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Observer Design for Bounded Output Synchronized Petri Nets*

Rabah Ammour1, Said Amari2, Leonardo Brenner1, Isabel Demongodin1 and, Dimitri Lefebvre3

Abstract— This paper concerns discrete event systems mod-
eled with a particular class of synchronized Petri nets that
include output functions, called Output Synchronized Petri nets.
Such a formalism is suitable and tractable to represent a large
variety of Cyber-Physical Systems. As a preliminary result on
Output Synchronized Petri nets, we propose a method to design
observers for such systems based on the input control and
output signal that circulate between the controller and the plant.

I. INTRODUCTION

Cyber-Physical System (CPSs) are intelligent systems
that integrate control, communication, and computing. CPSs
have diversified applications include smart grid, autonomous
automotive systems, medical monitoring, process control
systems, distributed robotics, and automatic pilot avionics.
This paper is about Cyber-Physical Systems modeled as
discrete event systems. In particular we are interested in the
modeling and analysis of both the control inputs generated
by the controller and the observed outputs delivered by the
plant to improve the detectability of the CPS.

Our objectives are first to formalize the information that
circulates in the CPS from the perspective of observation,
and second to design observers for CPS based on control
inputs and observed outputs. Such observers are helpful
for a large variety of applications including fault tolerant
control and cyber-security. As a consequence, the domains
of application range from computer science and networks to
Industry 4.0 including robotics and transportation aspects. In
order to formalize how the information circulates in CPS, the
first contribution of the paper is to introduce synchronized
Petri nets combined with output functions (OutSynPN) that
are suitable to describe many situations where the control
inputs and delivered outputs are considered together. This
new formalism enlarges the class of synchronized PNs [1],
but also the classes of labeled PNs [2] and of Interpreted PN
[3]. In fact, it allows the system to be controlled and observed
thanks to the input events associated with controllable tran-
sitions and to the output events related to marking changes.
Thus, it is possible to represent, in a single formalism,
both the plant and the controller of a CPS. The second
contribution is to propose a method to design observers based
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on input and / or output for CPS modeled with OutSynPN.
Compared to the existing results, most of them developed
with automata, our approach leads to a model that is more
compact (due to the tokens semantics) and flexible (due to
use of weight and synchronization).

The paper is structured as follows. Section II is about the
state of the art on observers in the discrete event system
theory. In Section III, basic definitions and terminology
on synchronized Petri nets are reviewed. Section IV is
dedicated to the definition of the Output Synchronized Petri
nets (OutSynPN). Section V deals with the design of input
and/or output observers for OutSynPN. Finally, Section VI
concludes the paper.

II. STATE OF THE ART

Inference and state estimation problems have been inten-
sively studied in the context of discrete event systems [4], [5].
In particular, standard approaches have been developed to
design observers for systems modeled as labeled finite state
automata. Observability study and state estimation for finite
automata are relevant topics and have been investigated in the
literature under different formulations. Based on the matrix
representations for finite automata, an observer design pro-
cedure is defined in [6]. Authors are particularly interested in
studying the observability problem of partially observed non-
deterministic automata. The approaches in [7] are focused
on the location state recovery problems of non-deterministic
finite automata with several observability concepts using
the supervisory control principle. The authors of [8] have
studied the classical and logic based observer design of finite
automata for which several techniques have been developed,
such as the determination of location-observers based on
the computation of state-observer trees. An observer design
of input/output asynchronous sequential machines for the
model-matching problem has been developed in [9].

For Petri nets, the problem of marking estimation and
observation is well addressed in the literature, and several
methods have been proposed for its solution. In [10] the
observability problem has been addressed under the hypothe-
ses that the initial marking of the Petri net is completely
unknown and all transitions are observable. Authors define
several observability properties related to the existence of
complete words and to prove some of them, they have
provided an observer coverability graph. In the same context,
the authors of [11] have solved a slightly different problem
considering that the initial marking is assumed to be known
and only a subset of transitions is assumed to be observable.
We can also mention the existing studies using linear Max-
Plus models and timed event graphs, which are a particular



class of Petri nets. The authors of [12] have proposed a
methodology to develop an observer for max-plus linear
systems and design an observer-based controller for timed
event graphs [13]. The principle of these observers aims at
estimating the state for a given plant by using input and
output measurements. They are obtained by an analogy with
the classical Luenberger observer for continuous linear sys-
tems. The authors have considered that the system matrices
are assumed to be known, and the observation of the input
and of the output is used to compute the estimated state. A
similar method with the previous one has been developed
in [14] for designing asymptotic observers with the class of
interpreted Petri nets.

