Dr Aznam Yacoub
email: aznam.yacoub@lis-lab.fr

Ma Âmar

El-Amine Hamri

Claudia Frydman

Keywords: Model Checking, Verification and Validation, Modelling and Simulation, DEVS, PROMELA, DEv-PROMELA

Modelling, Verifying and Validating are essential steps in order to build systems and software that do what designers expect. If Formal Verification, and especially Model-Checking, is a popular method for proving correctness of properties, its efficiency depends on the accuracy of the used models, and the quality of abstractions. As a consequence, applying verification techniques on large-scale complex software like video games is hard without strong assumptions and simplifications. Simulation models are generally more accurate than verification models, but it is often like harder to verify them. Combined formalisms that take benefits of both Model-Checking and Discrete-Event Simulation, represent a good deal between these both families, althought strong engineering expertise remains necessary to define the relevant tests and scenarios. This paper proposes an approach to build this kind of formalisms through the example of DEv-PROMELA, which is built by combining DEVS formalism and PROMELA language. Then, it shows how combined formalisms can be used for Modelling, Veryfing and Validating complex software like video games by using both formalbased and simulation-based Verification and Validation.

Introduction

Motivation

The need for elaborate techniques for designing and developing systems has been well recognized in recent years. Building reliable systems, hardware or software has become harder, due to the complex behaviours and interactions between their components. This complexity makes harder the understanding of the real behaviours compared to the expected behaviours, and makes harder preventing bugs and defects. Moreover, it is also harder to perform tests directly on the target systems, although Verification and Validation (V&V) techniques have deeeply changed the last decades [START_REF] Shah | An excursion to software development life cycle models: An old to ever-growing models[END_REF]. Then, it is well-known that designers must think on representations of systems and software. However, the size of models grows up with the complexity of systems. For this reason, plenty of new V&V concepts, methods and tools have been proposed over the past 20 years to make safer or more efficient V&V of models [START_REF] Sargent | Simulation model verification and validation[END_REF]3]. These techniques can be classified in two great families.

Formal Verification. On the one hand, Formal Verification (FV), with Formal Methods (FMs) [START_REF] Clarke | Formal methods: State of the art and future directions[END_REF][START_REF] Woodcock | Formal methods: Practice and experience[END_REF], and especially Model Checking (MC) [START_REF] Clarke | Design and synthesis of synchronization skeletons using branching-time temporal logic[END_REF][START_REF] Queille | Specification and verification of concurrent systems in cesar[END_REF][START_REF] Clarke | Model Checking[END_REF], represents a family of popular techniques which tend to facilitate a low-level representation of systems under study with automata, and which generally provide execution semantics to make the model more understandable. However, these techniques are generally based on a single specific formal foundation often suitable to represent particular aspects of a system under design [START_REF] He | PZ nets -a formal method integrating petri nets with z[END_REF]. Moreover, a system is generally composed of several components defined by various specifications given from several points of view, which makes their design really tedious. As a consequence, the use of several techniques, tools, notations and formalisms is required to cover a good range of requirements. Engineers are thus enforced to model the same system over and over again, which is expensive and error-prone. Many attempts have been made to integrate several FMs inside a same framework [START_REF] Nguyen | COMBINE: A tool on combined formal methods for bindingly verification[END_REF][START_REF] Konur | Combined model checking for temporal, probabilistic, and real-time logics[END_REF] in order to take advantages of their strengths and reduce their weaknesses. In spite of that, the deep problem related to the trade off between speed, accuracy and level of abstraction has not been fully resolved. For example, representing time in the processes of modelling and checking timed systems is always a tough task. An untimed model is generally derived from a timed system [START_REF] Holzmann | Design and Validation of Computer Protocols[END_REF], but designing a timed system by an untimed model forces to explore behaviours which may not have an interpretation in the real world. Conversely, representing time with accuracy makes the V&V processes heavier because of the growing size of the model [START_REF] Alur | A theory of timed automata[END_REF][START_REF] Clarke | The birth of model checking[END_REF], and even unreachable in some cases [START_REF] Alur | A theory of timed automata[END_REF][START_REF] Dacharry | A formal verification approach for devs[END_REF]. FMs then need to impose strong constraints to ensure that the models can be verified in finite time. In fact, Model checking techniques and tools (PROMELA, Symbolic Model Checking, etc.) deal with finite, explicit or symbolic, states models to generate and explore all possible paths and to check formally the system properties and assertions [START_REF] Baier | Principles of Model Checking[END_REF][START_REF] Huth | Logic in computer science: modelling and reasoning about systems[END_REF]. A system with timed behavioural constraints may then be interpreted as refinement of a system without timed constraints. The reason is that at first glance time may be seen as an additional variable in the specifications of the model; this is a misinterpretation. Taking into account the time basis to describe behaviours leads a fortiori to the appearance of new behaviours that do not belong to the untimed specifications (paths to explore from finite state machines).

For instance, consider model checking applied to digital circuits. It is well known that verifications, such as hold violation, flip-flop set up, etc., are based on models in which states are piecewise constant (0 or 1). However, Hamri et al. [START_REF] Hamri | Generalized discrete events for accurate modeling and simulation of logic gates[END_REF] proposed timed models to design digital circuits based on the boolean algebra and Generalized Discrete Event Specification (GDEVS) [START_REF] Giambiasi | Gdevs: a generalized discrete event specification for accurate modeling of dynamic systems[END_REF] formalism showing the appearance of new behaviours (piecewise continuous state functions and new outputs at times when different input signals cross each other) that finite state machines cannot capture. A second example handled in the model checking literature is the Pacman game, as in [START_REF] Bill | Model checking of ctl-extended ocl specifications[END_REF] and [START_REF] Gore | Springsim 2015 -conceptual modeling with alloy[END_REF]. Formal verification of Pacman behaviours is done on an untimed model and on a discretized space. Unfortunately, the proposed formal model for the Pacman game is so abstracted that it does not conform to the final game requirements. For example, the move of entities (pacman and ghosts) depends strongly on time, as shown in [START_REF] Syriani | Programmed graph rewriting with time for simulation-based design[END_REF]. Consequently such paths are uncovered by the formal model.

Modelling and Simulation. On the other hand, the Modelling and Simulation (M&S) theory [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF][START_REF] Zeigler | Theory of Modeling and Simulation -Discrete Event and Iterative System Computational Foundations[END_REF] proposes an elegant and uniform way to understand and design systems. This theory is based on two main separated activities. First, Modelling is the task of making a representation of a system or a software from the point of view of an observer. Modelling answers questions that this observer asks about the system [START_REF] Minsky | Matter, mind and models[END_REF]. If this definition meets the one used in FV, the main difference is in the intended purpose of this model. Second, Simulation is then the task of executing the model to generate its behaviour by acting on inputs and parameters of this model [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]. As a consequence, a simulation model is made for validating a particular set of behaviours of a system, while a verification model tries to expose the entire set of computation paths of this system (or at least, the set represented by the model). A simulation model can thus be more complex than a verification model, meaning it can encompass more computational details. A simulation model is thus used when [START_REF] Banks | Introduction to discrete-event simulation[END_REF][START_REF] Banks | Handbook of simulation: principles, methodology, advances, applications[END_REF]:

• it is impossible or extremely expensive to observe certain processes in the reality, or to interact directly with them; • the real system has some level of complexity, interaction or interdependence between various components, or pure size that makes it difficult to grasp in its entirety; • there is no simple analytic model or it is impossible or extremely expensive to validate the mathematical model describing the system.

This assumption introduces the main difference with verification model and simulation model: while a verification model must be as simple as possible in order to be able to generate the entire stateset [START_REF] Holzmann | The SPIN Model Checker : Primer and Reference Manual[END_REF] and to perform verification, a simulation model can deal with the complexity of the interactions between the components by representing what the designer knows about the system, what he is seeing when he stimulates the system, without being constrained by any computational considerations or restrictions. This have an impact on the formalisms used for making simulation models. It is indeed possible to introduce two levels of models: a conceptual model which is the representation of the system under study, and the computerized model (called simulation model) [START_REF] Sargent | Simulation model verification and validation[END_REF] which is the realization of the conceptual model. This separation gives its power to simulation formalisms. Indeed, for example, the Discrete Event System Specifications (DEVS) [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF] are an algebraic formalism to explicitly represent Discrete-Event Systems (DES), with all considerations about time and data, while the semantics of the abstract simulator gives a unique interpretation to a DEVS model. As a consequence, a DEVS model is then more expressive than an untimed model of a DES. In other words, some verifications and validations can be performed on the conceptual model while some other properties can be verified and validated using the simulation model.

However, if this ability to separate conceptual model and simulation model is a strength, it is also a weakness. The power of the simulation-based verification comes from the fact that a simulation is like an empirical experiment. We mean that the simulation is efficient because the played scenarios are well targeted, forcing designers to get more knowledge about the system under study. While the goal of FV techniques is to systematically explore all the behaviours of a system, simulation-based techniques focus on interesting cases. Nevertheless, this also means that simulation-based verification strongly depends on the played scenarios, meaning there is no guarantee that the verification is fully done, like in formal-based verification. In the same manner, simulation is done under a specific set of conditions called the Experimental Frame (EF) [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]. This set of constraints is the same than those under the real system is observed. This adds two difficulties:

• If the hypothesis are incorrect, there is no guarantee about the simulation model, meaning the simulation model could only behave well under the EF, and not under all the non-observed conditions; • The validation strongly depends on the quality of the implementation; this means the simulation model must be verified and validated against the conceptual model, whose the knowledge depend on the known EF.

Understanding and specifying the context and the EF becomes therefore another challenge [START_REF] Traoré | Capturing the dual relationship between simulation models and their context[END_REF] in the application of M&S theory. This does not mean the entire state space cannot be checked as with formal verification, but it would be probably more costly; and, efficiency of a simulation model can only be evaluated by comparing its outputs with those of the real system for specific inputs. Note that because simulation is evaluated under specific EF, this enforces the notion of determinism; in other words, for the same set of inputs, the model must generate the same behaviour and the same outputs. This determinism is both a strength and a weakness: from the M&S point of view, this forces again modeller to have precise knowledges about the system; from the FV point of view, this forces the modeller to complexify the model, meaning the model will not focus only on interesting aspects and will encompass irrelevant computational details. Table 1 summarizes the advantages and drawbacks of both formal-based and simulation-based techniques.

