Central Processing Unit
PSD Positive Semi-Definitive
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