Moreover, a state estimation approach for labeled Petri
nets is presented in [15] and upper bounds on the number of
system states that are consistent with an observed sequence
of labels are given. This study is applicable to the class
of Petri nets that may have transitions that share the same
label and/or unobservable transitions. In [16] an approach
to estimate and recognize the set of consistent markings
in labeled Petri nets is introduced, which is focused on
the representative marking analysis. The question of state
estimation in labeled Petri nets with silent transitions and
indistinguishable transitions (i.e.,transitions sharing the same
label with other transitions) under partial observation and
uncertainty in the initial marking, is resolved in [2]. They
prove that all sets of markings consistent with a given
sequence of observations can be described in linear algebraic
terms and this observation is used to construct a marking
observer. In some classes of labeled Petri nets and to handle
the unobservable cycles, the authors of [17] and [18] have
developed methods based on the notion of reduced consistent
markings, which can be used for marking avoidance and
probabilistic marking estimation. Compared with labeled
Petri net based observers, our work considers both control-
lable inputs on transitions and delivered labels associated
with marking changes.

III. PRELIMINARIES

This section presents some basis on Petri nets and on
Synchronized Petri nets (see [3], [1], [19] for more details
on these formalisms). In the rest of this paper, the reader
will only deal with a class of bounded synchronized PNs,
associated with a single server semantics and, that also
satisfy some structural restriction to ensure the determinism
of the model.

A. Petri nets

A Petri net (PN) is a structure N = 〈P, T, Pre, Post〉,
where P is a set of m places, T is a set of n transitions, Pre :
P ×T → N and Post : P ×T → N are the pre− and post−
incidence matrices that specify the weights of directed arcs
from places to transitions and vice versa. C = Post− Pre
is the incidence matrix. A marking is a vector M : P → Nm
that assigns to each place a non-negative integer. We denote
by M(p) the marking of place p. A marked Petri net 〈N,M0〉
is a net N with an initial marking M0.

𝒑𝟏

𝒑𝟐 𝒑𝟒

𝒑𝟑 𝒑𝟓

𝒕𝟏: 𝒂

𝒕𝟐: 𝒃 𝒕𝟒: 𝝀

𝒕𝟓: 𝒂𝒕𝟑: 𝝀

𝒕𝟔: 𝝀

𝟐

𝟐

𝑨: ↓ 𝑴 𝒑𝟏
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𝑪: ↓ 𝑴 𝒑𝟓

(𝒂) (𝒃)

Fig. 1: (a) A synchronized Petri net; (b) Output labels

The preset and postset of place p are respectively: •p =
{t ∈ T | Post(p, t) > 0} and p• = {t ∈ T | Pre(p, t) > 0}.

A transition t is enabled at M iff M ≥ Pre(·, t), denoted
as M [t〉 in this paper. The set of enabled transitions at M is
denoted by ζ(M) = {t ∈ T |M ≥ Pre(·, t)}. The firing of
an enabled transition t yields the marking M ′ = M+C(·, t),
written as M [t〉M ′. When a sequence of transitions σ =
t1t2 · · · tk is considered, M [σ〉M ′ means that the firing of σ
from M leads to M ′.

For a given marked Petri net 〈N,M0〉, the set of markings
reachable from M0 is called the reachability set of 〈N,M0〉
and is denoted as R(N,M0). A marked Petri net 〈N,M0〉 is
said to be bounded if there exists a positive integer k such
that ∀p ∈ P, ∀M ∈ R(N,M0), M(p) ≤ k.