Related work

In order to improve these existing methodologies, some works have been intensively done the last decades on new model-checking algorithms for verification of timed and hybrid models [START_REF] Alur | The algorithmic analysis of hybrid systems[END_REF][START_REF] Borger | Abstract state machines: a unifying view of models of computation and of system design frameworks[END_REF], stochastic models [START_REF] Katoen | Advances in probabilistic model checking[END_REF], improving verification and validation of simulation models [START_REF] Foures | Simulation validation using the compatibility between simulation model and experimental frame[END_REF][START_REF] Olsen | A method for quantified confidence of devs validation[END_REF][START_REF] Zengin | Verification and validation of the devs models[END_REF]. Many methodologies combining formal-based verification and simulation like assertion-based approaches [START_REF] Coelho | Advanced Formal Verification[END_REF] have also been proposed. Godefroid [START_REF] Godefroid | Combining model checking and testing[END_REF] says that "model checking can be combined with testing to define a dynamic form of software model checking based on systematic testing", confirming that static and dynamic approaches can be both used for Verification and Validation. Goldberg [START_REF] Goldberg | On bridging simulation and formal verification[END_REF] admits that simulation and formal verification are complementary. The author states that if formal verification proves that a model holds property for all points of a space, the main problem is its unscability. He states also that simulation probes the search space at a subset of points, and "works surprisingly well even though the set of test points (further referred to as the test set) comprises a negligible part of the search space". In fact, combining simulation and verification is an aspect which is included in the definition of model checking [START_REF] Baier | Principles of Model Checking[END_REF]. The MC community proposes "testing", "emulation" and "simulation" as a way for analyzing generated counterexamples. In this context, "simulation" (or more precisely execution, or animation of specifications [START_REF] Bicarregui | Making the most of formal specification through animation, testing and proof[END_REF]) is similar to run a path of the reachability graph. However, by definition, simulation is "executing a model to generate its behaviour over the time" [START_REF] Zeigler | Theory of Modeling and Simulation -Discrete Event and Iterative System Computational Foundations[END_REF], by acting on inputs and parameters of the model. Errors are determined by finding differences between the simulator output and the output described in the specifications over the time. Then, executing a graph of an untimed model is not really a simulation (in the meaning of the M&S theory) while execution misses two important aspects: the time and the experimental frame.

That is why many other techniques that combines Simulation and Formal Methods have been proposed. Among them, we find methodologies based on morphisms and transformations of models, and techniques that build new formalisms from several other formalisms used in different disciplines. For instance, Abdulhameed et al. [START_REF] Abdulhameed | An approach combining simulation and verification for sysml using systemc and uppaal[END_REF] propose a methodology to verify and validate SysML specifications by successively translating them into SystemC and UPPAAL models, using a Model-Driven Engineering (MDE) approach. The SystemC model is then simulated for validation purposes, while the UPPAAL model is used for verification purposes. The described methodology was applied on a model of controls of traffic lights. This type of approach is very interesting because they can reach the strength of formal verification and simulation from a common high level specification language. However, the limits of this approach come from the limits of the transformations from SystemC to UPPAAL. Timed Automata (TA) impose some restrictions on time relations and data types. This means that there is no proof that any SysML models can be translated into a SystemC model and an UPPAAL model. In the same manner, Zeigler et al. [START_REF] Zeigler | Combining devs and modelchecking: Using system morphisms for integrating simulation Prepared using sagej.cls A c c e p t d f r P b l c a i o n and analysis in model engineering[END_REF][START_REF] Zeigler | Towards a framework for more robust validation and verification of simulation models for systems of systems[END_REF][START_REF] Zeigler | Combining devs and modelchecking: concepts and tools for integrating simulation and analysis[END_REF] propose to use system morphisms to transform DEVS (resp. model-checking) models into model-checking (resp. DEVS) models.

Dacharry et al. [START_REF] Dacharry | Formal verification with timed automata and devs models: a case study[END_REF] propose another design methodology for control systems by linking simulation using DEVS and formal verification using TA. The high-level specifications are expressed using TA, while the design of the control implementation is described using DEVS formalism. By finding a refinement between the implementation and the specification (i.e. by proving the DEVS model conforms with the TA model), simulation can then be used for validating the implementation. Moreover, a DEVS model is more expressive and enforces fewer constraints about data and time relations. A DEVS model is thus closer to the real system than a verification model. Neverthless, this approach supposes that it is possible to translate any DEVS models into equivalent TA models, and as the authors stated, this is not possible. Second, because a fully automatic translation from TA to DEVS is not possible, this means that designers must have knowledge of two formalisms to achieve the best of combined simulation and model checking.

He [START_REF] He | PZ nets -a formal method integrating petri nets with z[END_REF] proposes to build a new formalism integrating two other formalisms. On the one hand, PZNets can be seen as an extension of Petri Nets, by adding function definition capabilities; one the other hand, it can be also seen as an extension of Z notations, by adding a new operational semantics with explicit control flow structures. The main advantage of such an approach is that the various aspects of a system can be modelled using a unified formal model which can benefit from a rich set of analysis techniques. Indeed, a PZNet model remains a Petri Net model, meaning that it can be simulated. Moreover, a PZNet model can be analyzed using the Z proof techniques thanks to the defined transformation rules. Thus, a PZNet is suitable for both data and process reasoning.

We proposed [START_REF] Yacoub | Towards an extension of promela for the modeling, simulation and verification of discrete-event systems[END_REF][START_REF] Yacoub | Using dev-promela for modelling and verification of software[END_REF] to go further in this way and to explore how combining Model-Checking and Simulation for improving V&V by introducing the semantics of simulation formalisms into verification formalisms (at the difference with PZNets which adds Z notations to Petri Nets). In this way, we achieve different goals: As a result of our work is born the Discrete-Event PROMELA (DEv-PROMELA) formalism [START_REF] Yacoub | Dev-promela: an extension of promela for the modelling, simulation and verification of discrete-event systems[END_REF] which can be seen as a new specification formalism thanks to the combination of DEVS and Process MEta LAnguage (PROMELA) [START_REF] Holzmann | The model checker spin[END_REF] formalisms presented in section 1.3 and section 1.4.

PROMELA Concepts

PROMELA [START_REF] Holzmann | The model checker spin[END_REF] is a formal verifiable language which allows the specification of concurrent systems and concurrent protocols. The model-checker SPIN makes possible of the validation of properties expressed in Linear Temporal Logic (LTL). We briefly introduces there the main concepts behind PROMELA.

PROMELA primitives. A PROMELA system [START_REF] Holzmann | The SPIN Model Checker : Primer and Reference Manual[END_REF] relies on three main types of objects: processes, data objects and messages.

The components of the system are modelled by a finite set of instances of processes. The latter can communicate with each other thanks to different mechanisms such as buffered messages, shared global variables or rendez-vous handshakes. Each process is a finite set of guarded or labelled commands called instructions. Each instruction is sequentially executed by each process in an either synchronous or interleaved asynchronous manner. In other words, at any time t i , only one instruction is performed by one of the processes, without any assumptions about duration of the execution or timed events. Note that a set of instructions can be labelled as an atomic instruction: in this case, these instructions are considered as a unique instruction. Processes can also be prioritized, meaning that a process with a higher priority will always execute its instructions before other processes (it is interesting to note that the semantics of priority has changed: old PROMELA specifications provided a way to define a ratio between processes, meaning that, for instance, a 10-priority process was 10 times more likely to execute before others). :: (x == 2) → x = 3; :: (z == 1) → x = 2; :: (y == 4) → z = 0; PROMELA data are represented by classic variables, with a type and an identifier. The type gives the finite size of the variable (Table 2). It can be either scalar values, combinations of scalar values (structs), or finite arrays of scalar and/or structs. Variables can be local, meaning there are defined only in the scope of the process that declares them, or global, meaning they are shared by all the processes. Semantics of PROMELA. The semantics of a PRO-MELA model is given by the verification engine [START_REF] Holzmann | The SPIN Model Checker : Primer and Reference Manual[END_REF][START_REF] Natarajan | Outline for an operational semantics of promela[END_REF]. Each proctype defines a finite state automaton A = (S, T, L, s 0 , F A) where:

Prepared using sagej.cls

• S is the set of states that correspond to the possible control points inside the proctype block; • T is the transition system that defines the control flow; • L is the transition label function that links each transition to a statement that defines the executability and the effect; • F is the set of final states which are defined for endstate, accept-state and progress-state.

More operationally, a PROMELA process is a tuple P =< pid, lvars, lstates, initial, curstate, trans > where:

• pid is a positive value which identify the process;

• lvars is a finite set of local variables {(name, scope, domain, inival, curval)}; • lstates ⊆ IN T , which defines the identifiers of the local states of the process; lstates hold no information; • initial is the initial state of the process such that

curstate = initial =⇒ ∀v ∈ lvars, v.curval = v.inival;
• curstate is the current state of the process.

• trans is a the finite set of transitions {(tr id, source, target, cond, ef f ect, prty, rv)} where (source, target) ∈ lstates × lstates.

Then, to define a whole PROMELA program, the concept of System state is introduced. A system state is a tuple SS =< gvars, procs, chans, exclusive, handshake, timeout, else, slutter > where, in particularly,

• gvars is a finite set of global variables {(name, scope, domain, inival, curval)}; • procs is the finite set of processes; • chans is the finite set of channels.

The semantics engine (Algorithm 2) gives then the meaning of a PROMELA program. Given a current system state s, the semantics engine takes randomly one executable transition from any executable transitions among all the processes. Given a selected couple (p, t), the engine computes the effect of the transition on the current state. If the statement is not a synchronization statement, the engine modifies the current system state and the current state of the selected process. Otherwise, the algorithm tries to find the process that must fulfill the synchronization. If one is found, both processes are updated and the current global state is changed. Otherwise, the system is blocked.

Then, we can consider a PROMELA program also as a finite state automaton in which the set of states is the cartesian product of each process' set of states, and the

} 20: }
transition system is a composition of each transition system of each process. We mean that, for two global state s and s , it exists a transition between them only if it exists a local transition that affects one of the local states that composes s and gives its equivalent component in s .

DEVS Concepts

As introduced previously, DEVS is an algebraic formalism which allows discrete-event representations of system. In this section, we recall important concepts about Classic DEVS [START_REF] Zeigler | Theory of Modeling and Simulation -Discrete Event and Iterative System Computational Foundations[END_REF].

DEVS primitives. Discrete-Event Systems (DES) are a specific class of timed systems, whose state changes at various time instants, depending on instant occurrences of events. Thus, a DES evolves along the events that it emits or consumes. To model such systems and their analysis, Zeigler et al. [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF] introduced the DEVS formalism, which can be seen as a generalization of the Moore Machine formalism by associating each state with a lifespan. The Classic DEVS thus relies on the following notions:

• Each state is associated with a real number called lifespan. This real number can take its value on [0; +∞]. When the lifetime of a state has expired, the system emits an output and changes its current state according to the transition table; • When an input is consumed, the state of the system changes according to the transition table, regardless of the current lifetime of the current state; • As a result of the previous point, transitions can be characterized as internal or external transitions. Internal transitions model autonomous behaviours while external transitions correspond to reactions to any external events; • Events are well-dated and can be ordered;

• There is no non-deterministic behaviour. If two events occur at the same time, thus either they are equivalent events (e 1 = e 2) or they are prioritized; • The states, input and output trajectories are piecewise segments; the distribution of events can follow any non-linear function, unlike for discrete-time systems in which the time is determined by a linear function of periods;

A DEVS model is divided into small pieces called DEVS atomic model, and more complex models called DEVS coupled model. A coupled model is a coupling of DEVS atomic or coupled model. Each atomic model deals with events that it receives from the environment, or from other models, in order to change its current state. An atomic model thus encompasses the computational properties of the system. When a transition is enabled, an atomic model can emit an event to the other models which it is coupled with. If it is the case, the target models change their respective state according to the emitted event. A coupled model is thus a way to hierarchically compose complex systems.

To each model, the DEVS framework associates either an abstract simulator, or an abstract coordinator in order to build the simulation model. The simulator gives the meaning of an atomic model, while the coordinator sets how the events are exchanged between coupled models. The computerized model is then the concrete implementation of simulators and coordinators using a programming language.

