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manifolds: applications to theories of desires
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Abstract
In this paper, we introduce a new proximal algorithm for equilibrium problems on a 
genuine Hadamard manifold, using a new regularization term. We first extend recent 
existence results by considering pseudomonotone bifunctions and a weaker sufficient 
condition than the coer-civity assumption. Then, we consider the convergence of this 
proximal-like algorithm which can be applied to genuinely Hadamard manifolds and not 
only to specific ones, as in the recent literature. A striking point is that our new 
regularization term have a clear interpretation in a recent “variational rationality” approach 
of human behavior. It represents the resistance to change aspects of such human dynamics 
driven by motivation to change aspects. This allows us to give an application to the theories 
of desires, showing how an agent must escape to a succession of temporary traps to be able 
to reach, at the end, his desires.
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1 Introduction

The equilibrium problem EP has been widely studied and it is a very active field of research. 
One of the motivations is that various problems may be formulated as an equilibrium problem, 
for instance, optimization problems, Nash equilibria pro-blems, complementarity problems, 
fixed point problems and variational inequality problems. An extensive development can be 
found in Blum and Oettli (1994), Bianchi and Schaible (1996) and references therein.

An important issue is under what conditions there exists a solution to EP. In the linear 
setting, several authors have provided results answering this question; see, for instance, 
Iusem and Sosa (2003) and  Iusem et al.  (2009). For an approach on this issue in Hadamard 
manifolds see, for example, Colao et al. (2012), where the authors considered the case where 
EP is associated to a monotone bifunction satisfying a certain coercivity condition. Cruz 
Neto et al. (2018b), the authors establish existence of solutions to equilibrium problems in 
Hadamard manifolds by perturbing the equilibrium bifunction. An approach on the existence 
of solutions in the case where the equilibrium problem is of the type vectorial with variable 
order can be found in Batista et al. (2016). Li et al. (2019) addressed the issue of the existence 
of solutions for EP in general Riemannian manifolds in the case where the equilibrium 
problem is equivalent to suitable VIP (Variational Inequality Problem) and, consequently, 
the technique considered was mainly focused in applying the corresponding results in Colao 
et al. (2012) for the variational inequality problem obtained. See also Pany et al. (2018) where  
the authors use a similar strategy to address this issue in the framework of finitely continuous 
space. Our first contribution in this paper is to establish this important result in the case 
where the bifunction involved is not necessarily monotone. More precisely, following the 
ideas presented in Iusem et al. (2009), in the presente paper we have extended the existence 
result in Colao et al. (2012) (for EP) by considering pseudomonotone bifunctions and a 
weaker sufficient condition than the coercivity assumption used there.

Another issue of interest is the development of an algorithmic analysis to deal with EP; see 
for example Bulavsky and Kalashnikov (1998), Moudafi (1999), Konnov (2003), Facchinei 
and Kanzow (2010), Cruz Neto et al. (2016) and Pany et al. (2018). From an algorithmic 
point of view, in Colao et al. (2012) the authors presented an iterative process to approximate 
a solution of the equilibrium problem on a Hadamard manifold, which is associated to the 
proximal iteration studied, for example, by Moudafi (1999), Konnov (2003) and Iusem and  
Sosa (2010), all in the linear setting. Although natural, the iterative scheme considered in 
Colao et al. (2012) is ensured to be well defined only on Hadamard manifolds with null 
sectional curvature; see Remark 7. The approach via variational inequality considered in 
Li et al. (2019) allowed the authors to ensure the well-definedness of the iterative scheme 
presented in Colao et al. (2012) to a genuine Hadamard manifold. It is known that although 
the variational inequality theory provides us a tool for formulating a variety of equilibrium 
problems, even in the linear setting the generalization given by EP formulation with respect 
to VIP (variational inequality problem) is genuine, in the sense that there are EP which do 
not fit the format of VIP, see Remark 2. In this direction, our contribution in this paper has 
been to introduce a a new proximal algorithm for EP by using a new regularization term that,  
unlike the classical model, does not come as a natural extension of the optimality condition 
of a minimization problem. Consequently, we provide a convergence analysis that can be 
applied to genuinely Hadamard manifolds.

Several researchers have studied the proximal point method on Hadamard manifolds for 
particular instances of the EP; see, for example, Ferreira and Oliveira (2002), Li et al. (2009) 
and Tang et al. (2013). In recent years, extensions to Riemannian manifolds of concepts and
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techniques which fit in Euclidean spaces are natural; see, for instance, Ledyaev and Zhu
(2007), Ferreira et al. (2005), Li et al. (2011b), Li et al. (2011a), Kristály (2014), Yang et al.
(2013), Cruz Neto et al. (2013), Quiroz (2013) and the references therein. One reason for the
success in the extension of techniques from the linear setting to the Riemannian context, is the
possibility to transform nonconvex problems in convex problems by introducing a suitable
Riemannian metric; see Rapcsák (1997), Cruz Neto et al. (2002), Bento andMelo (2012) and
Colao et al. (2012). On the application side, a striking point is that our new regularization
term have a clear interpretation in a recent (VR) “variational rationality” approach of human
behavior, see Soubeyran (2009, 2010, 2016, 2019a, b). It represents resistance to change
aspects of suchhumandynamics drivenbymotivation to change aspects. This allowsus to give
an application to the theories of desires, showing how an agent must escape to a succession
of temporary traps to be able to reach, at the end, his desires. In a dynamical context, a
Riemannian manifold greatly helps to model human dynamics, because it represents what is
possible, relative to what is not, that is, which bundles of situated activities an individual can
do, each period, in this setting and which move he can do. The main interest to extend the VR
approach in the Riemannian context is that this setting allows to formalize in a better way
different aspects of the famous field theory in psychology; see, for example, Lewin (1935,
1936, 1938, 1951). In other words, a Riemannian manifold helps to model constraints that
Lewin (1936) call “what is not possible” in the life space of free movement. A constraint
is a fundamental concept in the Lewin approach as well as in the VR approach, because it
represents an important aspect of resistance to move (opportunity costs). For example, when,
given a time constraint, a time consuming activity forbids to have enough time to do an other
activity within a period. In dimension three, the hyperbolic paraboloid

S = {
(x, y, z) ∈ X = R

3+ : z = xy
}
,

is a surface with negative Gauss curvature as well as negative sectional curvature; see, for
example, Haesen et al. (2003) and Ng (1995). This constraint represents a classical Cobb
Douglas utility or a production function with complementary and substitutability effects
between the quantities of inputs (either consumption goods, or factors of production like
labour and capital),

(i) geodesicsmodel directions and distinguished pathswhich are central to Lewin’s approach
in term of psychological forces;

(ii) the link between curvature and resistance to move remains open for us.

