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Costs analysis of stealthy attacks with bounded output synchronized
Petri nets*

Rabah Ammour1, Said Amari2, Leonardo Brenner1, Isabel Demongodin1 and, Dimitri Lefebvre3

Abstract— This paper concerns the security analysis of dis-
crete event systems modeled with a particular class of synchro-
nized Petri nets that include output functions, called Output
Synchonized Petri nets. Such a formalism is suitable and
tractable to represent a large variety of cyber-physical systems.
In particular, we study here cyber-attacks that aim to drive
the system from a given normal state to forbidden state. We
assume that the attacker has a certain credit to insert and
delete input and output events, depending on its own objectives.
The proposed analysis aims to evaluate the costs of stealthy
attacks on the controlled system depending on the objective of
the controller, the structure of the system and the cost of the
malicious actions.

Keywords: Petri Nets for Automation Control, Cyber-
Physical Systems, Security Analysis.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) have been widely used
in various real contexts: distributed automation systems,
transportation networks, medical monitoring, smart power
grids, advanced communication processes and vehicular so-
cial networks. This category of complex systems generally
includes the plant, sensors, actuators, controllers and a
communication network. CPSs arise from the interaction of
physical processes, computational resources and information
communication capabilities. The communication and data
exchange networks between controllers and the operative part
of the process are vulnerable to different types of attacks and
it is common to encounter situations, where serious risks of
cyber attacks occur between cyber and physical components.
Examples of cyber attacks include the StuxNet strike on
industrial control systems [1], and the spoofing of global
positioning systems to capture unmanned aircrafts [2]. In the
literature, several methodologies are devolved in the context
of sensor or actuator attacks that drive a controlled Discrete
Event System (DES) to unsafe or undesirable states by
manipulating control and observation sequences. Studies of
[3] propose a supervisor of a plant under partial observations
to overcome attacks, where attacks are represented by a
set-valued map that describes all possibly corrupted strings
with respect to each original string. There are several results
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concerning the sensor attacks that drive a controlled DES
to unsafe or undesirable states by manipulating observation
sequences [4], [5]. Overall, these works aim to investigate
one special type of cyber attacks, where an attacker can
arbitrarily alter sensor readings after intercepting them from
a target system in order to trick the supervisor and drives
the system to an undesirable state. Works of [6] introduce a
defense policy that prevents cyber attacks at sensor and actu-
ator layer in supervisory control systems and assume that the
attacker can alter the observation of events. The detectable
and undetectable network attack security is established to
prevent the plant from reaching forbidden states. Recently,
authors of [7] exploit the techniques of the supervisory con-
trol theory to solve the actuator attacker synthesis problem.
In [8], the state estimation problem for nondeterministic
finite automata partially observed via a sensor measuring
unit whose measurements may be vitiated by a malicious
attacker, is discussed. An approach is developed to check
the tamper-tolerant diagnosability of the plant by attaching
attacks and costs to an enhanced version of the plant model.
The context of this paper is similar to [8]. We assume that
the attacker has a certain credit to manipulate the control
symbols sent to the actuators and also the output labels
returned by the sensors. We focus on the insertion and dele-
tion of symbols and labels where each insertion or deletion
has a certain cost. Consequently, stealthy cyber-attacks of
limited cost are considered. Such attacks aim to change the
system current state whatever the control sequence generated
by the controller. The main contribution of the paper is to
evaluate the security of the CPS depending on the credit
of the attacker. For this purpose, CPSs are modeled by a
class of Petri net, called an Output Synchronized Petri net
(OutSynPN) [9]. This new formalism allows the system to be
controlled through input events associated with controllable
transitions and to be observed thanks to output labels related
to some marking changes and possibly with some marking
states. The logical aspects of this model, including input
and output events are represented by a class of Labeled
Finite state Automata with Inputs (LFAI) that lead directly
to some weighted graphs useful for security analysis. The
rest of the paper is organized as follows. Section II is about
the motivations and backgrounds. Section III introduces the
cost graph based on the LFAI. Section IV is devoted to the
security analysis of CPS affected by moving attacks. Section
V is a case study and Section VI concludes the paper.