B. Synchronized Petri nets

A synchronized Petri net (SynPN) is a structure Ns =
〈N,E, f〉 such that:
• N is a Petri net,
• E is an alphabet of external input events,
• f : T → Eλ = E ∪ {λ} is a labeling function that

associates with each transition t either an external
input event f(t) ∈ E or λ, where λ is the “always
occurring” event which has priority over all external
input events.

In this paper, we consider that the synchronized Petri
net is deterministic, i.e., transitions which are in structural
conflict, do not share the same input event (i.e., there is no
place p such that ∃ t, t′ ∈ p•, t 6= t′ and f(t) = f(t′)).

The set of transitions associated with an event e ∈ Eλ is
denoted by Te = {t ∈ T | f(t) = e} while the set of enabled
transitions associated with event e at marking M is denoted
by ζe(M) = Te ∩ ζ(M).

We adopt for this formalism, a single server semantics [1],
i.e., at most one instance of a firing per transition in every
state. This means that, when input event e ∈ Eλ occurs from
marking M , each transition t in Te which is enabled, fires
only once, i.e., transition t appears only once in ζe(M).

A marking M is said to be an unstable marking if there
exists a transition t ∈ ζλ(M). Otherwise the marking is a
stable marking and will be denoted as Ms in the next.

Example 1: Consider the SynPN represented in Fig-
ure 1(a) and defined by Ns = 〈N,E, f〉 with: P =
{p1, p2, p3, p4, p5}, T = {t1, t2, t3, t4, t5, t6}, E = {a, b}.
The labeling function is given by f(t1) = f(t5) = a,



f(t2) = b and f(t3) = f(t4) = f(t6) = λ. The initial
marking depicted on the figure is M0 = (2 0 0 0 0)T which
can be denoted as M0 = 2p1. Note that ζa(M0) = {t1}
since Ta = {t1, t5} and ζ(M0) = {t1}. Finally, M0 is a
stable marking since ζλ(M0) = ∅.

The firing of transitions in a SynPN is driven by the occur-
rence of external input events and by the always occurring
event λ. Thus, at marking M , transition t ∈ T fires if one
of following conditions is satisfied:
(i) transition t is enabled and f(t) = λ, i.e., t ∈ ζλ(M).
(ii) transition t is enabled, ζλ(M) = ∅, and the input event
e = f(t) ∈ E occurs, i.e., t ∈ ζe(M).

Observe that for a transition both conditions cannot be
satisfied simultaneously. For two concurrent transitions t
and t′ such that f(t) = λ and f(t′) = e, transition t fires
first and then condition (i) has priority over condition (ii) in
a certain sense.

Given a marking M , the group of k transitions belonging
to the set ζe(M) = {tj1 , · · · , tjk} with e ∈ Eλ fire
simultaneously in one step when event e occurs. This leads to
the concept of Elementary Firing Sequence (EFS), denoted
as τe(M) = [tj1 , · · · , tjk ], where the brackets are used
to denote that the firing order of the k transitions can be
arbitrary chosen since they fire simultaneously. The notation
M [τe(M)〉M ′ means that the firing of the EFS τe(M) yields
marking M ′. Due to the single firing policy, one can remark
that each transition t ∈ T may appear at most one time in a
given EFS.

Finally, in a deterministic bounded SynPN with a single
server semantics, the net evolution is given, from a stable
marking Ms

1 , as follows:
1) capture the new event, e ∈ E;
2) fire simultaneously all enabled transitions ζe(M

s
1 )

associated with this event in a single step, i.e.,
Ms

1 [τe(M
s
1 )〉M ′ with M ′ = Ms

1 +
∑

t∈τe(Ms
1 )

C(·, t);

3) fire zero, one or more EFS of the always oc-
curring event, τλ(M ′), τλ(M ′′), · · · correspond-
ing to the successive enabled transitions sets
ζλ(M ′), ζλ(M ′′), · · · leading to the next stable mark-
ing Ms

2 i.e. M ′[τλ(M ′)〉M ′′[τλ(M ′′)〉 · · · 〉Ms
2 .