The organization of our paper is as follows. In Sect. 2, we give some elementary facts on
Riemannian manifolds and convexity needed for reading this paper. In Sect. 3, we present
a sufficient condition for existence of a solution for the equilibrium problem on Hadamard
manifolds under conditions similar to the linear case. In Sect. 4, the proximal point algorithm
for equilibrium problems on Hadamard manifolds is presented and convergence analysis is
derived. In Sect. 5, we give a behavioral application to the existence of temporary traps and
the existence/reachability of desires, in the context of the recent and unifying approach of
stability and change dynamics, (see Soubeyran 2009, 2010, 2016, 2019a, b). This approach
focuses the attention on four main concepts:

(i) worthwhile single changes, where, for an isolated agent or several interrelated agents,
their motivation to change from the current position to a new position is higher than some
adaptive and satisficing worthwhile to change ratio, time their resistance to change.Moti-
vation to change refers to the utility of advantages to change, while resistance to change
refers to the disutility of inconveniences to change. Resistance to change includes inertia,
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frictions, obstacles, difficulties to change, costs to be able to change and inconveniences
to change as well as different resource constraints;

(ii) worthwhile transitions, i.e, succession of worthwhile single stays and changes;
(iii) traps, which can be stationary or variational. A trap is stationary when, starting from it, no

feasible change is worthwhile. An equilibrium appears to be a very particular stationary
trap, in a world with no resistance to change, when only motivation to change matters. In
this case the agent has no motivation to change (no advantage to change, i.e only losses
to change), and zero resistance to change. A trap is variational with respect to a subset
of initial positions, when it is stationary, and, starting from any of these initial positions,
agents can find a succession of worthwhile single changes and temporary stays which
converge to this stationary trap. Then, a variational trap is rather easy to reach and difficult
to leave in a worthwhile way. Furthermore, traps can be weak or strong, depending of
large or strict inequalities;

(iv) desires, which represent, both to have what you want and to want what you have. The
idea is that to be able to reach your desires, you must escape to several temporary traps.

This last section, devoted to applications, focuses the attention on a succession of worthwhile 
changes and stays, moving from a weak stationary trap to a new one, given that the agent 
can change, each step, his satisficing worthwhile to change ratio. The algorithm given in 
Sect. 4 represents a nice instance of such a worthwhile stability and change dynamic. The 
result of this paper shows that this dynamic converges to an equilibrium which represents a 
desired situation or desire. This worthwhile stability and change dynamic is a very important 
benchmark case of the more general stability and change dynamic (see Soubeyran 2009, 
2010, 2016, 2019a, b), where a succession of worthwhile changes move from a position to 
a new one (which are not supposed to be stationary traps) and converges to an end point, 
which is shown to be a variational trap. Finally, Sect. 6 contains concluding discussions of 
the main results obtained in the paper.

2 Preliminary

A complete, simply connected Riemannian manifold with nonpositive sectional curvature 
is called a Hadamard manifold. Throughout this paper, every manifold M denotes a finite 
dimensional Hadamard manifold and, when we refer to a genuine Hadamard manifold we 
are referring to a Hadamard manifold whose sectional curvature is not identically zero. The 
notations, results, and concepts used in this paper can be found in Ferreira and Oliveira 
(2002).

A set  Ω ⊂ M is said to be convex iff any geodesic segment with end points in Ω is 
contained in Ω , that is,  iff γ : [a, b] →  M is a geodesic such that x = γ (a) ∈ Ω and 
y = γ (b) ∈ Ω , then  γ ((1 − t)a + tb) ∈ Ω for all t ∈ [0, 1]. Given  B ⊂ M , we denote  
by conv(B) the convex hull of B, that is, the smallest convex subset of M containing B. Let  
Ω ⊂ M be a convex set. A function f : Ω → R is said to be convex iff for any geodesic 
segment γ : [a, b] → Ω the composition f ◦ γ : [a, b] → R is convex. Take p ∈ Ω . A  
vector s ∈ Tp M is said to be a subgradient of f at p iff

f (q) ≥ f ( p) + 〈s, expp−1 q〉, q ∈ Ω.

The set of all subgradients of f at p, denoted by ∂ f ( p), is called the subdifferential of f at 
p. It is known that if f is convex and M is a Hadamard manifold, then ∂ f ( p) is a nonempty 
set, for each p ∈ Ω; see Udriste (1994, Theorem 4.5, p. 74).
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Let B ⊂ M be a non-empty, convex and closed set. The distance function associated with
B is given by

M 	 x 
−→ dB(x) := inf{d(y, x) : y ∈ B} ∈ R+.

It is well-known (see Ferreira and Oliveira 2002, Corollary 3.1) that for each x ∈ M there
exists a unique element x̃ ∈ B such that

〈exp−1
x̃ x, exp−1

x̃ y〉 ≤ 0, y ∈ B.

In this case, x̃ is the projection of x onto the set B which we will denote by PB(x).

Remark 1 It is important to mention that for every y ∈ M , x 
→ d(x, y) is a continuous and
convex function; see Sakai (1996, Proposition 4.3, p. 222).

