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Growth in an OLG Economy with Polluting Non-Renewable

Resources?

Nicolas Clootens1

Abstract

This paper analyses the effects of flow pollution implied by the use of necessary

non-renewable resources, fossil fuel for example, on overlapping generations (OLG)

economies. Notably, it shows that, on the balanced growth path, flow pollution

reduces the (negative) resources contribution to growth and increases resources con-

servation, capital accumulation, and growth. Flow pollution thus increases the ability

of an economy to sustain a non-decreasing consumption path. Some of the results are

due to (or magnified by) the OLG structure of the economy. In addition, the paper

highlights the need for public intervention and shows that the optimal allocation may

be decentralized using a tax on resources use and transfers.

Keywords: Non-renewable Resources; Growth; Pollution; Overlapping Generations

JEL Codes: Q32; Q38; Q53

1. Introduction

Since the two first industrial revolutions, economic development has been per-

mitted by the consumption of large quantities of oil, coal, gas, and non-renewable
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resources in general. Because those resources are finite, the feasibility of long-run

growth is often questioned. In the 1970s the Club of Rome alerted general audi-

ence on the physical ”limits to growth” (Meadows et al. , 1972). The pessimistic

Malthusian point of view adopted in this report has been challenged by neoclassi-

cal economists: thanks to technological progress, increasing returns, and substitution

possibilities between non-renewable resources and man-made capital, long-run eco-

nomic development might be feasible (Dasgupta & Heal, 1974, 1979; Solow, 1974;

Stiglitz, 1974). More recently, the general audience’s attention is being focused on

pollution issues. These issues are related since a wide part of emissions is linked

to resources use or extraction. A better understanding of the interactions between

pollution, resources use and economic development is needed.

In this paper, I propose an overlapping generations model in which emissions are

the byproducts of non-renewable resources use or extraction. The non-renewable

resources are held by young households and are necessary for production, but their

use is associated with a flow of emissions that affects the current factor productivity.

Each generation is selfish and doesn’t take into account the loss in natural capital its

economic activities impose on future generations.

The model highlights the central roles played by flow emissions on sustainability.

Because the economy is made of selfish overlapping generations, the labor share of

income has to be high enough to ensure the feasibility of a non-declining consumption

path (Agnani et al. , 2005). If the labor share is not high enough, savings (and

thus capital accumulation) cannot be sufficient to compensate for resources depletion.

The flow emissions associated with resources extraction and use allow to soften this

constraint. Because of the OLG demographic structure, there is room for policy

intervention. The role of the policy maker is to decentralize the optimal allocation,

which is determined in a way that reflects inter-generational fairness.

The first contribution of this paper is to highlight that the detrimental effects that

pollution may have on current factor productivity enhances the ability of the economy
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to sustain a non-decreasing consumption path. The more the pollution affects factor

productivity, the larger is the long run rate of growth. The combination of three ef-

fects allows to explain this result. Firstly, because resources are non-renewable, they

have a negative growth contribution in the long-run, due to the necessity to compen-

sate for resources depletion. Because resources are the source of pollution, the more

pollution affects current factor productivity, the less is this negative contribution,

and the larger is the long-run rate of growth. To put it differently, the net resources

contribution to growth, which is negative (resources extraction must be decreasing in

the long-run), is reduced by the adverse effect of pollution on productivity. Secondly,

because the detrimental effect of pollution causes higher growth, the marginal pro-

ductivity of resources increases faster, and so do resources prices. Natural resources

constitute an asset in which young households can invest to finance their old age. If

resources prices increase faster, the incentives in investing in resources is stronger,

enhancing resources conservation. Finally, because households can invest in resources

or physical capital, the returns provided by both assets should be the same to pre-

vent arbitrage possibilities. Thus, resources prices have to increase at the interest

rate. When the detrimental effect of pollution increases, the marginal productivity of

capital increases, which gives incentives to households to save in physical capital. To

summarize, when pollution impacts on productivity are stronger, the net resources

contribution to growth is reduced, extraction and consumption are postpone, and

capital accumulation increases.

The second contribution of this paper is to highlight the role that policy interven-

tion can play. The existence of a finite asset (the resource) banishes the possibility of

capital over-accumulation, which is usual in OLG models. Thus, dynamic inefficiency

is ruled out. The model also include an environmental externality, but the specific

flow pollution which is considered here does not call for public intervention. Because

it is a flow, its effects are not persistent: the generation that pollutes is affected by

its own emissions. In addition, it is the extraction and use of resources by firms that
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affects the productivity of firms. Because we are considering a representative firm,

it is affected by its own emissions. Thus, the allocation reached by the market is

Pareto-Efficient. Finally, the role of the policy maker is to decentralize the (utilitar-

ian) optimal allocation, which is determined in a way that reflects inter-generational

fairness. I characterize the tax that allows the optimal allocation to be decentralized.

The paper is related to the seminal papers of Stiglitz (1974), Solow (1974), and

Dasgupta & Heal (1974, 1979) that have highlighted the importance of (exogenous)

technical progress, increasing returns and substitution possibilities between man-

made and natural capital in order to surpass the problem of resources depletion.