Semantics of DEVS. More formally, a DEVS model is thus a coupling of DEVS models. A DEVS atomic model is the smallest simulable unit defined by

A = (X, Y, S, δ int , δ ext , λ, ta)
where:

• X is the set of input values; • Y is the set of output values; • S is the set of states; • δ int : S → S is the internal transition function; • δ ext : Q × X → S is the external transition function; • λ : S → Y is the output function; • ta : S → R + is the time advance function; • Q = {(s, e) | s ∈ S, e ∈ [0, ta(s)]} is the total state
set; e is the time elapsed since the last transition.

Then, a DEVS coupled model is defined by

M = (X, Y, M, EIC, EOC, IC, Select)
where:

• X is the set of input values; • Y is the set of output values; • M is the set of components (atomic or coupled models); • EIC is the external input coupling that connects external inputs to component inputs; • EOC is the external output coupling that connects component outputs to external outputs; • IC is the internal coupling that connects component outputs to component inputs (without direct feedback loops);

Prepared using sagej.cls

A c c e p t e d f o r P u b l i c a t i o n

• Select is the tie-breaking function that chooses the next event from the set of simultaneous events.

The meaning of an atomic DEVS, given by the abstract simulator, can easily be depicted as follows. At any time t, the system is in a state s. If no external event occurs, the system stays in s for time ta(s). If the lifetime expires, meaning the elapsed time e from the last event is equal to ta(s), the system outputs the value λ(s) and changes to the state δ int (s). If an external event x occurs before the expiration time, meaning that the system is in a state q = (s, e) with e ≤ ta(s), then the system changes its state to δ ext (q, x).

Given a queue of events sorted by date, the simulation algorithm works as follow:

1. When a coordinator associated to a coupled model processes an internal event, it dispatches it to its imminent child, ie. the one responsible of this event.

The simulator associated to this model executes its transition. If it is a coordinator, the event is processed recursively. Otherwise, if it is a simulator, an output event is emitted to the parent coordinator before changing the state of the corresponding atomic model. When the internal event is consummed and all external events caused by this output processed, the time of the next event is computed by choosing the minimum of the next events of all the children; 2. If a coordinator receives an external input event from its parent coordinator, it generates a message to its internal components according to the internal coupling function. Time event are updated.

If a coordinator receives an external output event from

its imminent child, it may generates an external output event to its parent coordinator according to the external couplung function or internal coupling function; 4. The algorithm is repeated until the event queue is empty.

Based on these two formalisms, we developped DEv-PROMELA presented in this paper as new formalism, and as an illustration of our proposed methodology. The question about the exact position of DEv-PROMELA as an extension of PROMELA or a subclass of DEVS is not raised in this paper. Section 2 reintroduces DEv-PROMELA and the mandatory key concepts to build a combined formalism based both on formal method and simulation in the context of Software Verification and Validation. Unlike previous work, this section shows also that the resulting formalism is usable both by the former checker and the former simulator because of the existance of morphisms that generate equivalent PROMELA specifications and DEVS models from a DEv-PROMELA specification. Through a double bi-simulation relationships, we ensure that DEv-PROMELA models, resulting PROMELA models and resulting DEVS models are equivalent. Then, Section 3 introduces a new unpublished proposed V&V workflow and Software Development Life Cycle (SDLC) using DEv-PROMELA. Indeed, simulation is generally used to develop systems, but we show that it can be combined with formal checking to discover flaws early in a software development. We applied our methodology to develop a video game using DEv-PROMELA and we show how each step of the SDLC is impacted in our proposed workflow in Section 4. Finally, we discuss about the benefits and drawbacks of our approach and its applicability on more complex software and systems.

2 Discrete-Event PROMELA

Overview

Discrete-Event PROMELA (DEv-PROMELA) [START_REF] Yacoub | Dev-promela: an extension of promela for the modelling, simulation and verification of discrete-event systems[END_REF] is an example of formalism that illustrates our methodology. DEv-PROMELA can be seen as an extension of PROMELA for describing discrete-event models, while it adds new abstract primitives [START_REF] Caplat | Model mapping in mda[END_REF][START_REF] Caplat | Model mapping using formalism extensions[END_REF] to PROMELA, or as a new discrete-event simulation formalism. More than that, DEv-PROMELA is also a sublclass of DEVS [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]. Proof of the exact position of DEv-PROMELA is outside of the scope of this paper. As previously said, DEv-PROMELA is built upon a verification language (with an operational semantics) in which we add the operational semantics [START_REF] Plotkin | A structural approach to operational semantics[END_REF][START_REF] Kahn | Natural semantics[END_REF] of a simulation language. In other words, the structure of a DEv-PROMELA model can be fully described/abstracted by a PROMELA model (the state-transition graph generated by the semantics of the PROMELA verification engine), while its discrete-event behaviour is described by a DEVS model (the way of going from a state to another given by the semantics of the DEVS abstract simulator). As a consequence,

• a DEv-PROMELA model can be abstracted to a PROMELA model in which the structure is preserved. This means that some qualitative properties like the intrisic existance of a path between two abstract states can be formally checked; time is seen as ordered events and the size of the statespace of models can be subdued (compared to the statespace of a timed model); • a DEv-PROMELA model can be abstracted to a DEVS model in which the timed behaviour is preserved. This means that some quantitative properties, like properties in which the next state depends on the time elapsed in the current state, can be checked by simulation; time is seen as timed events and discreteevent simulation models can be expressed with a clear syntatic language.

Shorter, DEv-PROMELA is thus a formal language with the syntax of PROMELA. It embbeds both PROMELA and DEVS primitives. The semantics of the simulation model is given by the DEVS abstract simulator.

Syntax of DEv-PROMELA

DEv-PROMELA is then designed as an extension of PROMELA for the modelling of discrete-event systems. However, in order to model the previously described DEVS primitives, new syntactic elements are obviously needed. PROMELA is a deep and interesting specification language with plenty of elements. Thus, we just present in this section the minimal main modifications that will allow the modelling of discrete-event systems.

A new datatype. For representing infinite and unbounded real values, we introduce a new abstract type called real. It is useful for modelling time and infinite data. As any other PROMELA types, real can be used to defined local and global variables.

real i, j, k;

Real variables can also be used in structures and in arrays, without restriction.

Statements. PROMELA statements define the actions which are done when the system changes its state following a transition. DEv-PROMELA extends them by prefixing each of them with an event descriptor, which allows their characterization, i.e. if they are autonomous or reactive statements.

Event descriptors describe the delay between the execution of any previous statement and the prefixed one, or describe an event which will trigger the execution of this statement. Event descriptors are defined as follows: (1) means that the execution of a = a + 10 is performed 3.0 units of time after the execution of a previous statement. Before executing this statement, an event newa is emitted.

(2) means that the statement will be triggered only if the event "newb" is received.

(3) means that the statement c = c * d will be triggered either if the elapsed time between the execution of a previous statement and this one is equal to the value lifespan(c) (in this case, "newc" will be outputed) or, if the the event "newd" occurs.

The third example shows one of the main characteristics of DEv-PROMELA: a statement can be executed in different manners, with at most one explicit timed descriptor (defined by clt command) and with at most one descriptor per event. Note that the clt command is optional. If it is not defined and there is at least one evt command, we consider the elapsed time before the execution of the statement is equal to ∞. For convenience, if there is no event descriptor (no clt command nor evt command), the statement is interpreted as if it is prefixed by [clt: 0.0 → emit:silent]. The statement is executed without any delay by emitting the default silent event. The silent event is an event which does not cause any explicit change in the system, but defined in order to conform to the DEVS formalism.

Selection construct. The selection construct is a controlflow construct that helps to define the structure of the automaton corresponding to the PROMELA program. The original construct has a unique start and stop state. Each option sequence defines an outgoing transition from the start state to the stop state. Thus, the end of each option sequence leads to the end state that follows the construct. Consider the example given in Algorithm 3. The PROMELA resulting structure is composed by three states per path, as shown in Figure 1. When entering the selection construct, the process evaluates each guard, leading to an intermediate state, before executing the option. This mechanism allows PROMELA to separate evaluation of guard and outgoing instructions. If two options are evaluated to true, both paths can be executed in a non-deterministic manner. In a DEv-PROMELA model, such a construct defines transitions between a set of equivalent states. The meaning is that, whatever the state for which x = 2, only the transition defined by the first option is defined (except for the state (x = 2, y = 2)). This transition leads to a state for which x = 3. In this case, this means that each option of the construct describes a set of source states verifying at least the guard of the option. Thus, like for assignments, each DEv-PROMELA option is prefixed by an event descriptor. Then, a DEv-PROMELA version of Algorithm 3 is given in Algorithm 4. fi;

Prepared using sagej.cls

Note that the event descriptor can be placed before the control structure. In this case, this means that all evaluation of each guard will occur after the same delay.

But what happens if multiple guards are verified ? Traditional PROMELA allows non-deterministic behaviours, because the model-checker will systematically explore all possibilities. Thus, for a source state, multiple outgoing transitions can exist. Still, a discrete-event simulation model is deterministic by definition. This could be seen as a restriction, but in fact, it forces designers to fully specify the modelled system. Indeed, what does the system actually do if x = 2 and y = 2 ? DEv-PROMELA considers that the options are ordered by time then by order. For example, in Algorithm 4, only the second option is executed. If the time was the same for both options, the first one would be executed.

Repetition construct. The repetetion construct allows the definition of loops. The structure is likely similar to the selection construct, except that the end of each option leads back to the start of the structure. Only the option associated to a break statement leads to the end of the structure. As in the case of a conditional structure, the option can be prefixed by an event descriptor. Process priority. Priority between processes is another thing that we need to be able to define. Indeed, if two events occur at the same time, we need to know what event must be processed first. This corresponds to the select tie-breaking function seen previously. For that, DEv-PROMELA defines a process descriptor using the following grammar: <proctype decl> ::= "[" priority "=" <int> "]" <proctype> The semantics of priority will be defined in the next section.

Clock and timeout. The last syntactic element concerns time handling. PROMELA defines a timeout keyword used as an escape for a blocked system (i.e. a system for which there is no more enabled statement), for example when a system has no valid option to progress through a selection construct. In DEv-PROMELA, such a case means that the system is not well specified. In such a case, simulation cannot be performed and will return an error.

Each process is also associated to a virtual local clock which measures the elapsed time since the last event. DEv-PROMELA allows transitions depending on the elpased time. Two convenient instructions, getElapsedTime and getCurrentDate, enable access to this clock valuation.

Meaning of DEv-PROMELA

DEv-PROMELA primitives. To keep the equivalence between PROMELA, DEVS and DEv-PROMELA, we associate for each DEv-PROMELA proctype block a DEv-PROMELA atomic process. Each atomic process is coupled with the other processes that compose the specifications. The whole system is then viewed as a DEv-PROMELA coupled program. Programs can be coupled to make a more complex program or interact with the environment.

Semantics of a DEv-PROMELA program. Formally, a DEv-PROMELA program P r is a transition system T = (S, Λ, →) where S is the cartesian product of the set of states of each process, the set of global variables and channels that compose the program, Λ is the set of all statements and → the set of transitions. Consider a program P r at time t and two states s = (s pi , s qj , ...) and s = (s pi , s qj , ...). Then, s l → s with l ∈ Λ if it exists a transition from s pi to s pi , from s qj to s qj , ... and if it does not exist any other transition which can be triggered before the date t. In other words, the next event of P r is the minimum value of all the next events of each process and external events. This definition comes from the fact that a DEv-PROMELA program can be simulated by a DEv-PROMELA atomic process. The demonstration is similar to the closure under coupling property of DEVS.