3 Equilibrium problem

In this section, following the ideas given in Iusem et al. (2009), we present a sufficient
condition for the existence of solution of equilibrium problems on Hadamard manifolds.
We chose to present a proof only for the main result. With the exception to the proof of
Proposition 1, the proof of the other results can be extended, from those presented in linear
environments (see Iusem et al. 2009; Iusem and Sosa 2003), with minor adjustments to the
nonlinear context of this paper.

From now on, Ω ⊂ M will denote a nonempty closed convex set, unless explicitly stated
otherwise. Given a bifunction F : Ω × Ω → R satisfying the property F(x, x) = 0, for all
x ∈ Ω , the equilibrium problem in the Riemannian context (denoted by EP) consists in:

Find x∗ ∈ Ω : F(x∗, y) ≥ 0, ∀ y ∈ Ω. (3.1)

In this case, the bifunction F is called an equilibrium bifunction. As far as we know, this
problem was considered firstly, in this context, in Colao et al. (2012) where the authors
pointed out important problems, which are retrieved by (3.1). Particularly, given V ∈ X (M),
if

F(x, y) = 〈V (x), exp−1
x y〉, ∀ x, y ∈ Ω,

Equation (3.1) reduces to the variational inequality problem which, as far as we know, was
first introduced inNémeth (2003), for single-valued vector fields onHadamardmanifolds, and
afterward extended for single-valued vector fields and multivalued vector fields on general
Riemannian manifolds in Li et al. (2009) and Li and Yao (2012) respectively.

Remark 2 Although the Variational Inequality Theory provides us a tool for formulating a
variety of equilibrium problems, Iusem and Sosa (2003, Proposition 2.6) showed that the
generalization given by EP formulation with respect to VIP (variational inequality problem)
is genuine, in the sense that there are EP problems which do not fit the format of VIP. We
affirm that it is possible to guarantee the genuineness of the EP formulation compared to
VIP, by considering the important class of quasi-convex optimization problems that appears,
for instance, in many micro-economical models devoted to maximize utilities. Indeed, the
absence of convexity allows us to obtain situations where this important class of problems
can not be considered as a VIP in the sense that their possible representation in this format
would lead us to a problem, whose solution set contains points that do not necessarily belong
to the solution set of the original optimization problem. On the other hand even in the absence
of convexity, this class of problems can be placed in the EP format.
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Definition 1 Let F : Ω × Ω → R be a bifunction. F is said to be

(1) monotone iff F(x, y) + F(y, x) ≤ 0, for all (x, y) ∈ Ω × Ω;
(2) pseudomonotone iff, for each (x, y) ∈ Ω × Ω , F(x, y) ≥ 0 implies F(y, x) ≤ 0.

Remark 3

(i) Clearly, monotonicity implies pseudomonotonicity, but the converse does not hold even
in a linear context, see, for instance, Iusem and Sosa (2003).

(ii) If F is pseudomonotone, then for x̃, ỹ ∈ Ω , F(x̃, ỹ) > 0 implies F(ỹ, x̃) < 0. Indeed,
let us suppose, for contradiction, that F(ỹ, x̃) = 0 (in particular F(ỹ, x̃) ≥ 0). From
the pseudomonotonicity of F it follows that F(x̃, ỹ) ≤ 0, which is an absurd, and the
affirmation is proved.

Next result was presented by Colao et al. (2012) and it is fundamental to establish our
existence result for the EP.

Proposition 1 Let B ⊂ M be a closed convex subset and H : B → 2B be a mapping such
that, for each y ∈ B, H(y) is closed. Suppose that

(i) there exists y0 ∈ B such that H(y0) is compact;
(ii) ∀y1, . . . , ym ∈ B, conv({y1, . . . , ym}) ⊂ ⋃m

i=1 H(yi ).

Then,
⋂

y∈B
H(y) �= ∅.

Proof See Colao et al. (2012). ��
Unless stated to the contrary, in the remainder of this paper we assume that F : Ω ×Ω → R

is an equilibrium bifunction satisfying the following assumptions:

H1) For every x ∈ Ω , y 
→ F(x, y) is convex and lower semicontinuous;
H2) For every y ∈ Ω , x 
→ F(x, y) is upper semicontinuous.

For each y ∈ Ω , let us define:

LF (y) := {x ∈ Ω : F(y, x) ≤ 0}.
From this set, we can consider the following convex feasibility problem (denoted by CFP):

Find x∗ ∈
⋂

LF (y).
y∈Ω

As far as we know, this problem was first studied, in the Riemannian context, by Bento and 
Melo (2012), in the particular case where the domain of F is given M × {1, . . . ,m}. In this  
case, y ∈ {1, . . . ,m} and Ω is the whole M.

Next result establishes a relationship between CFP and EP.

Lemma 1 The solution set of CFP is contained in the solution set of EP.

Remark 4 Note that, as it is in the Euclidean context, the equality between the two sets in the 
previous lemma in general does not happen, see Iusem and Sosa (2003). However, in the 
particular case where F is pseudomonotone, the equality is immediately verified.
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Take z0 ∈ M fixed. For each k ∈ N consider the following set:

Ωk := {x ∈ Ω : d(x, z0) ≤ k}.
Note that Ωk is a nonempty set, for k ∈ N sufficiently large. For simplicity, we can suppose,
without loss of generality, that Ωk is a nonempty set for all k ∈ N. Moreover, as Ωk is
contained in the closed ball B(z0, k) := {x ∈ M : d(z0, x) ≤ k}, it is a bounded set. On the
other hand, since d(·, z0) is a continuous and convex function (this follows from Remark 1),
Ωk is a convex and closed set and, hence, compact; see Ropf–Rinow’s Theorem. We denote,
by Ω0

k , the following set:

Ω0
k := {x ∈ Ω : d(x, z0) < k}.