The set of reachable markings from an initial marking M0

in a synchronized Petri net Ns is denoted as R(Ns,M0).
The synchronization generates constraints in the evolution
of 〈Ns,M0〉 compared with 〈N,M0〉. It follows that [3],
the set of stable reachable markings of 〈Ns,M0〉 (and even
the set of all the reachable markings) is included in the
set of reachable markings of its corresponding 〈N,M0〉,
i.e., R(Ns,M0) ⊆ R(N,M0). In the case of bounded
SynPN, the set of reachable markings is finite and could be
represented by a reachability graph, i.e., a directed graph
whose vertices correspond to reachable markings and whose
edges correspond to the event causing the marking change
associated with the fired EFS, i.e., e|τe(M).

Fig. 2: Reachability graph of the SynPN in Figure 1

Example 2: Let us consider the bounded deterministic
SynPN of Figure 1(a) with the initial marking M0 =
(2 0 0 0 0)T . With a single server policy, its reachability
graph, given in Figure 2, shows four unstable markings:
(0 1 1 0 0)T , (0 0 2 0 0)T , (0 0 0 0 1)T , (1 1 0 0 0)T (see
dashed circles) and four stable markings: M0, (1 0 0 1 0)T ,
(0 0 1 1 0)T , (1 0 1 0 0)T .

IV. OUTPUT SYNCHRONIZED PETRI NETS AND LABELED
FINITE AUTOMATA WITH INPUTS

This section presents a particular class of synchronized
Petri nets that generates output events, called Output Syn-
chronized Petri nets. This new formalism allows the system
to be controlled through input event associated with control-
lable transitions and to be observed thanks to output events
related to marking changes and possibly with marking states.
Next, the reachability graph of this model is represented by
a particular class of automata, called a labeled finite state
automaton with inputs.

A. Output Synchronized Petri nets

Let us recall that only deterministic bounded Output
Synchronized Petri nets with a single server semantics
are considered in this paper. Let us first introduce some
necessary notions. A Boolean algebra is defined on
{0, 1} with conjuction, disjunction and negation operators,
respectively denoted as ∧,∨,¬. A Boolean function F is
defined as F : {0, 1}r → {0, 1}, where {0, 1}r is the set of
r Boolean variables. We denote by Fr the set of Boolean
functions that can be defined on {0, 1}r.

Definition 1: An output synchronized Petri net (Out-
SynPN) is a structure Nos = 〈N,E, f,Σ,Γ, Q, g〉 such that:

• 〈N,E, f〉 is a SynPN;
• Σ ⊆ {↑M(pi), ↓M(pi) | pi ∈ P} is a non empty

set of events associated with a marking change of
places, where ↓ and ↑ represent any decreasing and any
increasing of a place marking, respectively;

• Γ ⊆ {M(pi) ∼ h, | pi ∈ P, h ∈ N, ∼ ∈ {=, 6=,≥
,≤, >,<}} is a set of conditions on the place marking;

• Q is an alphabet of output events;
• g : Q→ {0, 1} is an output function such that ∀qi ∈ Q,
g(qi) = Θ(FΣ(qi))∧Υ(FΓ(qi)), where FΣ(qi) ∈ F|Σ|,
FΓ(qi) ∈ F|Γ| and :



– Θ : F|Σ| → {0, 1} is a Boolean function depicting
the conditions on the marking change events to
generate output qi and Θ(.) = 0 when no event
on the marking change is involved for output qi;

– Υ : F|Γ| → {0, 1} is a Boolean function depicting
the conditions on the marking value of places
to generate output qi and Υ(.) = 1 when no
condition on the marking values is involved for
output qi. N

An OutSynPN is a SynPN that delivers output events.
Each output event, q ∈ Q, is associated with at least one
marking change of a given place, i.e., FΣ(qi) exists, along
with possible conditions on the marking values of one
or several places. Hence, a single firing of an EFS may
generate zero, one or more output events. Let us denote
Q(M, e) = {qi, · · · , qk} ∈ 2Q with qi 6= qk, the subset
of output events generated by the firing of EFS τe(M).
Observe that the firing of τe(M) generates at most one
occurrence of each output event.