II. MOTIVATIONS AND BACKGROUNDS

This section first discusses our motivations. A particular
class of synchronized Petri nets, i.e., OutSynPNs, is then
detailed. The advantage of OutSynPNs is to synchonize the
transition firings on some input events and to associate some
marking changes to output labels. The exhaustive logical
behavior of this model is finally described as a labeled finite
automaton with inputs (LFAI). The reader could find more
details about Petri nets in [10], [11], [12], OutSynPNs in [9]
and details about automata in [13], [14].

A. Motivations

In this paper we consider stealthy attacks that aim to drive
the system from a given (normal) state to another state (that
may be a forbidden state from the perspective of the system).
In the spirit of covert attacks [15], the following assumptions
are considered:
• the attacker knows the model of the system,
• the attacker knows (or is able to estimate) the current

state of the system to perform the attack,
• the attacker can manipulate the input symbols and

output labels. In particular, it can insert or delete in-
put symbols and output labels depending on its own
objectives.

Such an attack is able to change the information that
circulates in both the input and output channels of the system
as represented in Figure 1. Consequently, it can replace the
true control sequence i by a wrong control sequence ia.
In the same time the attacker is able to erase the traces
generated by its malicious actions or to insert wrong traces
oa that are similar to the expected traces o′ to be observed by
the user. Such attacks may become completely undetectable
for the usual detection schemes that aim to compare the
outputs o delivered by the system and the estimated outputs
o′ computed by the twin plant.
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Fig. 1: Stealthy attack

B. Output Synchronized Petri nets

Let us first introduce some necessary notions. A Boolean
algebra is defined on {0, 1} with conjuction, disjunction
and negation operators, respectively denoted as ∧,∨,¬. A

Boolean function B is defined as B : {0, 1}r → {0, 1},
where r is the number of considered Boolean variables.

We denote by Br the set of Boolean functions that can
be defined on {0, 1}r.

Definition 1: An output synchronized Petri net (Out-
SynPN) is a structure Nos = 〈N,E, f,Σ,Γ, Q, g〉. A marked
OutSynPN is 〈Nos,M0〉 such that:
• N = 〈P, T, Pre, Post〉 is a Petri net, where P is a set

of m places, T is a set of n transitions, Pre : P ×
T → N and Post : P × T → N are the pre− and
post− incidence matrices that specify the weights of
directed arcs from places to transitions and vice versa.
C = Post− Pre is the incidence matrix.

• A marking is a vector M : P → Nm that assigns to
each place a non-negative integer. We denote by M(p)
the marking of place p.

• E is an alphabet of external input events.
• f : T → Eλ = E ∪ {λ} is a labeling function that

associates with each transition t either an external input
event f(t) ∈ E or λ, where λ is the “always occurring”
event.

• Σ ⊆ {↑M(pi), ↓M(pi) | pi ∈ P} is a non empty set of
conditions linked to marking changes of places, where
↓ and ↑ represent a decreasing and an increasing of a
place marking, respectively.

• Γ ⊆ {M(pi) ∼ h, | pi ∈ P, h ∈ N, ∼ ∈ {=, 6=,≥,≤
, >,<}} is a set of conditions linked to place marking
values.

• Q is an alphabet of output events.
• g : Q→ {0, 1} is an output function such that ∀qi ∈ Q,
g(qi) = Υ(BΓ(qi)) ∧Θ(BΣ(qi)) where BΓ(qi) ∈ B|Γ|,
BΣ(qi) ∈ B|Σ| and:

– Υ : B|Γ| → {0, 1} is a Boolean function depicting
the conditions on the marking value of places to
generate output qi and Υ(.) = 1 when no condition
on the marking values is involved for output qi;

– Θ : B|Σ| → {0, 1} is a Boolean function depicting
the conditions on the marking change events to
generate output qi and Θ(.) = 0 when no event
on the marking change is involved for output qi.