Semantics of a DEv-PROMELA process. A DEv-PROMELA process P with a set of statements L is an automaton

T = (S τ , E, δ i , δ e , s 0 , F) where • S τ = {s i = (t s , i, l 1 , ..., l m , ... ∈ N × m i=1 L i × n j=1 G j × o k=1 C k)}
is the set of states. i is the identifier of the state related to the statement l which defines it; the sets L i (resp. G j) are the sets of values of each local (resp. global) variable l i (resp. g j); • E is the set of events; E contains at least the silent event denoted ; S τ → R + s → t s is the state lifetime function; the lifetime of each state is given by the delay before executing the next statement in the specifications;

• δ i : Q f → Q 0 × E is the internal transition partial function; • δ e : Q × E → Q is the
-Q = {q = (s, dt), ∀s ∈ S τ } such that 0 ≤ dt ≤ ta(s)
is the set of total states; dt denotes the time elapsed in the state s;

-Q 0 = {q = (s, 0), ∀s ∈ S τ } ⊂ Q; -Q f = {q = (s, ta(s)), ∀s ∈ S τ } ⊂ Q.
Consider a DEv-PROMELA process P in a state s at time t, and the next statement l with its event descriptor. We can admit the process P is in fact in a state q = (s, t) (if t denotes the elapsed time since the last event). If l denotes an internal transition and if t = ta(s), then the statment l is enabled. The event associated with the transition is emitted to all the other processes composing the program, before the transition is triggered, and the next event for the process P is defined by : d e = getCurrentDate + ta(s) with ((s , 0), e) = δ i (s). If l denotes an external transition on an event e, then the transition is triggered only if the process receives the event e. In this case, denote t the date of the event e. The next state is given by q = δ e (q, e) with q = (s , 0). If δ e is not syntactically defined for (s, e), then the next state is given by q = (s, dt) and ta(s) = t s where dt is the elpased time from the previous event.

Relations between DEv-PROMELA and DEVS

The main goal of DEv-PROMELA is to provide another way to enhance modelling, verification and validation of discreteevent systems by using simulation and model checking. This demonstration is relatively easy, thanks to the construction of DEv-PROMELA. Consider a DEv-PROMELA process P = (S τ , E, δ i , δ e , s 0 , F) and a DEVS atomic model A = (X, Y, S, δ int , δ ext , λ, ta). P will define the same system as A if and only if :

1. S τ = S, both models have the same state space; 2. X ⊆ E and Y ⊆ E; the sets of inputs and outputs are subsets of the set of events; 3. given s and s two states such that s = δ int (s) and y = λ(s); then, it exists s τ and s τ such that ((s τ , 0), y) = δ i ((s τ , ta(s τ))) and ta(s) = ta(s τ); 4. given s and s two states, and x an input such that δ ext (s, x) = s ; then it exists s τ and s τ such that s τ = δ e (s τ , x);

Proof. Considering a DEVS atomic model built upon a DEv-PROMELA process model, in which X = E, Y = E, and S = S τ . We define δ int and λ such that:

• if ta(s) = ∞ and δ i (q) = (q , e) such that q = (s, ta(s)) and q = (s , 0), then δ int (s) = s and λ(s) = e.

• if ta(s) = ∞, δ int (s) = s and λ(s) = ∅. s is a passive state, then this transition will never be enabled.

We define δ ext as follows:

• if δ e (q, e) = q with q = (s, dt) and q = (s , dt), then δ ext (q, e) = s ; • if q = q and ta(s) = ∞, then ta(s) = ta(s)dt and q = (s , 0). This condition ensures that δ ext is defined for all (q, e) ∈ Q × X and time is preserved.

Then, we can show that A simulates P. Considering the transition system < S , Λ, →> where

• S = S τ ∪ S; • Λ = (X ∪ E) × (Y ∪ E); • →= Im(δ i) ∪ Im(δ int) ∪ Im(δ e) ∪ Im(δ ext);
where ∪ denotes the disjoint union operator. Therefore, A simulates P if there is a simulation R = S × S such that for all (p, q) ∈ R and l = (x, y) ∈ Λ, if

p l → p then q l → q However, p l → p only if 1. (p , y) = δ i (p)
, meaning that p is reached by an internal transition that outputs y. By construction, we know that it exists (q, q) ∈→ such that q = δ int (q) and y = λ(q). Moreover, ta(p) = ta(q) and ta(p) = ta(q) by construction. 2. p = δ int (p) and y = λ(p), meaning that p is reached by an internal transition that outputs y.

By construction, we know that it exists (q, q) ∈→ such that (q , y) = δ i (q). Moreover, ta(p) = ta(q) and ta(p) = ta(q) by construction. 3. p = δ e (p, x), meaning that p is reached by an external transition that consumes x. By construction, we know that it exists (q, q) ∈→ such that q = δ ext (q, x). Moreover, ta(p) = ta(q) and ta(p) = ta(q) by construction. 4. p = δ ext (p, x), meaning that p is reached by an external transition that consumes x. By construction, we know that it exists (q, q) ∈→ such that q = δ e (q, x). Moreover, ta(p) = ta(q) and ta(p) = ta(q) by construction.

Thus, A simulates P. Symetrically, we can show that for all (p , q) ∈ R, if

q l → q then p l → p
Thus, P simulates A, meaning P and A are bisimilar.

We can then build a DEVS atomic model that simulates exactly the behaviour of a DEv-PROMELA process. Proof. Given a DEv-PROMELA program P r with n processes P 1 to P n . Given EV EN T , a convenience function such that EV EN T (P n) is the set of events of P n . Then, we can define a DEVS atomic model A = (X, Y, S, δ int , δ ext , λ, ta) which simulates the DEv-PROMELA program:

1. S τ = ∪ n i=1 S i × n j=1 G j × o k=1 C k
, where S i are the sets of the states of each process, G j the sets of the values of the global variables, and C k the sets of the values of the channels; 2. X ⊆ ∪ n EV EN T (P n) and Y ⊆ ∪ n EV EN T (P n); the sets of inputs and outputs are subsets of the set of events; 3. δ int : S τ → S τ . Given s = (s 1 , s 2 , ...) and s = (s 1 , ...) and s = (..., s 2 , ...) in S τ . Then:

• if δ i1 (s 1 , ta(s 1)) = (s 1 , 0, e) where δ i1 is the internal transition function of the process 1, then

δ i (s) = s ; • if δ int (s) = s
and λ 1 (s 1) = e, and δ e2 (s 2 , dt, e) = (s 2 , dt), then δ int (s) = s and ta(s) = 0 ; this case describes the internal coupling of DEv-PROMELA processes ; 4. ta : S τ → R. s = (s 1 , s 2 , ...) and s = (s 1 , ...), then:

• if s is the initial state, ta(s) = min(ta(s 1), ..., ta(s n)); • if s = δ int (s), then ta(s) = min(ta(s 1), ta(s 2) -ta(s 1), ..., ta(s n) - ta(s 1)) ; • if s = δ ext (
q, e) and q = (s, dt), then ta(s) = min(ta(s 1), ta(s 2)dt, ..., ta(s n)dt)) ; 5. δ ext : Q × X → S τ ; Given s = (s 1 , s 2 , ...) and s = (s 1 , ...) and s = (..., s 2 , ...) in S τ . If δ e1 (s 1 , dt, x) = (s 1 , dt), then δ ext (s, e) = s ; 6. given s = (s 1 , ...), λ(s) = y if λ(s 1) = y;

We must show that A simulates P r . We denote by ST AT ESP ACE(P r) the total statespace of the DEv-PROMELA program P r . If A simulates P r , this means that for each (p, p) ∈ ST AT ESP ACE(P r) such that p → p , it exists (q, q) ∈ S τ such that it exists an internal or an external transition to go from q to q . But, p → p if:

1. p = (s pi , ..), p = (s p i , ..) and →= (δ ip , ...) such that (s p i , y) = δ i (s pi); by construction, we know that it exists δ int (q) = q and y = λ(q) that corresponds to the transition δ i (s pi). Moreover, ta(p) = ta(q) and ta(p) = ta(q). Indeed, the next event in P r is generated by the minimum value of all the future events. And by definition, ta(q) = min(ta(s 1), ta(s 2)ta(s 1), ..., ta(s n)ta(s 1)). 2. p = (s pi , ..), p = (s p i , ..) and →= (δ ep , ...) such that (s p i) = δ e (s pi , x) where x is an internal event generated by any other process of the system. This transition is enabled before the internal transition that has emitted the event is triggered. However, by construction, we know that it exists δ int (q) = q and ∅ = λ(q) that corresponds to the transition δ e (s pi), and ta(q) = 0. 3. p = (s pi , ..), p = (s p i , ..) and →= (δ ep , ...) such that (s p i) = δ e (s pi , x) where x is an external event received by the system. However, by construction, we know that it exists δ ext (q, x) = q that corresponds to the transition δ e (s pi , x).

Thus, A simulates P r .

We can then define a DEVS atomic model which simulates exactly the behaviour of a DEv-PROMELA program. It is interesting to note that in the case of a DEv-PROMELA program without global variables and channels, we can build a DEVS coupled model that simulates the DEv-PROMELA specifications. In that case, the property of closure under coupling gives exactly the DEVS atomic model described above, and in this case, the coupled model is similar to the DEv-PROMELA program.

Relation between DEv-PROMELA and PROMELA

Checking a DEv-PROMELA model is possible only if we can at least find an equivalent PROMELA model, meaning the structure expressed by the DEv-PROMELA model can be abstracted to a PROMELA model. We must then prove that it exists at least one PROMELA model which is an abstraction of the given DEv-PROMELA model. We can do that by using the pre-order simulation relationship between models.

Proposition 4. Given a DEv-PROMELA process model P , it exists a PROMELA process model P that preserves the structural properties of P .

Consider a DEv-PROMELA process model P . We get a PROMELA process model P by removing all the event descriptors and abstracting real data from P . P and P are two state-transition systems, whose respective entire statespace is denoted S and S . Thus, P preserves the structure of P if and only if

∀(s, s) ∈ S × S, ∃(t, t) ∈ S × S , δ i (s) = (s , e) ∨ δ e (s, e) = s ⇒ t l → t
where l is a statement. Look at each type of statement defined previously.

Assignment. A DEv-PROMELA assignment is a statement l with an event descriptor ev that defines one or several transitions between two states s and s . A PROMELA assignment is a statement l that defines only one transition between two states t and t . Then, if P is obtained by removing the event descriptor ev, it exists a (t, t) ∈ S × S such that t l → t .

Prepared using sagej.cls

A c c e p t e d f o r P u b l i c a t i o n

Selection and repetition constructs. A DEv-PROMELA selection (repetition) construct defines transitions between subsets of S. Given S a ⊂ S and S b ⊂ S such that S a verifies a guard, and S b is the subset of end states related to the selected option. This means ∀s a ∈ S a , ∃s b ∈ S b , δ i (s a) = (s b , e) ∨ δ e (s a) = (s b , e) by executing the option. Then, if P is obtained by removing the event descriptor, each couple (s a , s b) can be mapped to a (t a , t b) such that t a l → t b . Moreover, we can be sure it exists at least one such couple because PROMELA allows non-deterministic behaviours.

Channels. The mechanism of channels is exactly preserved in DEv-PROMELA. Sending and receiving operations link two states s and s . Only the lifespan and the meaning of transitions are changed. Thus, removing the event descriptor preserves the link between the states. Definition 1. We call autonomous instance of a DEv-PROMELA process P any parametrization of the lifespans of states such that the model contains no passive state.