For each y ∈ Ω , let us define:

LF (k, y) := {x ∈ Ωk : F(y, x) ≤ 0}.
Lemma 2 Let k ∈ N, x̄ ∈ ⋂

y∈Ωk
L F (k, y) and assume that there exists ȳ ∈ Ω0

k such that
F(x̄, ȳ) ≤ 0. Then, F(x̄, y) ≥ 0, for all y ∈ Ω , i.e., x̄ is a solution for (3.1).

Assumption 1 Given k ∈ N, for all finite set {y1, . . . , ym} ⊂ Ωk , one has

conv({y1, . . . , ym}) ⊂
m⋃

i=1

LF (k, yi ).

Remark 5 Note that, in the particular casewhere F is pseudomonotone, the property described
by the previous assumption is naturally verified. Indeed, let us consider y1, . . . , ym ∈ Ωk ,
take ȳ ∈ conv({y1, . . . , yn}) and let us suppose, for contradiction, that ȳ /∈ ⋃m

i=1 LF (k, yi ).
Then,

F(yi , ȳ) > 0, i ∈ {1, . . . ,m}. (3.2)

Now, define the following set B := {x ∈ Ωk : F(ȳ, x) < 0}. In the particular case where
F is pseudomonotone, using (3.2) and taking into account that B is convex (this follows
from H1), we conclude that ȳ ∈ B (see item i i) of Remark 3). But this contradicts that
F(x, x) = 0 and the affirmation is proved.

Assumption 2 Given z0 ∈ M fixed, consider a sequence {zk} ⊂ Ω such that {d(zk, z0)}
converges to infinity as k goes to infinity. Then, there exists x∗ ∈ Ω and k0 ∈ N such that

F(zk, x∗) ≤ 0, k ≥ k0.

It is worth noting that this last assumption has been presented by Iusem et al. (2009), in a
space with a linear structure. It is a sufficient condition for the existence of solutions of the
equilibrium problem EP.

Next result (see Iusem and Sosa 2003 for similar results, in the linear setting) assures us
that Assumption 2 is a weaker sufficient condition than the coercivity assumption used by
Colao et al. (2012), for the existence of solutions of EP.

Proposition 2 Let B ⊂ M be a compact set and y0 ∈ B∩ Ω a point such that F(x, y0) < 0,
for all x ∈ Ω\B. Then, F satisfies Assumption 2.

Next, we state and prove the main result of this section.

Theorem 1 Under Assumptions 1 and 2, EP admits a solution.
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Proof Recall that Ωk is a convex and compact set for each k ∈ N. Now, given k ∈ N and
y ∈ Ω , note that LF (k, y) is a compact set. Indeed, this fact follows from the definition
of LF (k, y) combined with assumption H1 (F(y, ·) is a lower semicontinuous function on
Ω) and compactness of Ωk . Now, since Assumption 1 holds true, using Proposition 1 with
B = Ωk and H(y) = LF (k, y), we conclude that, for each k ∈ N,

⋂

y∈Ωk

L F (k, y) �= ∅.

For each k, choose zk ∈ ⋂
y∈Ωk

L F (k, y) and take z0 ∈ M fixed. If there exists k ∈ N

such that d(zk, z0) < k, then zk ∈ Ω0
k and, from Lemma 2, it follows that zk solves EP.

On the other hand, if d(zk, z0) = k, from Assumption 2, there exist, x∗ ∈ Ω and k0 ∈ N

such that F(zk, x∗) ≤ 0, for all k ≥ k0. Taking k′ > k0 such that d(x∗, z0) < k′, we have
F(zk

′
, x∗) ≤ 0 and x∗ ∈ Ω0

k′ . Therefore, using again Lemma 2, we conclude that zk
′
solves

EP, and the proof is complete. ��
Next example was inspired by Colao et al. (2012, Example 3.4). It illustrates the usefulness 

of our previous result, in the sense that it can be applied to some situations not covered in the 
linear setting. For other papers that highlight such advantage, in regard to the linear setting, 
see Cruz Neto et al. (2006) and Bento and Melo (2012).

Example 1 Let Ω = {(x, y, z) : 0 ≤ x ≤ 1, y2 − z2 = −1, y ≥ 0, z ≥ 1} ⊂ R × H1 and 
consider the following bifunction F : Ω × Ω → R, given by:

F((x1, y1, z1), (x2, y2, z2)) := (2 − x1)
( (

y2
2 + z2

2( −(
y1
2 + z1

2(( .

Note that Ω is indeed a not convex set in R3. So, an equilibrium problem defined on Ω 
cannot be solved by using the classical results known in the linear context. Let (Hn, 〈 , 〉) be 
the Riemannian manifold, where

H
n := {x = (x1, x2, . . . ,  xn+1) ∈ Rn+1 : xn+1 > 0 and 〈x, x〉 = −1}

(hyperbolic n space), and 〈 ·, · 〉  is the Riemannian metric:
〈x, y〉 :=  x1 y1 + x2 y2 + . . .  + xn yn − xn+1 yn+1 (Lorentz metric). As noted in Colao et al.
(2012), (Hn, 〈 ·, ·〉) is a Hadamard manifold with sectional curvature −1 and, given initial 
conditions x ∈ Hn , v ∈ Tx H

n (‖v‖ =  1), the normalized geodesic γ : R → Hn , is given  
by:

γ (t) = (cosh t)x + (sinh t)v, t ∈ R.

Hence, we obtain the following expression for the Riemannian distance d:

d(x, y) = arccosh(−〈x, y〉), x, y ∈ Hn .