• M0 is the initial marking. N

In this paper, we consider that the output synchronized
Petri net is deterministic. In other terms, transitions which
are in structural conflict, do not share the same input event
(i.e., @p ∈ P such that ∃ t, t′ ∈ p•, t 6= t′ and f(t) = f(t′))1.

Let Te = {t ∈ T | f(t) = e} be the set of transitions
associated with an input event e ∈ Eλ. A transition t ∈
Te is enabled at marking M iff e ∈ E occurs and M ≥
Pre(·, t). A transition t ∈ Tλ is enabled at marking M iff
M ≥ Pre(·, t). At marking M , we denote by ζe(M) the set
of enabled transitions associated with input event e ∈ E and,
by ζλ(M) the set of enabled transitions associated with the
“always occurring” event λ. Thus, at marking M , transition

1p• denotes the postset of place p, i.e., p• = {t ∈ T | Pre(p, t) > 0}.



t ∈ T fires if one of following conditions is satisfied:
(i) t ∈ ζλ(M), i.e., transition t is enabled and t ∈ Tλ.
(ii) t ∈ ζe(M) and the input event e = f(t) ∈ E occurs.

Remarks: For a transition, conditions (i) and (ii) cannot
be satisfied simultaneously. For two concurrent enabled
transitions, t and t′, such that t, t′ ∈ p• and t ∈ ζλ(M),
t′ ∈ ζe(M) (with e ∈ E), transition t fires first. Then
condition (i) has priority over condition (ii) in a certain sense.

A marking M is said to be an unstable marking if there
exists a transition in Tλ which is enabled, i.e., ζλ(M) 6= ∅.
Otherwise the marking is a stable marking and is denoted
by Ms in the next.

Moreover, in the Petri net theory, the server semantic is
an important notion in the dynamics and must be specified.
For OutSynPNs, the server semantic defines the maximal
number of simultaneous firings of a given transition t for
each occurrence of the input event e = f(t). In the rest of
this paper, we adopt a single server semantic [11].

The dynamics of an OutSynPN is based on an event
approach with an asynchronized comportment in terms of
input event and with a synchronized one in terms of firing
transitions. In others terms, at a moment, only one external
input event could occurs or the “always occurring” event
while several enabled transitions could fire simultaneously.
More precisely, given a marking M , the group of k tran-
sitions belonging to the set ζe(M) = {tj1 , · · · , tjk} with
e ∈ Eλ, fire simultaneously when the event e occurs. This
leads to the concept of Elementary Firing Sequence (EFS),
denoted as τe(M) = [tj1 , · · · , tjk ], where the brackets are
used to denote that the firing order of the k transitions can be
arbitrary chosen since they fire simultaneously. The notation
M [τe(M)〉M ′ means that the firing of the EFS τe(M) yields
to marking M ′. Due to the single firing semantic, one can
remark that each transition t ∈ T may appear at most one
time in a given EFS. Finally, in a deterministic OutSynPN
with a single server semantic, the net evolution is given, from
a stable marking Ms

k , as:
1) capture the new event e ∈ E
2) fire simultaneously all enabled transitions ζe(M

s
k)

associated with this event in a single step, i.e.,
Ms
k [τe(M

s
k)〉M ′ with M ′ = Ms

k +
∑

t∈τe(Ms
k)

C(·, t).

3) fire zero, one or more EFS τλ(M ′), τλ(M ′′), · · ·
corresponding to the successive enabled transitions sets
ζλ(M ′), ζλ(M ′′), · · · leading to the next stable mark-
ing Ms

k+1, i.e., M ′[τλ(M ′)〉M ′′[τλ(M ′′)〉 · · · 〉Ms
k+1.

In this paper, we deal with bounded OutSynPNs, i.e.,
for 〈Nos,M0〉, it exists k ≥ 0 such that ∀p ∈ P ,
∀M ∈ R(Nos,M0), M(p) ≤ k, where R(Nos,M0) is the
reachability set of the place/transition net 〈Nos,M0〉.