DEv-PROMELA model allows modelling systems whose next states depend on the time elapsed in the current state. This behaviour can obviously, for example, lead to deadlock in passive state. Because PROMELA does an abstraction of time, these kinds of behaviours cannot be captured or modelled. However, a PROMELA model will be a good abstraction if it covers at least all the parametrizations of the DEv-PROMELA model containing no passive state. In this case, the PROMELA model simulates all the autonomous instances of the DEv-PROMELA model. Proposition 5. Given a DEv-PROMELA process model P , and a PROMELA process model P obtained by removing all the event descriptors. Then, P simulates all autonomous instances of P .

As demonstrated, P preserves all the structural properties of P . The set of autonomous instances of P contains all the possible orders of events. Because P is a process, only a change in conditional/loop structures can lead to different behaviours between instances. However, the PROMELA model P contains all the possible paths for these structures. As a consequence, P simulates all the autonomous instances of P . Proposition 6. A PROMELA program P r got from a DEv-PROMELA program P r by removing all event descriptors preserves the structural properties of P r . Moreover, P r simulates all autonomous instances of P r .

A global state of a DEv-PROMELA program is the cartesian product of the set of states of each process. Thus, at a time t, the next event (and the next statement) is selected by taking the minimum value of the date of the next event of each process. This means that the statespace represented by all autonomous instances contains all the possible permutations between statements. This is exactly the executing graph of the PROMELA model P r . Then, it exists a PROMELA model that is an abstraction of a DEv-PROMELA model. This model is obtained by only removing the event descriptors from the source model. Moreover, we can say that the symbolic DEv-PROMELA model simulates the PROMELA model.

Nature of DEv-PROMELA

As a consequence of the two relationships presented above, the DEv-PROMELA specifications embbed two representations of timed properties and two points of view of a same transition system. As a DEVS simulation model, the DEv-PROMELA model considers time as quantitative (events are considered as timed events). As a PROMELA verification model, it focuses on time as qualitative (events are considered as ordered events). One important question can be raised from this construction: is DEv-PROMELA an extension of PROMELA ? Is DEv-PROMELA a new formalism ? Is DEv-PROMELA an extension of DEVS ? DEv-PROMELA is a formalism based on the PROMELA formalism for its syntaxic part, and on DEVS for its semantics. While the syntax defines the macro-level of the underlying automaton, the semantics gives details on how transition are triggered at the micro-level. This means that the resulting PROMELA model generated from a DEv-PROMELA model is more abstract than the second one, and contains less timed information. Therefore, purely reasonning on a DEv-PROMELA model is possible, and refining a PROMELA model to obtain a DEv-PROMELA model is easily possible by anotating the former model. However, to prove that DEv-PROMELA is an extension of PROMELA, we need to prove that any PROMELA models can be encompassed in a DEv-PROMELA model. This demonstration is out of the scope of this paper.

On the other hand, a DEv-PROMELA model is strictly equivalent to a DEVS model as shown previously. This means that there is always a DEVS model which exactly behaves as a DEv-PROMELA model. However, we know that all DEVS models in general cannot be represented by a DEv-PROMELA model, because a DEv-PROMELA model is structurally finite (or at least, it exists a finite symbolic DEVS to represent it, due to the structural equivalence with PROMELA). As a result, we can hypothesize that DEv-PROMELA is a subclass of DEVS [START_REF] Blas | A conceptual framework to classify the extensions of devs formalism as variants and subclasses[END_REF].

Closure under Coupling

Closure under coupling is an important aspect in hierarchical construction because it ensures that the formalism is welldefined and enables checking for the correctness of coupled models [START_REF] Zeigler | Theory of Modeling and Simulation -Discrete Event and Iterative System Computational Foundations[END_REF][START_REF] Zeigler | Closure under coupling: Concept, proofs, devs recent examples[END_REF]. Basically, closure under coupling gives the assurance that the behaviour of a coupled model can be described by an atomic model, which consequently ensures the validity of the hirarchical construction. Therefore, we have to prove that a DEv-PROMELA model obeys the rules stated in [START_REF] Zeigler | Theory of Modeling and Simulation -Discrete Event and Iterative System Computational Foundations[END_REF] and that a DEv-PROMELA coupled model can be expressed itself as a DEv-PROMELA atomic model. Definition 2. Given a DEv-PROMELA program P = (P 0 , P 1 , ..., P n , E p) composed by n DEv-PROMELA processes P j = (S j , E j , δ ij , δ ej , s 0j , F j). We define E p as the event set accepted by the network. Proposition 7. We can define a DEv-PROMELA process M p = (S M , E p , δ iM , δ eM , S 0M , F M) which describes the behaviour of P .

In this case:

Prepared using sagej.cls

A c c e p t e d f o r P u b l i c a t i o n

• E p = ∪E j ; • S M = ×S j for all j such as P j is a component of P ;

• F M = ×F j for all j such as P j is a component of P ;

We define then the remaining equivalent function δ iM and δ eM . Given an event e ∈ E p and q = (q 0 , .., q n), we have: δ eM (q, e) = (q 0 , ...) with q j = δ ej (q j , e), and δ iM (q) = (δ * eM (q * , e * j), e * j)

with q * = (q 0 , ..., δ * ij (q j), ..., q n) and e * j the event resulting from the imminent transition δ * ij . This transition is unique by definition: if there are concurrent imminent transitions, the priority function selects the next executed transition. The result is that δ * eM (q, e) = (q 0 , ..., q n) if e is the silent event or if there is no component which defines a such partial function for the imminent resulting event e, or δ * eM (q, e) = (..., δ ej (q j , e), ...) if there is a component which defines a partial function for the imminent resulting event e (we recall here that all DEv-PROMELA processes are intercoupled).

By this construction, any DEv-PROMELA program can be rewritten and simulated by a DEv-PROMELA process. However, this construction is possible only because we rigourously define an equivalence between the syntaxic structures in DEv-PROMELA and PROMELA. Indeed, transition functions are built on equivalence between the PROMELA state-transition structure and the automaton underlying DEv-PROMELA. Therefore, a rigourous demonstration of the closure under coupling should involve a rigourous demonstration of the above construction for each syntaxic structure of PROMELA.

Combined V&V Workflow

Overview

A DEv-PROMELA model can be thus used for generating both verification and simulation model. However, it is important to know what exactly the DEv-PROMELA model represents. As an extension of PROMELA, DEv-PROMELA specifications can be a conceptual model of a software, especially event-driven software, or more precisely its formal specifications. While the verification model derived from the specifications removes the computational properties, it can be used for checking the flow and communications between processes. This means that the computerized verification model will be generally used for validating flow properties (what we call static and structural properties). This verification model can also be used for inspecting and verifying the future implementation in a symbolic way. An analogy can be thus done with static test techniques [START_REF] Wallace | Software verification and validation: An overview[END_REF].

On the other hand, as a subclass of DEVS, DEv-PROMELA specifications can be considered as a conceptual model of the computerized simulation model and as a conceptual model of the final software. This model can be used for checking behavioural properties and evaluating data (what we call dynamic and behavioural properties). In particular, it can be used for validating counterexamples given by the model-checker, or confirming the absence of errors by playing scenarios. An analogy can be thus done with dynamic test techniques [START_REF] Wallace | Software verification and validation: An overview[END_REF]. Furthermore, while the simulation model is obtained from the DEv-PROMELA specifications model, it means that the verification model is also formal specifications of the simulation model (even the simulator is abstracted). This is important in the case of V&V of simulation models.

Shorter, DEv-PROMELA specifications are formal specifications and conceptual model of simulators (i.e. the implementation of the simulaton model) and of the final software. Anyway, depending on what kind of properties is checked, simulation and formal verification can be used for both verification or validation purposes. As a formal framework, the DEv-PROMELA specifications can be combined with many traditional techniques for a more robust V&V workflow.

Software Verification and Validation in

Software Life Cycle user needs, requirements, and business processes conducted to determine whether a system satisfies the acceptance criteria and to enable the user, customers or other authorized entity to determine whether or not to accept the system. At each intermediate steps, static verification techniques are also performed (figure 4). These techniques evaluate the correctness of the computerized model against the requirements each step, meaning whether the implementation fulfills the specifications. These techniques essentially concern [START_REF] Adrion | Validation, verification, and testing of computer software[END_REF]: code reviews, symbolic execution, data analysis, semantics analysis, etc. As summary, validation a priori concerns only executing the final software, while verification (or testing) is the fact of checking source code, or a model of this code, at each step of the development cycle.

Verification, Validation and Accreditation of Simulation Models

Verification, Validation and Accreditation of Simulation Models (V&VA) [START_REF] Balci | Verification, validation, and accreditation[END_REF] is a specialized V&V procedure applied to simulation models. In fact, simulation models are always developed using observations from an existing system under study or from theoritical assumptions about this system. As a recall, a simulation model is always related to an EF as stated in Section 1. As a consequence, before using a simulation model, ensuring its credibility according to data from real world and from simulation world is necessary. However, a simulation model is also a software program, meaning that Software V&V procedure should also be applied during the development of the simulator. This feelings is confirmed when we analyze the V&V workflow of simulation models (figure 5). In this one, we can clearly see that verification procedures concern only the computerized simulation model and the simulation model specifications. Validation then consists on using a set of test data to ensure the simulator replicates the real system. However, in the same manner than dynamic verification blurs the boundary between verification and validation, we can see that simulation model is indirectly used for validating the conceptual model. Indeed, the simulation model allows inferring new hypothesis on the system theories which is used for building the conceptual model. This means that, if simulation is used on a model of software, it can be used for both verification and validation purposes. In the same manner, while verification is the fact of checking the correctness of an implementation against specifications, model-checking can be used for validating behaviours using an abstraction of a software. This means that model-checking is also a validation activity [START_REF]Verification/Validation/Certification[END_REF][START_REF] Gaudel | Checking models, proving programs, and testing systems[END_REF], even if it is performed not on the software itself, but on a model of it.

Prepared using sagej.cls

A c c e p t e d o r u b i c a t i o

These notions are very important while designers must exactly know what they are working on. Moreover, DEv-PROMELA adds a new level in the development cycle. For these reasons, we develop a clearer iterative V&V workflow.

Workflow with Combined V&V

The objective is to make easier the discovery of defects, bugs or flaws in a design, lack of requirements or specifications at early stages of the SDLC, by using combined formal and simulation checking. In the same time, reader shall be conscious that the use of simulation models actually needs an experimental frame doesn't exist yet in the case of software development. Indeed, our goal is to use simulation in order to help the development of a software. This means that the V&V of the simulation model is performed in a progressive way along to the different development iterations of the target software. That's why we proposed to develop a new combined V&V workflow (Figure 6), based on the Vmodel and the Sargent's Model. This workflow respects two principles:

• the workflow is defined as a double-iterative cycle in which models and software evolve in alternance. • the workflow integrates all the steps of the classical V-model: specification phase, analysis phase, design phase, development phase. V&V and evaluation are performed in parallel. If a defect is detected, the next iteration allows fixing the V&V model or the software.