Again, as observed in Colao et al. (2012), Ω is a convex set which is immersed in the 
Hadamard manifold M := R × H1. Using the expression of the geodesic curves, it can be 
deduced that F is a convex function in the second variable. Moreover, from the definition 
of F , it is easy to see that F(x, x) = 0, assumptions H1 and  H2 are satisfied, and F is 
a pseudomonotone bifunction. In particular, from Remark 5, it follows that Assumption 1 
holds. Now, take w0 ∈ M fixed and a sequence {wk} ⊂ Ω , wk := (xk , yk , zk ), such that 
d(wk, w0) → +∞. There exists a point x∗ := (1, 0, 1) ∈ Ω such that F(wk , x∗) ≤ 0, 
for all k ∈ N, i.e., Assumption 2 holds. Therefore, Theorem 1 implies the existence of an 
equilibrium point for F .
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4 Proximal point for equilibrium problem

In this section, we propose a new proximal point algorithm for equilibrium problems on
Hadamard manifolds where the convergence result is obtained for monotone bifunctions.
As far as we know, a proximal point algorithm for EP was first introduced in Colao et al.
(2012). In comparison with the algorithm given in Colao et al. (2012), the novelty here is the
new regularization term, whose convexity does not impose any restrictive hypothesis on the
Hadamard manifold.

Let us denote the equilibrium point set of F by EP(F,Ω) and, for λ > 0 and z ∈ Ω fixed,
consider the regularized bifunction

Fλ,z(x, y) := F(x, y) + λ
[
d2(y, z) − d2(x, z)

]
, x, y ∈ Ω. (4.3)

Now, we describe a proximal algorithm to solve the equilibrium problem (3.1).

Algorithm 1 Take {λk} a bounded sequence of positive real numbers.

Initialization. Choose an initial point x0 ∈ Ω;
Stopping criterion. Given xk , if xk+1 = xk STOP. Otherwise;
Iterative Step. Given xk , take as the next iterate any xk+1 ∈ Ω such that:

xk+1 ∈ EP(Fk,Ω), Fk := Fλk ,xk . (4.4)

Remark 6 Note that if xk+1 = xk , then xk ∈ EP(F,Ω). It is worth noting that the iterative
process (4.4) retrieves the proximal point method for minimization problems on Hadamard
manifolds; see Ferreira and Oliveira (2002).

Remark 7 Our algorithm uses a new type of regularization which is convex on genuine
Hadamard manifolds, namely, y 
→ [

d2(y, z) − d2(x, z)
]
. Note that our regularization is

different from one presented in Colao et al. (2012) (y 
→ 〈exp−1
x z, exp−1

x y〉), whose con-
vexity is ensured only on Hadamard manifolds with null sectional curvature, as shown by
Kristály et al. (2016).

Next results are useful to ensure the well-definition of Algorithm 1. In the remainder of
the paper we assume that F is monotone, λ is a positive real number and z ∈ Ω .

Lemma 3 Let F be a monotone bifunction. Then,

(i) Fλ,z is monotone;
(ii) Fλ,z satisfies assumption H1.

Proof Item (i) follows immediately from the monotony of F and item (ii) for considering
that F and d2(·, ·) satisfy H1. ��
Lemma 4 Let EP(F,Ω) be a nonempty set. If F satisfiesAssumption 2, then Fλ,z also satisfies
this assumption.

Proof First of all, given z0 ∈ M , consider a sequence {zk} ⊂ Ω such that {d(zk, z0)}
converges to infinity as k goes to infinity. Take x̃ ∈ EP(F,Ω). Using (4.3) with x = zk and
y = x̃ , we get

Fλ,z(z
k, x̃) = F(zk, x̃) + λ

[
d2(x̃, z) − d2(zk, z)

]
. (4.5)
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Since {d(zk, z0)} converges to infinity as k goes to infinity, in particular, {d(zk, z)} also
converges to infinity. Moreover, as {zk} ⊂ Ω and x̃ ∈ EP(F,Ω), monotonicity of F implies
that F(zk, x̃) ≤ 0. Hence, the desired result follows immediately from (4.5), which concludes
the proof. ��
Theorem 2 Assume that Assumption 2 holds and EP(F,Ω) is a nonempty set. Then, there
exists x∗ ∈ Ω such that

Fλ,z(x
∗, y) ≥ 0, y ∈ Ω.

Proof From item (i) of Lemma 3 it follows that Fλ,z is monotone and, in particular, pseu-
domotone (this follows from Remark 3). Moreover, Remark 5 implies that Fλ,z satisfies
Assumption 1 and Lemma 3 (resp. Lemma 4) tells us that Fλ,z satisfies H1 (resp. Assump-
tion 2). Hence, the desired result follows from Theorem 1 and the proof is concluded. ��
Corollary 1 Assume that Assumption 2 holds and EP(F, Ω) is a nonempty set. Then, Algo-
rithm 1 is well-defined.

Proof It follows immediately from Theorem 2. ��
In the remainder of this paper we assume that the assumption of the previous corollary hold
and {xk} is a sequence generated from Algorithm 1. Taking into account that if Algorithm 1
terminates after a finite number of iterations, it terminates at an equilibrium point of F , from
now on, we assume also that {xk} is an infinite sequence.

4.1 Convergence analysis

In this section we present the convergence of the sequence {xk}. Let us start it presenting the
concept of Fejér convergence and a known result on this subject.

Definition 2 A sequence {yk} in the complete metric space (M, d) is said to be Fejér con-
vergent to a nonempty set S ⊂ M iff for every ȳ ∈ S,

d(yk+1, ȳ) ≤ d(yk, ȳ) k = 0, 1, . . . .

The following result is well known and its proof is elementary.

Proposition 3 Let {yk} be a sequence in the complete metric space (M, d). If {yk} is Fejér
convergent to a nonempty set S ⊂ M, then {yk} is bounded. If, furthermore, an accumulation
point ȳ of {yk} belongs to S, then lim

k→∞ yk = ȳ.