The synchronization generates constraints in the evolu-
tion of 〈Nos,M0〉 compared with 〈N,M0〉. It follows that
R(Nos,M0) ⊆ R(N,M0) and the set of possible firing se-
quences in 〈Nos,M0〉 is included in the set of possible firing
sequences in net 〈N,M0〉 (i.e., the language of 〈Nos,M0〉
is included in the one of 〈N,M0〉).

An OutSynPN delivers output events. Each output event

is associated with at least one marking change of a given
place along with possible conditions on the marking values
of one or several places. Hence, the firing of the EFS τe(M)
may generate zero, one or more output events. Observe that
the firing of τe(M) could generate at most one occurrence
of each output event. Finally, ε is used when a given EFS
does not generate any output event. Let us denote Q(M, e) =
{q1 · · · qk} ∈ 2Q as the set of output events generated by the
firing of τe(M).
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𝑨: ↓ 𝑴 𝒑𝟏 ; 𝑩: 𝑴 𝒑𝟑 = 𝟏 ∧ ↑ 𝑴 𝒑𝟒 ; 𝑪: ↓ 𝑴 𝒑𝟓

Fig. 2: An output synchronized Petri net

Example 1: Consider the OutSynPN of Figure 2 where
the input/output events are E = {a, b} and Q = {A,B,C},
respectively. The labeling function is f(t1) = f(t5) = a,
f(t2) = b and f(t3) = f(t4) = f(t6) = λ. Both
condition sets are Σ = {↓M(p1), ↑M(p4), ↓M(p5)} and
Γ = {(M(p3) = 1)} and, with a slight abuse of notations,
the output functions are: g(A) = (↓M(p1)), g(B) =
((M(p3) = 1) ∧ (↑M(p4))) and g(C) = (↓M(p5)). The
initial marking is M0 = (2 0 0 0 0)T (or M0 = 2p1).

At the initial marking, since ζλ(M0) = ∅, M0 is a stable
marking. Note that ζa(M0) = {t1} since Ta = {t1, t5}
but only transition t1 respects M0 ≥ Pre(·, t1). With a
single server semantic, from M0 and with the occurrence of
input event a, transition t1 fires once, i.e., τa(M0) = [t1],
yielding to marking M1 = 1p1, 1p2, i.e., M0[τa(M0)〉M1.
The output event A is then generated, Q(M0, a) = {A}, as
there is a decreasing of the marking of p1 (i.e., g(A) = 1).
This new marking is unstable as ζλ(M1) 6= ∅ and transition
t3 fires immediately, yielding to the stable marking 1p1, 1p4.
No output event is generated from this firing, noted by ε.
From M4 = 1p1, 1p4, with input event a, both transitions t1
and t5 fire simultaneously as τa(M4) = [t1, t5], yielding to
unstable marking M1. Thus, M4[τa(M4)〉M1[τλ(M1)〉M4

with output event ε. �

In the rest of this paper, the reader will only deal with the
class of bounded OutSynPNs, associated with a single server
semantics and, that also satisfy the structural restriction
previously presented to ensure the determinism of the model,
i.e., two concurrent transitions cannot both have the same
input event.

C. Labeled finite automaton with inputs

In the case of a bounded OutSynPN, the set of reachable
markings is finite and the logical aspects can be represented
by a particular labeled finite automaton, namely a labeled
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Fig. 3: LFAI of the OutSynPN in example 1

finite state automaton with inputs (LFAI) defined below.