We obtained the V&V workflow proposed in Figure 6 with five important steps. Specification phase. The specification phase consists on gathering the customer needs and analyzing requirements. Informal specifications are translated into formal specifications, in which technical constraints and formalisms' limitations are added. From requirements and formal specifications, experts can develop a classic software design and translate functional properties in DEv-PROMELA models. This steps allows also experts to design a specific V&V formalism if needed. If it is the case, this formalism should respect the properties of the combined formalisms in order to ensure the resulting models can be both verifiable and simulable. For example, we suppose that DEv-PROMELA can be extended or refined using the hierarchy of simulation formalisms [START_REF] Yacoub | Restricting dev-promela with a hierarchy of simulation formalisms[END_REF]. From this model, a DEVS conceptual model and PROMELA specifications can be automatically extracted. Acceptance tests are also written during this phase. Simulation scenarios and experimental frame for this specific iteration are also defined during this step.

Design phase. The design phase consists on making the architecture of the global software. This design is based on an event-driven architecture, as DEv-PROMELA gives a support for hierarchical event-driven designs. We mean that the DEv-PROMELA model already gives the designer a rigorous frame around which a robust design can be built. Typically, the designer will add all the elements which have a meaning from the semantic point of view, and which are not modelled in the DEv-PROMELA specifications. For example, this step allows the designer to define classes which represent players and for which a DEv-PROMELA model was written. In parallel, integration tests are written.

Model analysis. During this step, the PROMELA model is automatically converted to a SPIN verification model, and the DEVS conceptual model is translated to a DEVS simulation model. Rigourous Computerized Model verification is performed in order to ensure the computerized models are well implemented for their purpose. This verification can be guaranteed through model transformation processes. A cross-checking is then performed: structural and static properties are formally verified and validated using the verification model; behavioural and dynamic properties are validated using simulation. If the crosschecking produces divergent results, counter-examples are generated, and which allow designers to understand the causes and the outcomes of the faulty design. A neww iteration then begins in order to fix the model. Otherwise, classical model verification and validation are performed using the simulation scenarios and requirements specified in step 1. These two complementary verification and validation ensures that both the conceptual and implemented models acts as intended. It corresponds to the operational validation, theory validation, conceptual model validation of the Sargent's model. Depending on the current iteration, experts can decide to start a new iteration to increase the accuracy of the model if the model is not enough refined.

Software generation and implementation. A software implementation is derivated from the DEVS simulation model, called the program. This program is completed with elements from the design phase and which cannot validated using the model, or because the designers decided not to integrate them in the model (readers must be aware that we still remains exposed to decidability, complexity and state-space explosion problems). As explained before, this program relies naturally on an event-driven architecture while the DEVS simulation model is already an event-driven program. Then, classical software verification is performed against the non-functional specifications defined in step 1.

Software validation and testing phase . This step corresponds to the right branch of the V-model. Software validation is performed using simulations scenarios, integration tests and acceptance tests defined in step 1. Especially, designers can compare results obtained during the simulation and results obtained during the testing phase. If divergence is observed, developers can easily detect if errors comes from implementation or from erroneous design (because the design was already validated during the previous iterations and implementation is based on an automatic code generation). If all tests are successfully passed, an artifact is delivered and a new iteration begins in order to implement new functionnalities.

Next iteration. At the next iteration, the previous program artifact can be used as a refined prototype. This prototype is used to gather new datas and make new assumptions in order to refine the specifications and needs (the system theory in the Sargent's model), refine the simulation itself, and perform a verification and validation of the simulation model. This process is repeated until the development of the software is finished.

As a summary, the combined V&V workflow shows exactly the separation between conceptual model, computerized model and final software. This separation allows Prepared using sagej.cls A c c e p t e f o P u l i a t i o n designers to focus on the most important requirements during the analysis and designing phase, and adding the less important computational aspects in the last iterations of the development cycle. Moreover, while the DEv-PROMELA specifications are formal, can be surely analyzed in a formal fashion using theorem proving for instance. However, this is outside the scope of this paper.

Application: Modelling and Building a Video Game

As an illustration of our proposed methodology, we apply it for building a video game, or more precisly a part of the gameplay of a video game. Digital gaming [START_REF] Frans | Disciplinary identity of game scholars: An outline[END_REF][START_REF] Quandt | Digital games research: A survey study on an emerging field and its prevalent debates[END_REF] is an interesting emerging field of research, while it gathers many problems of computer sciences. Especially, studies of the structure and development of a game shows that game architectures are composed by hundreds of classes, divided in two categories: functional and non-functional classes. Most of the efforts concern the development of nonfunctional classes. As a result, a lot of bugs are more related to a misdesign of functional requirements, because we try to adapt these requirements to the non-functional architecture. Video game developers are therefore facing the complexity of game, and it is well-known that they do not expense time in designing and in verification and validation procedures. Indeed, rigourous tests are considered as a loss of time, and only acceptance testing are intensively performed. This leads to many released games with a lot of bugs and defaults. However, if you look at more precisely the structure of a game [START_REF] Deloura | Game Programming Gems[END_REF], we realize that it is in the most of case almost a discrete-event system in which time has a great importance. In fact, digital games are generally designed with a layered approach (figure 7): • The target system API gathers functionalities that allow communications between the engine and the host system; • The engine is the core of the digital game software. This layer provides generic routines and procedures that perform common operations. Generally, the engine is divided into modules: Graphical Engine handles the rendering process, Physics Engine computes the physical effects of the objects that compose the virtual world, AI handles artificial behaviours, etc. All these modules need to communicate each others using messages. Modern implementations use threads and events [START_REF]Unreal engine[END_REF]; • The gameplay layer contains the end-user rules.

We can say that this layer is the clothing of a game. Generally, it contains specific procedures and processing. It is common to find eventbased implementation through object-oriented pattern (observer pattern, etc.).

Thus, a video game can be seen as a set of processes that communicate each others in an asynchronous manner, and Prepared using sagej.cls using an event-oriented architecture. While our objective is not to deal with the complexity of an entire game, but just illustrating how DEv-PROMELA and the combined V&V approach can be used, we only focus in this section on a small part of the Engine and the Gameplay layers of a wellknown game: Bomberman (figure 8). This game, whose the first release dates back to 1983, consists on a small character controlled by the player and which poses bomb on a map. When a bomb explodes, the nearest ennemies die, or new paths of the map are opened. Obviously, the player has many constraints: he cannot bring infinite bombs, he has a finite number of lifes, and he cannot move outside of the map. In this section, we focus on the first development iteration using DEv-PROMELA and our proposed V&V workflow. Readers should understand these steps are repeated for each set of specifications, until the game is fully developed. DUring this iteration, designers decided to focus on part related to character control. This character control involves three subsystems: characters in the gameplay layer, input manager in the engine layer, and the keyboard at the API level. Our iteration focus on these three components.

Specifications Phase

The first phase consists on analyzing the specifications selected for this iteration. Knowing the architecture of a game and the requirements, we can easily deduce some properties:

• The player controls one character with input coming from the keyboard. • A character can move in only one direction at time. • When a player places a bomb, its position is the same than the position of the player. • When a bomb blows up, all the walls around a finite radius explode. • The player have a finite number of lifes. • The game is over when the number of lifes is equal to 0. • Each bomb blows up after a finite number of seconds.

• The character moves with a constant speed.

• The character cannot move throw a wall.

Using these informal specifications, we can deduce that:

1. Bombs and characters can be considered as asynchronous processes which evolve in parallel. Moreover, we can describe their behaviours with a state machine.

2. Bombs and characters react to and emit events. Indeed, the character moves only when an event enforces it to move. Bombs are created when the player emits a bomb creation event, and blows after dt units of time.

Explosions involve modifications of the map. As a consequence, we can deduce that transition functions depend on time and events. 3. The map is a finite set of elements. Each element have a position which can be described by a couple (x, y) ∈ R × R. 4. The speed is a constant function. While the game is refreshed at each computed frame, the move equation is descretized and computed following the function:

pos(x, y, t + f t) = pos(x, y, t) + speed(x, y) * f t where f t is the elapsed time between two frames. Then, some properties can be expressed using Linear Temporal Logic (LTL). For instance, the fact that a player can move in only one direction at time:

((pos x (t + f t) = pos x (t)∧ pos y (t + f t) = pos y (t)) ∨ (pos x (t + f t) = pos x (t) ∧ pos y (t + f t) = pos y (t)))
While the positions are computed at each frame, we can store the old positions and the new positions in variables. At the end of the computation, the new state just needs to satisfy this property. 5. In the same way, we can check that a bomb will always blows up with a LTL property:

(blows up(n)) ∀n ∈ D (D ⊂ N)
where n is the id of a bomb.

Modelling Phase

The specifications phase shows that such a game can be pretty modelled using DEv-PROMELA, as each gameplay element can be expressed with discrete-event state machines that communicate each others (Figure 9). In this example, the gameplay layer is seen as a DEv-PROMELA program which receives events from the engine layer. The gameplay layer is a coupling of DEv-PROMELA subprocesses that are interconnected each others. This means that when a process emits an event, this one is transmitted to all the other processes.

Each gameplay element is then represented by a DEv-PROMELA atomic model. For instance, a playable character can be modelled with a state machine as shown in Figure 10. The character stays in the IDLE state until it receives an event that implies a move. Then, it stays in this new move state during dt units of time. This amount of time models the time needed to compute two consecutives frames, that is why there is an internal loop transition from each move state to itself. If an end move event is received, the state machine returns to the IDLE state. This DEv-PROMELA process thus models a kind of character controller. A syntactic version of the DEv-PROMELA model is given in Algorithm 7. This version is really close to any implementation language. Like said earlier, cposx, cposx1, cposy, cposy1 variables represent the position of the character computed at the previous frame and at the current frame. l.11 allows the process to evaluate the global state of the game. If the game is not finished, the state machine acts as expected: it stays in IDLE (l.12 to l.18) until an event is received. Otherwise, the move is updated at each dt units of time (l.21 to l.26). Finally, the posing bomb action is modelled (l.17 and l.19). For each gameplay element, a proctype block can be written in the same manner. Note that non-prefixed statements means that they correspond to states with a zero lifespan. This enforces the statement to be immediately executed.

At a lower level, we can also model the Input Manager (figure 11). This engine component translates each input keycode generated by the API layer to a an event that the character controller can understand. We can therefore consider the Engine layer as a DEv-PROMELA coupled model which is itself coupled to the DEv-PROMELA models that composed the Gameplay layer. In this design, the Input Manager is just a DEv-PROMELA atomic model as given in figure 12. The interpretation of the model is simple: when the player presses a key, the corresponding event is emitted to the Input Manager that immediately translates it into the corresponding action event. This does not mean that the Input Manager is coded using a State Pattern, but it just represents the fact that a program is a state machine. Therefore, a possible C++ implementation of this Input Manager could be the ones given in Algorithm 6. At this point, reader could thus ask why using DEv-PROMELA to model the Input Manager, while time does not seem to play a role in the implementation. As previously said, this model is not a translation of the source code, even we could also code an Input Manager using a State Pattern. In fact, this model illustrates the fact that DEv-PROMELA allows modeller to express the delay between the moment a key is pressed or released and the moment this event is translated into an event code, by setting the lifespan of the translation states (Left, Right, Up, Down, and Release). This can have an great impact on the other subsystems of the game, while we can therefore model a processing delay which can lead to performance issues in the final game. This is useful in the context of digital games, to introduce laggy scenarios for instance. Another advantage is that an input simulator can be easily implemented, while we just need to couple the input manager model with an input generator model. This generator can be modelled/implemented using any formalisms/language thanks to the DEVS Bus mechanism [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF][START_REF] Zeigler | Theory of Modeling and Simulation -Discrete Event and Iterative System Computational Foundations[END_REF]. • ltl {always(cposx >= 0 and cposx <= mapw) and (cposy >= and cposy <= maph)} checks that the character can't move outside the map. • etc.