Example 3: Consider the OutSynPN, Nos =
〈N,E, f,Σ,Γ, Q, g〉 where 〈N,E, f〉 is the SynPN
of Example 1. The set of marking events and
the set of marking conditions are respectively,
Σ = {↓M(p1), ↑M(p4), ↓M(p5)} and Γ = {(M(p3) = 1)},
while the alphabet of output events is Q = {A,B,C}. The
Boolean functions are given by: FΣ(A) = (↓M(p1)),
FΣ(B) = (↑M(p4)), FΣ(C) = (↓M(p5)) and
FΓ(B) = (M(p3) = 1). Let us remark that
Υ(FΓ(A)) = Υ(FΓ(C)) = 1. Finally, with a slight
abuse of notations, the output functions are given by:
g(A) = (↓M(p1)), g(B) = ((↑M(p4))∧ (M(p3) = 1)) and
g(C) = (↓M(p5)), as depicted in Figure 1(b).

From M0 = 2p1, the occurrence of input event a drives the
model to marking M1 = p1p2 by firing one time transition
t1 (due to the single server semantics assumption). As the
marking of p1 decreases, g(A) = 1 and consequently, output
event A is generated, i.e., Q(M0, a) = A.

B. Labeled Finite Automata with Inputs

The reachability set of an OutSynPN corresponds to
the reachability set of its corresponding SynPN, i.e.,
R(Nos,M0) = R(Ns,M0). The reachability graph of an
OutSynPN is represented by a particular class of labeled
finite automaton called in this paper a labeled finite state
automaton with inputs (LFAI), defined below.

Definition 2: A labeled finite automaton with inputs
(LFAI) is a 6-tuple G = (X,Eλ, δ, x0, Q,Obs), where

• X is a finite set of states,
• E is a finite set of symbols (i.e., input events) and Eλ =
E ∪ {λ},

• δ : X × Eλ → X is a (possibly partially defined)
transition function,

• x0 ∈ X is an initial state,

Fig. 3: LFAI of the OutSynPN in example 3

TABLE I: States of the LFAI

X M X M

M0 (2 0 0 0 0)T M4 (1 0 0 1 0)T

M1 (1 1 0 0 0)T M5 (0 0 2 0 0)T

M2 (1 0 1 0 0)T M6 (0 0 1 1 0)T

M3 (0 1 1 0 0)T M7 (0 0 0 0 1)T

• Q is a finite set of labels (i.e., output events and Qε =
Q ∪ {ε},

• Obs : X × Eλ → 2Q ∪ {ε} is a labeling function . N

The reachability graph of a given OutSynPN is a particular
LFAI with X = R(Nos,M0) and x0 = M0, each state being
a reachable marking M of the OutSynPN. The transition
function satisfies δ(M, e) = M ′ if M [τe(M)〉M ′. The
labeling function depends on the symbols and also on the
current state. Obs is defined such that Obs(M, e) = Q(M, e)
if Q(M, e) 6= ∅ and Obs(M, e) = ε otherwise. Note that ε
is used when no label is generated. Given a state, M ∈ X ,
and a symbol, e ∈ Eλ, such that M ′ = δ(M, e), we refer to
the transition from M to M ′ as an e-transition.

Example 4: Consider the OutSynPN of Example 3. Its
LFAI, given in Figure 3, is defined by a set of 8 states
X = {M0, · · ·M7} that correspond to the 8 reachable
markings of the OutSynPN (see Table I), including the
initial state M0. The transition and labeling functions,
defined according to Definition 2, are directly derived
from the OutSynPN. For example, δ(M0, a) = M1 and
Obs(M0, a) = A, the same holds for the other transitions.
The notation “a : A” means that the system switches from
state M0 to state M1 when it receives symbol a and that
this change delivers label A.

A labeled finite automaton with inputs differs from a
Mealy machine [20] as in this formalism, with each transition
are associated a single input event and a single output event,
while in a LFAI a non negative number of output labels could
be associated with a transition. It is also different from an I/O
automaton [21] where the notion of output refers to output
actions and not to observations. In addition, compared to
I/O automata, inputs events and output observations are both
possible in the same transition of a LFAI.