The next result is useful for establishing Fejér convergence of {xk}.
Proposition 4 For each x∗ ∈ EP(F,Ω) it holds

〈exp−1
xk+1

xk, exp−1
xk+1

x∗〉 ≤ 0. (4.6)

Proof Indeed, from the definition of the iterate xk+1 and Fk in (4.4) combined with (4.3), we
obtain

Fk(x
k+1, y) = F(xk+1, y) + λk

[
d2(y, xk) − d2(xk+1, xk)

]
≥ 0, y ∈ Ω.
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Since Fk(xk+1, xk+1) = 0, last inequality tells us that

xk+1 = argmin
y∈Ω

Fk(x
k+1, y)

or, equivalently, that there exists

wk+1 ∈ ∂Fk(x
k+1, xk+1) = ∂F(xk+1, xk+1) − λk exp

−1
xk+1 x

k

such that

〈wk+1, exp−1
xk+1 y〉 ≥ 0, y ∈ Ω.

Note that wk+1 = uk+1 − λk exp
−1
xk+1 x

k , where uk+1 ∈ ∂F(xk+1, xk+1). So, last inequality
yields

〈uk+1, exp−1
xk+1 y〉 − λk〈exp−1

xk+1 x
k, exp−1

xk+1 y〉 ≥ 0, y ∈ Ω. (4.7)

On the other hand, convexity of F(xk+1, ·) (this follows fromH1) implies that, for all y ∈ Ω ,
we have

F(xk+1, y) ≥ F(xk+1, xk+1) + 〈uk+1, exp−1
xk+1 y〉 = 〈uk+1, exp−1

xk+1 y〉. (4.8)

Take x̄ ∈ EP(F,Ω). As EP(F,Ω) ⊂ Ω , from the last inequality, we obtain

〈uk+1, exp−1
xk+1 x̄〉 ≤ F(xk+1, x̄) ≤ 0, (4.9)

where last inequality is a consequence of the monotony of F , since F(x̄, xk+1) ≥ 0. There-
fore, because λk > 0 for all k, the result of the claim immediately follows by combining
inequalities (4.7) and (4.9). ��

Now, we present our main convergence result.

Theorem 3 The sequence {xk} converges to a point in E P(F,Ω).

Proof Take x∗ ∈ EP(F,Ω). Using Sakai (1996, Theorem 4.2, p. 161) (law of cosines) with
xi = x∗, xi+1 = xk and xi+2 = xk+1, we obtain

d2(xk+1, x∗) + d2(xk+1, xk) − 2〈exp−1
xk+1 x

k, exp−1
xk+1 x

∗〉 ≤ d2(xk, x∗), k = 0, 1, . . . .

(4.10)

Since x∗ ∈ EP(F,Ω), combining inequality (4.6) with the last inequality and taking into
account that d2(xk+1, xk) > 0, it follows that {xk} is Fejér convergent to the set EP(F,Ω).
Moreover, from (4.10) combined with inequality (4.6), we have that {d(xk+1, xk)} converges
to zero as k goes to infinity. Applying Proposition 3with yk = xk , k ∈ N, andS = EP(F,Ω),
we have that {xk} is a bounded sequence. In particular, from Hopf-Rinow Theorem, there
exists a subsequence {xk j } of {xk} converging to some point x̂ . Note that {d(xk j+1, xk j )},
{d(xk j+1, x̂)} converge to zero and, in particular, {xk j+1} goes to x̂ as j goes to infinity. For
combining (4.7), (4.8) and (4.10), we obtain

F(xk j+1, y) ≥ λk j

2

[
d2(y, xk j+1) + d2(xk j+1, xk j ) − d2(y, xk j )

]
.

Using simple upper limit properties applied to last inequality, sinced2(y, xk j+1),d2(xk j+1, xk j ),
d2(y, xk j ) converge to zero and {λk} is bounded, it follows from H2 that 0 ≤
lim sup j→+∞ F(xk j , y) ≤ F(x̂, y), for all y ∈ Ω . But this tells us that x̂ ∈ EP(F,Ω) and
the desired result it follows by using Proposition 3 with yk = xk , k ∈ N, and S = EP(F,Ω).
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5 Application: the problem of traps and the reachability of desires in
behavioral sciences

In this last section we want to show how the present paper offers, in a specific context, a nice
solution to the behavioral problem of how an agent can escape to a succession of traps to be
able to reach his desires, using the recent variational rationality modelization of desires and
temporary/permanent traps all along stay and change worthwhile transitions; see Soubeyran
(2009, 2010, 2016, 2019a, b).

This paper considers two related problems, in a given space of alternatives Ω (possible
choices of actions, states, positions, situations,…) on a Hadamard manifold:

(i) the standard static equilibrium problem given in (3.1);
(ii) a new and dynamic regularized equilibrium problem given in (4.4) which, as observed

in the very beginning of the convergence analysis, consists to find in the current period
k + 1, a choice xk+1 ∈ Ω such that

Fλk ,xk (x
k+1, y) = F(xk+1, y) + λk Ixk (x

k+1, y) ≥ 0, y ∈ Ω,

where the specific regularized term is given by

Ixk (x
k+1, y) :=

[
d2(xk, y) − d2(xk, xk+1)

]
, λk > 0

is a weight, xk+1 is the current choice, y is a current alternative choice, and xk ∈ Ω

is the last choice. Under specific assumptions, this paper shows, first, the existence of a
static equilibrium problem (3.1). Then, it shows that the solution xk ∈ Ω of the dynamic
equilibrium problem converges to a static equilibrium x∗ ∈ Ω .

5.1 Desires: the duality between equilibrium points and strong aspiration points

Let us see, using a recent variational rationality formalization of acceptable stays and changes
approach and avoidance dynamics which unifies a lot of them in different disciplines, see
Soubeyran (2009, 2010, 2016, 2019a, b), why a dual view of an equilibrium problem is
so important for applications in Behavioral Sciences. Consider an active agent who derives
the utility V (y) ∈ R to perform an action y ∈ Ω , where his highest utility level V =
sup {V (y) : y ∈ Ω} < +∞ is finite, because of bounded needs. In Applied Mathematics
and very often in Behavioral Sciences, agents are supposed to minimize a cost function,
or to try to decrease their level of unsatisfaction U (y) ∈ R. The (VR) approach defines
unsatisfaction as unsatisfied needs, i.e, the difference U (y) = V − V (y) ≥ 0. We will
consider such unsatisfaction levels, given the Mathematical audience.