All theses properties follow with the process models in the DEv-PROMELA specifications. When the model is fully written, the computerized verification and simulation models are automatically generated.

Implementation Phase

Design. During this first iteration, no design phase were needed, allowing designers to focus only on functional requirements. Indeed, non-functional requirements which support the computations are already integrated in the structure which support the simulation. Therefore, our threelayered architecture is implicitely generated by the coupling of the DEv-PROMELA models. While the simulation model is based on OOP, we don't need to overload a new design. However, complementary sequence diagrams or collaborative diagrams can be made if needed. Simulation Model Generation. Generation of the computerized simulation depends on the simulation library and framework which are used by the developer. Therefore, the DEv-PROMELA model is converted into a DEVS algebraic specifications which can then be encoded into any target simulators, for instance, into a XML format, JAVA classes, C++ classes, etc. Concerning OOP implementations of DEVS, many patterns have been proposed [START_REF] Hamri | The state event design pattern[END_REF][START_REF] Messouci | Conception par patrons des modèles à Evenements Discrets : de la Machine à états finis au DEVS[END_REF]. For this paper, we decide to use an implementation close to a game architecture (Figure 14). This architecture is based on an observer pattern and a state pattern Verification and Validation using Model Checking. Now both computerized model have been generated, we can use them to check properties. The first property we can verify concerns the flow of the state machine. If we check whether the state P OSE BOM B can be reached with the Algorithm 7, the model-checker ensures that it cannot be reached. Indeed, there is no statement that leads to this state. In the same manner, we can easily see that there is no test concerning the property that enforces the character to stay into the map. A counterexemple is generated showing that we have a scenario for which the absolute position can be greater than the size of the map. In the next iteration, we modify the model and we add these lines into the algorithm, in replacement of line 21:

:: if (cposx -dt * speed != mapw) -> cposx1 = cposx;....
This time, the checker ensures that the character cannot go out of the map. We check also if we can always reached the IDLE state from any move, and the checker ensures that is possible.

Verification and Validation using Simulation. When we complete the verification with simulation, we state that:

1. There exists scenarios in which the character leaves the map. In fact, this come from the fact that the modelchecking sees the time as ordered event, meaning it did not take into account the time elapsed between two frames. We can immediately fix this bug by replacing the previous fix with:

:: if (cposx -dt * speed <= mapw) -> cposx1 = cposx;....

2.

In the same manner, the simulation shows that, if the time scheduler is not well-formed, for example if dt = ∞, the model goes into an infinite loop. This loop was not captured by the checker because of the same fact: time is not seen as a quantitative dimension in modelchecking. 3. In the same manner, some counterexamples generated by the untimed model can be replayed in the timed model.

Finally, we can deduce that model-checking is useful for verifying and validating the flow and the bounds of values. Discrete-event simulation is useful for checking event properties and confirming the results given by the formal verification. Therefore, we can take benefits from the speed of untimed model-checking coupling the accuracy of simulation analysis.

Release Phase

Finally, in order to get the final character controller of our game, we need only to replace the DEVSCoordinator root instance by a real-time coordinator which handles the game loop. If the class inherits from the TimeScheduler class, the change is immediate according to the OOP best practices. This new class can be verified using traditional verification processes (unit tests and code review). In our specific exemple, this class corresponds to a function which returns immediately at each call. In this way, we reduce the development effort. It is interesting to note that during this first iteration no code was handwritten. Therefore, the code remains unchanged and we are sure that the software fulfills at least the checked properties. The final software then needs to be tested, analyzed, verified and validated using classical techniques (i.e. using approaches that are not model-based).

Experimental Evaluation and Comparison

This section introduces the experimental evaluation of the approach proposed in this paper. For this purpose, we compare two versions of the Bomberman. The first one is developped using our model-based engineering approach; the second one is developped using a classical software engineering development V cycle. The protocole of validation is then divided into multiple steps:

1. Writing the validation test scenarios which will be used for validating the two games; 2. Developping the two versions of the game; 3. Verifying the two programs using classical verification techniques and our approach; 4. Validating the two softwares using classical validation techniques and comparing results with simulation.

Write validation test cases

While we mainly focus on the development of the character controller and the input manager, we choose a set of fourty validation base tests relative to these both parts. These tests are written during the requirement analysis, and cover safety and liveness properties (Table 6). Particularly, we check for instance that the hero correctly responds to the input events, that the timed responses are always in an acceptable range, and that stressing the game does not create computational errors in the interpolated moves of the entities. These validation tests are then formalized using the linear temporal logic. We also verify by review that the requirements are correctly formalized.

For each timed tests, we also decide to introduce some random parametrizations; for instance, we make vary the speed or the acceleration of the characters, or make change the date of each event occurrence. The total set of validation tests has finally fourty different tests scenarios. Note that we consider the DEVS simulator and the SPIN modelchecker as verified and validated, so we do not perform the computerized model verification (Figure 6).

Pre-validation using DEv-PROMELA

The DEv-PROMELA models of the character controller and input manager are incrementaly built. At the end of each iteration, the model is checked against the fourty properties using both model-checking and simulation like previously presented. The models are refined until they all comply with the requirements. Figure 13 shows the number of fullfilled properties at the end of each iteration. Then, in our example, we need five iterations to ensure all the fourty properties Prepared using sagej.cls Each iteration corresponds to the implementation of specific groups of specifications, beginning with generic systems at the first iteration, and finishing by the gameplay implementation at the last iteration. In this case, the model is used as follow:

• Model-checking ensures that each instruction is reachable, and there is no deadlock between thread; in this case, model-checking is complementary to unit test; • Model-checking ensures that the parameters evolves under boundaries (each function respects pre-and post-conditions structurally); • Simulation allows checking of specific subpart of the parameter space: especially, we can generate long sequences of events, inputs and parameters variations (speed computation to check if long computation doesn't break the deadlock property, refresh rate, resources loading speed, functional parameters evolving outside of the expected boundaries, etc).

Verification of the derived software and the normal game

Concerning the model-based version of the game, its code is then derivated from the DEv-PROMELA simulation model. Verification is performed using classical methodologies including code review, static analysis using proofs, and unit tests. A DEv-PROMELA model is also regenerated from the code and compared with the results got from the previous steps, using model-checking and simulation. Concerning the normal version of the game, the code is reviewed using classical verification techniques only. The game is also reverse-engineered to produce a DEv-PROMELA model which is formally checked and simulated.

Table 3 summarizes the results between the three methodologies concerning our game. As expected, all the unit tests are successfully passed, including assertion violations. Completeness refers to the fact that the code responds to all the possible inputs defined in the specifications. Consistency refers to the fact that the code cannot produce contradictory behaviours. Unreachable states correspond to line of code which cannot be executed. As expected, classic verification techniques confirms what we expected: the obtained software behave as intended, while it was built from a simulation model. Table 4 summarizes the results concerning the normal game obtained by classic verification, model-checking and simulation.

First, as expected, we see difference between separate model-checking and simulation. The differences come from the fact that the model-checking cannot capture some time-dependant behaviours as we demonstrated in previous sections. In these cases, simulation gives another interpretation of the false positive errors found by the modelchecking. Second, we also see that the DEv-PROMELA Reverse Model allows us to find some inconsistent behaviours, which were not found using only tests. While tests are only focusing on prepared scenarios, modelchecking allows us to explore the statespace and check what kind of events can exactly occurs. Simulation then allows us to find false positive and false negative errors among the errors detected by the model-checking.

Validation of the derived software

Validation consists on testing our model-based game against the fourty test scenarios and comparing the results with the expected values and the values given in the first phase by the simulation. Moreover, we add 2332 random scenarios including random actions. The same evaluation is also done for the normal game. Table 5 summuarizes the results. As we see, concerning the validation tests, our DEv-PROMELA model-based game, like the simulation model, reach 100% of successfully validated test cases. While the model was developed using these validation tests, the results is normal. However, we see a difference between the simulation model and the DEv-PROMELA model-based game concerning the random tests. Even the results is greater that the normal game, 8% of these random scenarios lead to an inconsitent state. In most of the cases, these errors are related to communication between components which were not developed using our approach, for instance, synchronization between graphics component and the input manager. In these cases, simulation allows us to understand what exactly happens in the communication between each component, while formal validation using model-checking allows us to understand what exactly happens in the execution graph. As a conclusion, this paper introduced a new way for combining model-checking and discrete-event simulation for combined verification and validation procedures. This promising methodology is based on the building of a new formalism whose the foundations are a verifiable language, to which we add the semantics of a simulation language. As an example, we show how we built DEv-PROMELA from both PROMELA and the DEVS formalism. As a result, we see that formal verification can be used for verification and validation, and that simulation can complete the results obtained by model-checking. Indirectly this approach reduces the size of the checked statespace while formal verification and validation are not applied for checking the same requirements.

We then proposed a new Software Verification and Validation approach by introducing the use of our new modelling language in the developing process. As an illustration of such a methodology, we use DEv-PROMELA for modelling, verifying and validating a part of a video game. Because video games are essentially discrete-event systems, they are well suited for such kind of methods. Firstly, we show how requirements analysis motivates the choice of DEv-PROMELA as formal specifications and modelling language. We model each part of the game using DEv-PROMELA, allowing us to generate two computerized model: a formal verification model and a simulation model. Verification model is used for checking the global flow of the game, for instance to highlight unreachable states, while Simulation model is used for checking the timed behaviour and validating timed properties. Then, by changing the event scheduler into a real-time scheduler, we can obtain an implementation of the final game, which fulfills the verified and validated properties. This approach was already applied to other domains like manufacturing production lines, mobile adhoc network, resource sharing algorithms.

As a model-driven engineering approach, our proposed methodology suffers also from common issues of software engineering. Indeed, our methodology strongly remains dependant on test scenarios and experts, and the critical key remains the requirement/specification phase. Indeed, we can't completely ensure that all the relevant tests are performed during the cycle. For instance, if a requirement is not specified, there is no chance to check an nonexistent property. However, compared to current approaches, the use of formal verification and simulation early in the development allows designers to detect flaws and inconsistencies. Indeed, even if not perfect, the parameter space can be better explored during the investigation phase of the simulation. Additional work using machine learning and cognitive architecture which would help designers to generate relevant test scenarios for their models is interesting way to overcome these difficulties. Test-driven approaches could be also a way to reduce the dependency to scenarios, while the model would be written iteratively according to specific test cases.

Future works can concern improvement of the combination between simulation and model-checking, especially using simulation to narrow the searching statespace. This could make the formal verification faster. In the same way, we can study how modifying the SPIN model checker to take into account the abstract real value. This would prevent false errors returned by the checker and that are caused by the untimed level of abstraction. Another one could concern the study of the properties of the DEVS subclass generated by DEv-PROMELA, as we showed we can extend or reduce it using different simulation formalisms [START_REF] Yacoub | Restricting dev-promela with a hierarchy of simulation formalisms[END_REF]. Especially, we can formally demonstrate that DEv-PROMELA is an extension of PROMELA. Concerning our proposed V&V workflow, we didn't study in this work how we could integrate our methodology in agile methods. Indeed, V&V is a very consuming tasks, therefore it would be intersting to understand how they could be adapted in the case of a development following agile recommendations [START_REF] Huo | Software quality and agile methods[END_REF]. Finally, the main improvement is in the use of cognitive architecture and machine learning to overcome the needs of strong expertise. Indeed, research in empirical software engineering and datadriven approaches in machine learning suggests it would be possible to automatically generate relevant scenarios and test cases from an existing database, in order to target specifically incomplete specifications, or focus on specific cases in the experimental frame [START_REF] Traoré | Capturing the dual relationship between simulation models and their context[END_REF][START_REF] Nayrolles | Clever: Combining code metrics with clone detection for just-in-time fault prevention and resolution in large industrial projects[END_REF].