Definition 2: A labeled finite automaton with inputs
(LFAI) is a 6-tuple G = (X,Eλ, δ, x0, Q,Obs), where
• X is a finite set of states,
• E is a finite set of symbols (i.e., input events) and Eλ =
E ∪ {λ},

• δ : X × Eλ → X is a (possibly partially defined)
transition function,

• x0 ∈ X is an initial state,
• Q is a finite set of labels (i.e., output events) and Qε =
Q ∪ {ε},

• Obs : X × Eλ → 2Q ∪ {ε} is a labeling function. N

The reachability graph of a given OutSynPN is a particular
LFAI with X = R(Nos,M0) and x0 = M0, each state being
a reachable marking M of the OutSynPN. The transition
function satisfies δ(M, e) = M ′ if M [τe(M)〉M ′. The
labeling function depends on the input events and also on the
current state. Obs is defined such that Obs(M, e) = Q(M, e)
if Q(M, e) 6= ∅ and Obs(M, e) = ε otherwise. There is
no difficulty to extend the EFS τ , the transition function
δ and the observation function Obs to any sequence of
symbols i ∈ E∗λ. First, observe that τ(ei)(M) = τi(M

′) with
M [τe(M)〉M ′. Then, δ∗ and Obs∗ are the trivial extension
of δ and Obs defined recursively by δ∗(M, ei) = δ∗(M ′, i)
and Obs∗(M, ei) = Q(M, e)Obs∗(M ′, i).

Example 2: Consider the OutSynPN of Example 1. Its
LFAI, given in Figure 3, is defined by a set of 8 states
X = {M0, · · · ,M7} that correspond to the 8 reachable
markings of the OutSynPN (see Table I), including the
initial state M0. The transition and labeling functions,
defined according to Definition 1, are directly derived
from the OutSynPN. For example, δ(M0, a) = M1 and
Obs(M0, a) = A, the same holds for the other transitions.
The notation “a : A” means that the system switches from
state M0 to state M1 when it receives symbol a and that
this change delivers label A. The LFAI shows four unstable
markings: M1, M3, M5 and M7 (see dashed circles) and
four stable markings: M0, M2, M4 and M6. �

III. COST GRAPHS

In this section we consider that the attacker knows the
model of the system, and can manipulate the symbols and

TABLE I: States of the LFAI

X Marking X Marking

M0 (2 0 0 0 0)T = 2p1 M4 (1 0 0 1 0)T = 1p1, 1p4

M1 (1 1 0 0 0)T = 1p1, 1p2 M5 (0 0 2 0 0)T = 1p3

M2 (1 0 1 0 0)T = 1p1, 1p3 M6 (0 0 1 1 0)T = 1p3, 1p4

M3 (0 1 1 0 0)T = 1p2, 1p3 M7 (0 0 0 0 1)T = 1p5
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Fig. 4: Adding control graph

labels. In particular, it can insert or delete such symbols and
labels depending on its own objectives. An insertion cost
cI and a deletion cost cE are defined for each symbols and
labels. Note that cI(λ) = cE(λ) = 0 and cI(ε) = cE(ε) = 0.

According to insertion and deletion costs, a weighted
graph, called Adding Control Graph (ACG), can be estab-
lished. It represents the cost for adding the symbol and
erasing the corresponding labels for consecutive markings.

The nodes of an adding control graph are those of the LFAI
while each oriented arc corresponds to a transition of the
LFAI with a weight given as follows. Let M,M ′ ∈ X be two
states in the LFAI and e ∈ E, such that δ(M, e) = M ′. The
weight cACG(M, e) of the arc corresponding to transition
δ(M, e) = M ′, is given by:

cACG(M, e) = cI(e) +
∑

q∈Q(M,e)

cE(q)

Example 3: Consider the OutSynPN of Example 1. The
cost to insert or delete each symbol and label is detailed in
Table II (note that label c is not used here and will be used
in the case study section).

From this table, one can compute the cost of each tran-
sition of ACG, as reported in Figure 4. For instance, the
cost to drive the system from marking M0 to marking M1

is equal to 3 which corresponds to the sum of the cost
to insert the symbol a and of the cost to erase the label
A that results from the state switch, i.e., cACG(M0, a) =
cI(a) + cE(A) = 2 + 1 = 3.