In a static context, the agent will not regret to have done action x∗ if there is a loss

F(x∗, y) = U (y) − U (x∗) ≥ 0,

to change, moving from doing x∗ to do any other action y ∈ Ω with a highest unsatisfaction 
level. This view supposes that the agent is, at the very beginning of the story, right where he 
wants to be, at the maximum of utility V (x∗), i.e, at the lowest level of unsatisfaction U (x∗). 
But this is not very realistic. In real life, agent are not, initially, exactly where they want to 
be. Usually, they start to be in an unsatisfactory position, at y = x0 ∈ Ω,  where U (y) >  
U (x∗). This means that, initially, an agent will find an advantage to change A(y, x∗) = 
U (y) − U (x∗) > 0 from y = x0 to x∗. In this case, A(y, x∗) = F(x∗, y) > 0.

12



Then, the (VR) approach completely reverses the logic of the equilibrium problem. It
focuses first the attention on agents who aspire for better and considers advantages to change
to a better situation, and only, at the end, on agents who fear for less, and consider losses
to change to a worst situation! Moreover, unfortunately, most of the time, an agent does not
know, at least at the very beginning, what can be the best action to do, x∗ ∈ Ω . To hope to
know it, he cannot escape to enter, if possible, in an improving dynamic, where each period,
his unsatisfaction moves fromU (xk) in the last period to a lower levelU (xk+1) ≤ U (xk) in
the current period, enjoying the advantage to change A(xk, xk+1) = U (xk) −U (xk+1) ≥ 0.
Then, the agent will follow an improving transition of stays and changes, where, each period,
the agent will stay, xk+1 = xk , if he fails to find an improving action, or will change,
xk+1 �= xk, in the opposite case of success.

This dual dynamic context considers both:

(i) the equilibrium concept, relative to losses to change (static negative view), where an
agent, being there, at x∗, will prefer to stay there, than to move away, because moving
from x∗ to any y ∈ Ω will generate the loss

F(x∗, y) = U (y) −U (x∗) ≥ 0;
(ii) the dual concept of strong aspiration, relative to advantages to change (dynamic positive

view), where the agent being at y = x0 �= x∗, will prefer to move to the aspiration point
x∗ rather than to stay at y, because moving from any y to x∗ will generate the advantage
to change

A(y, x∗) = U (y) −U (x∗) = F(x∗, y) ≥ 0.

Then, the dual equilibrium problem is: find x∗ ∈ X such that:

A(y, x∗) ≥ 0, y ∈ Ω,

i.e., A(x∗, y) = −A(y, x∗) ≤ 0 for all y ∈ Ω .

This dual view helps to define desires as an equilibrium (to want what you have) and a
strong aspiration point (to hope to have what you want, starting from anywhere). Of course,
in this very simple formulation of a non “reference dependent” utility function, we have
A(x, y) = −F(x, y), i.e., if there is an advantage to change from x to y, there is an opposite
loss to move the other way. This is not the case if utility functions are reference dependent;
see Soubeyran (2009, 2010, 2016, 2019a, b).

5.2 The regularized equilibrium function as an instance of a worthwhile to change
payoff

We are now in a good position to see what represents, in the context of the variational ratio-
nality approach, the regularized equilibrium function given in (4.3). The previous discussion
on losses to change F(x, y) and their opposites, advantages to change A(x, y) = −F(x, y)
directs our attention to the opposite of the regularized equilibrium function,

Δλ,z(x, y) = −Fλ,z(x, y) = A(x, y) − λIz(x, y),

where Iz(x, y) = [
d2(z, y) − d2(z, x)

]
denotes the regularization term in (4.3).More explic-

itly, in a dynamic context, we move the attention from

Fλk ,xk (x
k+1, y) = Fxk (x

k+1, y) + λk Ixk (x
k+1, y)
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to its opposite,

Δλk ,xk (x
k+1, y) = −Fλk ,xk (x

k+1, y) = Axk (x
k+1, y) − λk Ixk (x

k+1, y).

It turns out that Δλ,z(x, y) is a specific, but interesting instance of a worthwhile to change
payoff, a central concept of the variational rationality approach, where an agent balances,
each current period k+1, advantages A(xk+1, y) and inconveniences to change Iz(xk+1, y),
using the balancing weight λk . This means that an hypothetic change from xk+1 to y in the
current period is not (strictly) worthwhile, i.e, Δλk ,xk (x

k+1, y) ≤ 0 if advantages to change
are high enough (the weight λ being hight enough) with respect to inconveniences to change,
i.e, Axk (x

k+1, y) − λk Ixk (x
k+1, y) ≤ 0. In the specific context of this paper, the (VR)

approach (see Soubeyran 2009, 2010) defines inconveniences to change as follows. They
represent, in the current period, the difference Ixk (x

k+1, y) := Cxk (x
k, y) − Cxk (x

k, xk+1)

between costs to be able to change Cxk (x
k, y) ∈ R+ from the last position z = xk to the

alternative position y, and costs to be able to change Cxk (x
k, xk+1) from the last position

z = xk to a current position xk+1. Because they refer to a lot of different situations, in
different disciplines, where resistance to change and inertia matter, these costs are not easy
to define in a precise way. For a carefull formulation of these costs to be able to change
and several examples, see Soubeyran (2015). In the present paper, Cxk (x

k, y) = d2(xk, y),
where d(z, y) is the geodesic distance on a Hadamard manifold.

Given that Fλk ,xk (x
k+1, xk+1) = 0, the current condition Fλk ,xk (x

k+1, y) ≥ 0, for all
y ∈ Ω means that, each current period k + 1, the agent minimizes his current regularized 
equilibrium function, i.e,

xk+1 = argminy∈Ω Fλk ,xk (xk+1, y).