A c c e

 p t e d f o r P u b l i c a t i o n

A 1 :

 1 c c e p t e d f o r P u b l i c a t i o n ALGORITHM 1: A simple example of PROMELA program. int z = 1;

 y == 2) → y = 4;

 x == 2) → y = 4;

 <event stmnt> ::= "[" <timed trans> "]" <stmnt> | <stmnt> <timed trans> ::= <clt expr> | <evt expr> | <clt expr> <op> <evt expr> <clt expr> ::= "clt:" <real expr> "->emit:" <evt val> <evt expr> ::= "evt:" <evt val> [<op> <evt expr>] <op> ::= "|" <evt val> ::= <mtype> | "silent" <real expr> ::= <real> | "infinity" | / * Any C-function returning a real value * / Consider the following examples: 1. [clt: 3.0 → emit:newa] a = a + 10; 2. [evt:newb] b = a -b; 3. [clt:lifespan(c) → emit:newc | evt:newd] c = c * d;

ALGORITHM 3 :

 3 PROMELA conditional structure. 1: if 2::: (x == 2) → x = 3;

3 :Figure 1 .

 31 Figure 1. Structure generated by Algorithm 3 (on the left) and Algorithm 4 (on the right).

 A c c e p t e d f o r P u b l i c a t i o n ALGORITHM 4: DEv-PROMELA conditional structure. clt: 3.0 → emit:silent] (x == 2) → [clt: 0.0 → emit:newx] x = 3; 3: :: [clt: 1.3 → emit:silent] (y == 2) → y = 4; 4:

ALGORITHM 5 :

 5 DEv-PROMELA loop structure. 1: do 2::: [clt: 3.0 → emit:newx] (x == 3) → y + +;

3 :

 3 :: [clt: 1.3 → emit:newy] (y == 2) → break;4:od;Consider Algorithm 5. If the program is in a state (x = 3, y = 1), the first transition will be triggered after 3.0 units of time, leading to a new state (x = 3, y = 2). The next instruction y == 2 is then executed after a delay of 1.3 units of time.

 external transition partial function; • s 0 is the initial state; • F is the set of final states. Moreover, we define: Prepared using sagej.cls

A

 c c e p t e d f o r P u b l i c a t i o n ta :

Proposition 2 .

 2 A DEv-PROMELA program P r is a DEVS atomic model. Prepared using sagej.cls

A

 c c e p t e d f o r P u b l i c a t i o n

 The literature of Software Engineering, Software Verification and Validation, and Verification and Validation of Simulation Models proposes many workflows explaining the V&V procedures. The first one (figure2) shows clearly the difference between verification and validation. Verification processes overcome only during the development phases to check if the computerized program fulfills the development requirements. Validation is the process in which the final user tests the final software and checks if it meets its functional specifications. This means the validation steps are done only on the final software.

Figure 2 .

 2 Figure 2. Schema of V&V Process from [57].

Figure 3 .

 3 Figure 3. V-model representation from [59].

Figure 4 .

 4 Figure 4. V&V in Software Development Life Cycle proposed by [59].

Figure 5 .

 5 Figure 5. The Sargent Circle for V&V of Simulation Model [2].

Figure 6 .

 6 Figure 6. The Combined V&V Iterative Workflow. Orange dashed arrows represent cycles in model development or software development. Black dashed arrows represent checking tasks. Plain arrows represent artifacts generated at each stage of the workflow.

Figure 7 .

 7 Figure 7. Layered Architecture of a Digital Game.

A

 c c e p t e d f r P b l c a t i o n

Figure 8 .

 8 Figure 8. Bomberman, 1983.

 Prepared using sagej.cls

 A c c e p t e d f o r P u l i a t o n

Figure 9 .

 9 Figure 9. Example of a partial gameplay architecture with DEv-PROMELA. Not all the coupling have been represented.

Figure 10 .

 10 Figure 10. Example of a partial DEv-PROMELA process controlling a playable character. Not all the transitions have been represented. Dashed arrows represent internal transitions, while plain arrows model external transitions.

ALGORITHM 6 :

 6 A possible C++ implementation of the InputManager.

 A c c e p t e d f o r u b l i c a t o n

Figure 11 .

 11 Figure 11. DEv-PROMELA Architecture of the game. Black boxes correspond to DEv-PROMELA coupled model, blue boxes to DEv-PROMELA atomic model, and orange edges to events between the components.

Figure 12 .

 12 Figure 12. DEv-PROMELA atomic model of the Input Manager.

 [START_REF] Gamma | Design Patterns: Elements of Reusable Object-oriented Software[END_REF]. White classes are a part of a simulation framework which can be embbeded in the Engine Layer. The grey classes are the concrete classes realized in the Gameplay Layer. They embbed the code of the corresponding DEv-PROMELA simulation model.The DEVS model is therefore a composition of DEVSAtomic and DEVSCoupled instances. Each instance of them is a finite state automaton which aggregates concrete states. A state corresponds to an atomic statement of the DEv-PROMELA conceptual model. Then, a specific class for each real process is created (Character and Bomb). These classes inherit from DEVSAtomic. This part of this architecture represents the structural part of the model. Then, the semantics (i.e. the behaviour) is implemented by the classes DEVSCoordinator, on the one hand, which is a subclass of TimeScheduler, and DEVSSimulator on the other hand. The first one is responsible of handling time advance and events. It computes the next minimum event and notifies all the children (given by the composition of DEVSCoupled instances). The second one is responsible of generating the corresponding behaviour of each DEVSAtomic instance, meaning executed the code inside each concrete DEVS atomic model.Each LTL property generates also a DEVSAtomic subclass. In fact, while LTL properties are Buchi automata, they can be encoded into DEVS models. Instances of these classes are plugged to the global model for monitoring the global behaviour. If a property is violated, a specific error Prepared using sagej.cls

 A c c e p t e d f o r P b l i c a t i o nevent is emitted thanks to an assertion or any other exception mechanisms, and stops the simulation.

A

 c c e p t e d f o r u b l c a t i o n are correctly checked. Note that this step also allows a way to evaluate correctness, completeness and testability of the requirements. Validation corresponds to evaluation of fourty functional requirements as defined in the game design document:• Moves of the characters; • Collision detection; • Items generations; • Scoring system; • Artificial Intelligence system; • Graphics display and synchronization (use of the correct sprite and animation, verification of computation on variable refresh rate); • Sound synchronization; • Input synchronization.

Figure 13 .

 13 Figure 13. Pre-validation results.

 Prepared using sagej.cls

A

 c c e p t e d o r u b i c a t i o 6 Conclusion and Future Works

Figure 14 .

 14 Figure 14. Class Diagram of the Simulation Model.

A

 c c e p t e d f o r P u b l i c a t i o n

Table 1 .

 1 Advantages and Drawbacks of Formal-and Simulation-based V&V

		Advantages	Drawbacks
	Formal-based V&V	Explore the full statespace Non-deterministic model Simple analytic model: model is focused on what to be verified/validated	Related to statespace explosion problem (timed models are hard) Related to decidability problem : models must be finite or symbolically finite
	Simulation-based V&V	Separation between conceptual and imple-mented model Interoperability between simulation for-malisms, and between simulators is easier (thanks to the separation between the mod-els) Exsisting universal formalism and frame-work for modelling a large set of systems Deterministic model (well-known specifica-data, computations, etc.) Non-related to complexity (time, infinite tions)	Strongly depends on EF and scenarios No guarantee that the V&V is fully done V&V depends on the quality of the comput-erized model (the computerized model must also be verified and validated against the conceptual model)
	Combined V&V	Separation between conceptual and imple-mented model Structural static properties can be formally checking exploring the entire statespace Behavioural dynamic properties can be checked using simulation Hierarchical and modular constructions of the models make easier the analysis existing tools Makes easier the interoperability between	Cannot represent all existing systems (the model remains symbollically finite) Remains strongly dependant on experts, requirements, scenarios (parameter space can be fully explored, but it would take huge amount of time)
	• A robust V&V of models and systems can be achieved through a method based on the strengths of formal verification and simulation. In this approach, simulation and formal verification complete each other in the V&V processes. Model-Checking is used for verifying and validating some static properties like bounding values, structural deadlocks etc. in an untimed mode, while simulation is used for checking dynamic properties, behavioural deadlocks etc. in a timed mode; • Simulation formalisms can benefit from a clear syntax that makes easier the implementation of computerized models; • Unlike timed formal verification, the size of the statespace is subdued, and the expressiveness of the timed model is still preserved; • What which is checked, verified and validated is more clear: conceptual model, computerized model and real software are clearly separated in this approach. • The hierarchical construction reduces the complexity of the formal model, and the relevant parameter space is better targeted (analysis of the relevent properties makes easier the choice of the subspace in which the model is tested).	

Table 2 .

 2 A list of PROMELA basic datatypes.

	Type	Size (bits)	Value Range
	bit, bool	1	[0; 1]
	byte	8	[0; 255]
	mtype (constants)	8	[0; 255]
	short int	16 32	[-2 15 ; 2 15 -1] [-2 31 ; 2 31 -1]

 Proposition 3. A DEv-PROMELA program P r is legitimate if the DEVS equivalent model is legitimate. Because a DEv-PROMELA program can be simulated by a DEVS model, we can deduce all the properties of the program from the DEVS model. Particularly, a DEv-PROMELA program is legitimate if the DEVS equivalent model is legitimate. For example, if the DEVS model goes into an infinite loop of internal events where time does not advance beyond a certain point, we can deduce that the DEv-PROMELA program has the same behaviour.

 Then, the model is compiled with the SPIN modelchecker to generate the corresponding verification model. Explaning how the model is generated is outside of the scope of this paper, while we let the responsability of this generation to the model-checker. Note that a modification of the SPIN model-checker can be done to take into account the real abstract type. For the purpose of this paper, we assume that real values could be abstracted into integer values in the conceptual model.

	Verification Model Generation. The generation of the SPIN verification model is done in two steps:
	1. PROMELA equivalent specifications are generated from the DEv-PROMELA model. All the meta instructions are removed (Algorithm 8). 2.

Acknowledgements

This work is part of the R&D project "MAGE", from French "Investing for the Future" national program. We thank Bernard P. Zeigler and Chungman Seo for assistance and for comments that greatly improved work and the manuscript.

Author biography

Aznam Yacoub was a member of Laboratoire d'Informatique et des Systemes (LIS), Marseille, France. His research interests include software engineering, artificial intelligence, cognitive science and multimedia.

Maâmar El-Amine Hamri is an Associate Professor at Aix-Marseille University. He is also a member of Laboratoire d'Informatique et des Systemes (LIS), Marseille, France. He has been active for many years in Modeling and Simulation research area.

Claudia Frydman is a full Professor at Aix-Marseille University. She is also a member of the Laboratoire d'Informatique et des Systemes (LIS). She has been active for many years in knowledge management and currently her research is focusing especially on researches on knowledge-based simulation.

Appendices