�

IV. ANALYSIS OF STEALTHY ATTACKS

A particular stealthy attack is considered in this section in
order to illustrate the use of the graph ACG. In the next, we
will consider two subsets N ,N ′ ⊆ R(Nos,M0) composed
of stable states, that are used to describe the objective of



the attacker. This objective can be formulated as to drive the
system from a given state M ∈ N to another state M ′ ∈ N ′.

We consider that the attacker aims to drive the system from
a given marking M to another marking M ′. We assume,
during a moving attack, that the controller does not send
any symbol. Consequently, the attacker has no symbol to
erase. The attacker inserts a wrong control sequence (i.e., a
sequence of symbols) and, in the same time, he erases the
observable traces (i.e., a sequence of sets of labels) that the
wrong control sequence has generated.

Let us consider the sequence ia inserted by the attacker
when the current system state is M . Observe that λ-
transitions may be generated spontaneously by the system
and added to the attack sequence. The trajectory σ(M, i′a)
of k + 1 successive markings from M is defined as:

Mi0

e1:Q(Mi0 ,e1)
−−−−−−−−→Mi1 . . .Mik−1

ek:Q(Mik−1
,ek)

−−−−−−−−−−→Mik (1)

where Mi0 = M , Mik = M ′, i′a = e1 . . . ek, eh ∈ Eλ, h =
1, . . . , k is the sequence of symbols inserted by the attacker
completed with the λ-transitions and oa = Obs∗(M, i′a) =
Q(Mi0 , e1) . . . Q(Mik−1

, ek) is the corresponding sequence
of sets of labels. The cost of this attack that inserts ia at M
and erases oa can be computed as:

cMA(M, ia) =
∑
eh∈ia

cI(eh) +
∑

q∈Q(Mih−1
,eh)

Q(Mih−1
,eh)∈oa

cE(q)

or equivalently as:

cMA(M, ia) =
∑

(Mih
,eh)∈σ(M,i′a)

cACG(Mih , eh) (2)

As there could exist several symbol sequences that reach
marking M ′ from marking M , it is interesting to determine
which one has the minimal cost (this sequence corresponds
to the worst case from the controller perspective since the
attacker could reach M ′ from M with the lowest cost). By
using the wellknown Dijkstra algorithm, the minimal cost
c∗MA(M,M ′) that the attacker needs to move the system
from M to M ′ can be computed:

c∗MA(M,M ′) = min
i
{cMA(M, i)} (3)

with M [σ(M, i) > M ′.
More generally, it is interesting to compute the lowest cost

c∗MA from any state M ∈ N to any state M ′ ∈ N ′ (this last
set could represent a set of deadlock states, for instance).

c∗MA = min
M∈N ,M ′∈N ′

{c∗MA(M,M ′)} (4)

Definition 3: Let us consider a system modeled
by a marked OutSynPN 〈Nos,M0〉 and let G =
(X,Eλ, δ, x0, Q,Obs) be its LFAI. Let c be the credit
of the attacker to move the system from N to N ′ . The
system is called c-vulnerable to moving attack if the
minimal cost c∗MA to drive the system from any state in N
to any state in N ′ while erasing the observable traces is
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Fig. 5: OutSynPN of a jobshop

less than c. N

The indicator of c-vulnerability with respect to moving
attacks can be interpreted as follows. In the case where this
indicator is low, it means that the attacker needs only a small
credit to reach a state in N ′ (e.g., a forbidden state) from at
least one particular state in N (e.g., a normal state). In the
case where this indicator is large, it means that the attacker
needs numerous credits to reach any forbidden state from
the set of normal states. Definition 3 will be illustrated in
the case study presented in Section V.

V. CASE STUDY

The OutSynPN of Figure 5 models a jobshop with
two production lines, L1 and L2 represented, respectively,
by p1, t1, p2, t2, p3, t3, p4, t4 and p5, t5, p6, t6, p7, t7, p8, t8,
where places p1 and p5 represent the available pallets. Three
types of robots are needed to manufacture products on both
lines and two robots of each type are available. These robots
are represented by the resource places p9, p10, p11, with two
tokens in each place at initial time.