V. INPUT / OUTPUT - BASED OBSERVER

In this section, a standard approach, that transforms a non
deterministic automaton into a deterministic one [4], [5], is
used to compute logical observers for a given OutSynPN.
Each state of the resulting observer is a subset of LFAI
states, and consequently of the OutSynPN markings. In
particular, depending on the information (inputs, outputs or
inputs/outputs) used to infer the system states consistent
with the observations, three logical observers of a given
OutSynPN could be obtained. In the sequel, an input / output
- based observer, denoted as OBSIO, that uses both the input
symbols and the output labels as observations is detailed.

Let us consider next an OutSynPN system 〈Nos,M0〉
with Nos = 〈N,E, f,Σ,Γ, Q, g〉 and its reachability graph
represented with the LFAI G = (X,Eλ, δ, x0, Q,Obs). The
input / output - based observer uses both the input symbols
and the output labels as observations.

Definition 3: The input / output - based observer of
OutSynPN system 〈Nos,M0〉 is defined by the 4-tuple
OBSIO = (SIO, QIO, δIO, s0) with:
• SIO ⊆ 2X , the set of observer states with X =
R(Nos,M0);

• QIO ⊆ (E × 2Q) ∪ E ∪ 2Q, the set of extended
observable labels (that includes the input symbols);

• δIO, the transition function defined by δIO(s, qIO) =
s′ if there exists two markings M ∈ s, M ′ ∈ s′ and
qIO ∈ QIO that satisfy either,

– qIO = (e,Q(M, e)) with e ∈ E, δ(M, e) = M ′

and Obs(M, e) 6= ε;
– qIO = e with e ∈ E, δ(M, e) = M ′ and
Obs(M, e) = ε;

– qIO = Q(M,λ) with δ(M,λ) = M ′ and
Obs(M,λ) 6= ε;

• s0, the observer initial state. N

Algorithm 1 details the computation of the observer
OBSIO. It uses the two following subsets of states:
• for each M ∈ X , e ∈ Eλ, Q′ ⊆ Q, let S(M, e,Q′)

be the set of states that are reachable from M by
firing exactly one e-transition (i.e., transition of the
LFAI associated with symbol e) with Obs(M, e) = Q′.
Observe that e may be λ.

• for each state M ∈ X , let S(M,λ, ε) be the set of
states reachable from M by firing zero or more silent
λ-transitions (i.e., Obs(M,λ) = ε). Note that M ∈
S(M,λ, ε).

Note that the sets S(M,λ, ε) and S(M, e,Q′) are com-
puted according to the transition function δ and the labeling
function Obs of the LFAI. The complexity of OBSIO is
O(2|R(Nos,M0)|).

Algorithm 1: Logical observer OBS of an LFAI

Require: : X , M0, E, Obs, Q

Ensure: : S, δIO, s0

1: s← S(M0, λ, ε), s0 ← s, S ← {s}, UNEXs← {s},
2: δIO ← ∅,
3: while UNEXs 6= ∅ do
4: let s be the first element of UNEXs
5: remove s from UNEXs
6: for each symbol e ∈ Eλ do
7: for each label Q′ ⊆ Qε do
8: if (e,Q′) 6= (λ, ε) then
9: y ← ∅,s′ ← ∅,

10: for each M ∈ s do
11: y ← y ∪ S(M, e,Q′)
12: end for
13: for each M ∈ y do
14: s′ ← s′ ∪ S(M,λ, ε)
15: end for
16: if s′ /∈ S then
17: S ← S∪{s′}, UNEXs← UNEXs∪{s′}
18: δIO(s, (e,Q′))← s′

19: end if
20: end for
21: end for
22: end for
23: end while

Proposition 1: Given an OutSynPN 〈Nos,M0〉, its input
/ output - based observer OBSIO = (SIO, QIO, δIO, s0) is
a deterministic finite automaton.

Proof : To prove that OBSIO is a deterministic finite
automaton, we prove that OBSIO has no non-determinism.

First, observe that no transition is labeled with (λ, ε) in
OBSIO. If such a transition exists from state M to state M ′

in the LFAI, then M ′ ∈ S(M,λ, ε) and both states M and
M ′ belong to the same observer state s.