Then, the current opposite condition Δλk ,xk (xk+1, y) ≤ 0, for all y ∈ Ω,  means that, 
each current period, the agent maximizes his current worthwhile to change balance, i.e.,
xk+1 = argmaxy∈ΩΔλk ,xk (xk+1, y).

5.3 The algorithm as an instance of a worthwhile transition

In the current period k + 1, the current equilibrium condition (4.4) can be written, taking the 
opposite,

Δλk ,xk (xk+1, y) ≤ 0, y ∈ Ω.

Take y = xk , k ∈ N. Then,

Δλk ,xk (xk , xk+1) = −Δλk ,xk (xk+1, xk ) = Fλk ,xk (xk+1, y) ≥ 0

shows that it is worthwhile to change, xk+1 ∈ Wλk ,xk (xk ), k ∈ N, from xk in the last period 
to xk+1 in the current period. This shows that Algorithm 1 defines a worthwhile stay and 
change transition, where, each period, advantages to change are higher enough with respect 
to inconveniences to change, i.e,

Axk (xk , xk+1) ≥ λk Ixk (xk , xk+1).

Then, inconveniences to change Ixk (xk , xk+1) = d2(xk , xk+1) and advantages to change 
Axk (xk , xk+1) are non negative all along the path of worthwhile stays and changes.
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5.4 The twomain results show how to reach desires, escaping to a succession of
temporary variational traps

The concept of trap appears in an informal way in a lot of different disciplines in Behavioral
Sciences; for a short survey see Soubeyran (2015). The variational rationality approach gives
a general and formal definition. A (permanent) variational trap is the end of a worthwhile stay
and change transition xk+1 ∈ Wλk ,xk (x

k), k ∈ N. More precisely, a (permanent) variational
trap is, both,

(i) an aspiration point, more or less easy to approach, i.e, xk converges to x∗ as k goes to
+∞, and reaches it, x∗ ∈ Wλk ,xk (x

k), k ∈ N, following a worthwhile stay and change
transition, xk+1 ∈ Wλk ,xk (x

k), k ∈ N;
(ii) a stationary trap (a static equilibrium with inconveniences to change), difficult to leave,

this is, Wλ∗,x∗(x∗) = {x∗}, where λ∗ > 0 is the end worthwhile to change ratio.

Variational traps can be permanent or temporary. In the present paper, they are temporary,
for k ∈ N, Wλk ,xk (x

k) = {
xk

}
, because changing the worthwhile to change ratio λk breaks

the current variational trap.
The present paper shows:

(A) the existence and reachability of desires (both, as equilibria and strong aspiration points)
as the ends of a succession of temporary variational traps;

(B) Fejér convergence of a succession of temporary variational traps to some desire (equi-
librium). This means that costs to be able to reach an equilibrium decrease;

(C) costs to be able to change which go to zero (see the proof of Theorem 3). Then, resistance
to change disappears in the long run.

5.5 Behavioral hypothesis

Let us give a behavioral interpretation of themain hypothesis of this paper. The Assumption 1
(monotonicity) implies that if there is a loss F(x, y) ≥ 0 to move from x to y, then, there
is a gain to go in the reverse way, because bifunction F(y, x) ≤ −F(x, y) ≤ 0, for all
x, y ∈ Ω . This is a very natural hypothesis and the “optimal size of the firm problem”
presented in Cruz Neto et al. (2018a) can be used to illustrate this situation. With regarding
Assumption 2, it is a kind of coercivity assumption which says that if costs to be able to
change C(x0, xk) = d2(x0, xk) go to infinity as k goes to infinity, then, there exists x∗ ∈ Ω

and k0 ∈ N such that F(xk, x∗) ≤ 0, i.e., A(xk, x∗) ≥ 0 for all k ≥ k0. In behavioral term,
this means that it exists a kind of weak aspiration point along a sequence when costs to be
able to change go to infinity.

In this paper, in viewof applications, there are two specific behavioral hypo-thesis, namely:

(i) costs to be able to change, given by C(x, y) = d2(x, y), are symmetric, because
d(y, x) = d(x, y). This is a strong assumption that must be removed in future
researches. An immediate way to remove it is to consider costs to be able to change
C(x, y) = q2(x, y) where q(x, y) ≥ 0 is a quasi distance such that q(x, y) = 0 iff
y = x and q(x, z) ≤ q(x, y) + q(y, z), for all x, y, z ∈ Ω . Then, we can suppose that
when there is an advantage to change from x to y, i.e, A(x, y) ≥ 0, costs to be able to
change from x to y are higher than the reverse, i.e, C(x, y) ≥ C(y, x). This is a natural
hypothesis which supposes that it is more costly to improve than the reverse. In this
case d(x, y) = max {q(x, y), q(y, x)} is a distance, which satisfies the symmetric axiom
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all along a worthwhile transition, which is improving, because advantages to change
A(xk, xk+1) ≥ 0 are non negative on such a transition (see above the paragraph “The
algorithm as an instance of a worthwhile transition”);

(ii) losses and advantages to change functions F(x, y) = −A(x, y) are not reference depen-
dent. In the general case they depend on experience (in theMarkov case, on the last action
xk = z).

Finally, as seen in the introduction, the choice of a Hadamardmanifold is useful in Behavioral
Sciences, because it helps to deal with inevitable constraints (to save space, see, for example,
Cruz Neto et al. 2014).

6 Conclusions

In this paper, we provided a sufficient condition to obtain the existence of solutions of
EP and we proposed a new proximal algorithm for EP in Hadamard manifolds. We gave
an application in the context of a recent unifying approach of a lot of stability and change
theories in Behavioral Sciences, the “Variational rationality approach of human behavior”, to
the desire problem in Psychology, which refers to how to escape to a succession of temporary
traps to finally succeed to reach his desires.
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