The labeling function is given by f(t1) = a, f(t2) =
f(t4) = f(t8) = b, f(t5) = f(t7) = c and f(t3) = f(t6) =
λ. The labels are: Q = {A,B,C} and their associated
functions are given by: g(A) = (↓M(p1)) ∨ ↑M(p1)),
g(B) = (↓M(p6)) and g(C) = (↑M(p6)). The initial mark-
ing, depicted on Figure 5, is M1 = 2p1, 2p5, 2p9, 2p10, 2p11,
corresponding to four available pallets at initial time. The
obtained LFAI has 33 states among which 19 are stable states
and one is a blocking state (deadlock) corresponding to the
marking Md = 2p2, 2p7, 2p11. The cost to insert or delete
each symbol and label is detailed in Table II.

In the next, we consider a setN of states composed by sta-
ble states that use two pallets at most (i.e., m1 +m5 ≥ 2, see
markings given in Table III). From the controller perspective,
maintaining the system state within N increases the security
of the system by preserving unexpected transitions to Md.
Consequently, we will refer to N as to the set of normal
states. In addition, the set N ′ = {Md} is also considered.
This set contains only the deadlock marking that should be



TABLE II: Cost of symbols and labels insertion and deletion

a b c A B C

cI 2 2 2 3 3 3

cE 1 1 1 1 1 1

avoided (from the perspective of the controller) and will be
referred as to a forbidden state.

Let us consider an attack where the attacker aims to drive
the system from any state in N to N ′. For instance, consider
the particular case where the system is in initial marking
M0. Using the adding control graph (ACG) represented in
Figure 6, where set N is defined by the green nodes, the
minimal cost to drive the system from M1 to Md (red
node in the ACG) is 14. It corresponds to the sequence of
symbols ia = aacc that costs 8 to be inserted by the attacker.
In order to hide the impact of ia on the output channel,
the attacker deletes in the meantime the sequence of labels
oa = AACBCB generated by the system that costs 6. The
minimal costs to drive the system from each state M ∈ N
to Md = M26 are reported in column c∗MA of Table III.
The attack of minimal cost (7) corresponds to a trajectory
from marking M11 to Md = M26 represented by red arrows
in Figure 6. This leads to the conclusion that the system is
7-vulnerable to attacks in set N ′ = {Md}.
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Fig. 6: Adding control graph of the case study

VI. CONCLUSIONS

This paper has proposed an approach to measure the
security of cyber-physical systems modeled with Output
Synchonized Petri nets that include input and output events.
By computing a labeled finite automaton with inputs from the
OutSynPN and a weighted graph that encode the cost of the
malicious actions from the attacker, we propose indicators
that evaluate the security of the controlled system. These
indicators are illustrated in the particular case of attacks that
aim to change the current state of the system.

TABLE III: Attack costs

State Marking of N c∗MA to N ′

M1 2p1, 2p5, 2p9, 2p10, 2p11 14

M2 1p1, 1p2, 2p5, 1p9, 2p10, 2p11 11

M4 2p2, 2p5, 2p10, 2p11 8

M7 2p1, 1p5, 1p7, 2p9, 1p10, 2p11 10

M10 1p1, 1p4, 2p5, 2p9, 2p10, 1p11 17

M11 1p1, 1p2, 1p5, 1p7, 1p9, 1p10, 2p11 7

M12 2p1, 1p5, 1p8, 1p9, 2p10, 2p11 16

M13 1p2, 1p4, 2p5, 1p9, 2p10, 1p11 20

M17 1p1, 1p2, 1p5, 1p8, 2p10, 2p11 19

M22 1p1, 1p4, 1p5, 1p7, 2p9, 1p10, 1p11 13

M24 2p1, 1p7, 1p8, 1p9, 1p10, 2p11 12

M28 2p1, 2p8, 2p10, 2p11 18

In our future works we will consider more general attack
scenarios. In particular, we aim to extend the proposed
analysis to situations where the attacker has only a partial
knowledge about the system or where it can modify the
symbols and labels with some restrictions.
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