Second, multiple transitions outgoing from one state s
in OBSIO cannot produce the same extended label
qIO = (e,Q′). If there are two states M1,M2 ∈ s
and two transitions in the LFAI, the first one such that
δ(M1, e) = M ′1 and the second one such that δ(M2, e) = M ′2
with Q′ = Q(M1, e) = Q(M2, e), then M ′1 ∈ S(M1, e,Q

′),
M ′2 ∈ S(M2, e,Q

′) and there exists s′ ∈ SIO, with
S(M1, e,Q

′) ⊆ s′ and S(M2, e,Q
′) ⊆ s′ and, both states

M ′1 and M ′2 belong to the same observer state s′. �

Let us consider a sequence of k successive observations
σ = qIO,1...qIO,k with qIO,h ∈ QIO, h = 1, ..., k. The
current state is estimated according to the following steps:

1) Let s0=S(M0, λ, ε) be the set of states reachable from
M0 by executing zero or more silent λ-transitions. Before
the occurrence of the first observation q1, one can state that
the current state of the system belongs to the set s0.

2) Consider now the first observation qIO,1 of σ with qIO,1
being in the form of qIO,1 = (e1, Q

′
1). For each M ∈ s0,

one can compute first the subset of states S(M, e1, Q
′
1)

that are reachable from M0 firing only one e1-transition
that delivers the set of output labels Q′1, and second the



Fig. 4: Input/Output observer of the OutSynPN of Example 3

subset of states S(M ′, λ, ε) reachable from any of the states
M ′ ∈ S(M, e1, Q

′
1) by executing zero or more silent λ-

transitions. Let us define s′1 = ∪M∈s0S(M, e1, Q
′
1) and

s1 = ∪M ′∈s′1S(M ′, λ, ε). So, s1 is the subset of states that
are consistent with the first observation (e1, Q

′
1).

3) The same is repeated for each observation
qIO,h = (eh, Q

′
h), h = 1, ..., k. Consider the last observation

qIO,k = (ek, Q
′
k) of σ. For each M ∈ sk−1 one can compute

first the subset of states S(M, ek, Q
′
k) that are reachable

from M executing only one ek-transition that delivers the
output label Q′k, and second the subset of states S(x′, λ, ε)
reachable from any of the states M ′ ∈ S(M, ek, Q

′
k) by

executing zero or more silent λ-transitions. Let us define
s′k = ∪M∈sk−1

S(M, ek, Q
′
k) and sk = ∪M ′∈s′kS(M ′, λ, ε).

So, sk is the subset of states that are consistent with the
whole sequence of observations σ.

Example 5: The input / output - based observer of the
OutSynPN of Example 3 is detailed in Figure 4. This
observer has 6 states and a set of extended observable labels
defined by QIO = {(a,A), (b, A), B, a, C}. The notation
“(a,A)” means that the observation is a pair of information
formed by symbol a and label A, and that this observation
is used to estimate the current state of the system. It is able
to track the system states that are consistent with a given
sequence of input and output observations. For instance,
from M0 and the observation of the following sequence of
extended labels (a,A) (b, A) a, one can conclude that the
system state is currently M2.

For the proposed OBSIO, only the pair (λ, ε) is regarded
as a silent event, and other pairs of symbols and labels are
regarded as observable events. Observe that an input - based
observer, i.e., that uses only the symbols as observations, and
an output - based observer, i.e., that uses only the labels as
observations, can be computed in a similar way.

VI. CONCLUSIONS

This paper has proposed a method to design observers for
discrete event systems that are synchronized thanks to a set
of control events and that deliver sets of observations at each
state transition. The approach is based on a new class of syn-
chronized Petri nets with outputs that are suitable to model a
large variety of Cyber-Physical Systems. Another advantage

of the proposed approach is to formalize the observers in a
quite standard way using labeled finite automata with inputs.

Our future works will be to extend the design of observers
in a time setting for input / output discrete event systems. An-
other perspective will consider applications of the approach
to important problems such as the detection of cyber-attacks
in the framework of Cyber-Physical Systems.
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