Those authors use the infinitely-lived agents (ILA) framework but this choice is not

without consequences. In ILA models, agents are implicitly assumed to be intergen-

erationally altruistic. More precisely, the ILA framework assumes a dynastic altruism

where parents are able to maximize the welfare of their children. Such an altruism

is not supported by empirical results (Altonji et al. , 1992) and makes a sustainable

management of resources more probable: since current generations take care of future

ones, they are more likely to preserve the resources stock or to invest the rent in order

to promote a decent standard of living for future generations following the so-called

Hartwick’s rule (Hartwick, 1977). Agnani et al. (2005) address this shortcoming

and use the overlapping generation (OLG) framework, in which each generation is

supposed to be perfectly selfish, to study the sustainability of growth with natural

resources. They show that the labor share has to be large enough to allow for a

positive balanced growth rate. I add to their paper considering the fact that natu-

ral resources are polluting. In the present paper, the focus is on the specific effects

induced by a flow pollution seen as a byproduct of resources use or extraction. In

addition, I show how policy intervention could be used to fit with inter-generational

fairness objectives, and I analyze the dynamical properties of the model.

This paper is also related to the literature on the growth/pollution nexus in over-

lapping economies. Pollution is often modeled as a stock increasing with total output
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(Jouvet et al. , 2010), consumption (John & Pecchenino, 1994), or capital stock

(Gradus & Smulders, 1993). In opposition, few papers have introduced pollution as

resulting from resources extraction and/or resources use in the production process.

A notable exception is Babu et al. (1997) but they focus on Pareto-efficiency and

are not interested in feasibility of long-run growth.2 While the literature usually con-

centrates on stock pollutants, I introduce pollution as a flow affecting current factor

productivity. This assumption shouldn’t be shown as restrictive: there exist numer-

ous pollutants with short lifetime (sulphur, black carbon, fine air particulate, nitrogen

dioxide, tropospheric ozone...) which may be considered as flow pollutants, especially

in the OLG framework where a period accounts for 25-30 years. Those pollutants are

known to have effects on health (and thus on worker productivity), land productivity,

and may affect negatively plants (through acid rain for example). Nevertheless, the

impacts of flow emissions on the economy has known little attention from economists.

In addition, in the very long run and abstracting from emission ceilings, the results

given in the present paper might be robust to the consideration of stock pollutants:

emissions are caused by natural resources which tends to be exhausted so that new

emissions tend toward zero which allows the natural absorption to overcompensate

new emissions : a stock pollutant will behave like a flow in the very long-run. A

general equilibrium model where flow pollution is seen as the result of resources ex-

traction may be found in Schou (2000, 2002). However, this author uses an ILA

framework. The consideration of an OLG economy allow us to obtain new effects on

savings in capital and resources. More importantly, it allows to show that there is

room for policy intervention, which appears unnecessary in an ILA economy (Schou,

2000, 2002).

The rest of the paper is organized as follows. Section 2 presents the decentral-

ized economy, section 3 develops the Ramsey economy, section 4 is devoted to the

2I focus here on general equilibrium literature. There also exists an extensive literature that

focuses on the exhaustible-resources/pollution problem (see for example Withagen, 1994).
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decentralization of the Ramsey optimal allocation while section 5 concludes.

2. The decentralized economy

2.1. The model

I use the two-period OLG model with one representative good of Agnani et al.

(2005). Agents are alive for two periods. For the sake of simplicity, no demographical

growth is assumed and the size of the working force is normalized to one.3

2.1.1. The resource

The economy is initially endowed with a quantity m−1 of necessary non-renewable

resources held by the first generation of aged agents. At each date t, elderly agents

sell their resources share to the young generation and a quantity xt of the resources

is used in the production process and generates an environmental externality. The

resources stock in t is thus denoted by mt = mt−1−xt and it belongs to the generation

t. The rate of exhaustion of the natural asset is:

qt =
xt
mt−1

(1)

The dynamics of the per worker resources stock is thus:4

mt = (1− qt)mt−1 (2)

It leads, associated with the non-renewability of the resources, to the exhaustibility

condition:

1 ≥
+∞∑
t=0

qt

t∏
j=1

(1− qj−1) (3)

3Lowercases represent per worker variables.
4It may also be interpreted as resources market clearing condition as in Agnani et al. (2005).
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2.1.2. The consumers

Agents are alive for two periods and maximize the following log-linear utility

function:5

u(ct; dt+1) = ln(ct) +
1

1 + ρ
ln(dt+1) (4)

where c represents the consumption while young, d the consumption while old, and

ρ is the individual rate of time preferences.

In its first period of life, the agent works and earns a wage wt which may be

consumed ct, saved as physical capital st, or used to buy property rights on the

resources stock mt at a price pt in terms of the representative good. His/her first

period budget constraint is:

wt = ct + st + ptmt (5)

While old, the agent gets his/her savings increased at the interest rate, and he/she

sells his/her resources rights at a price pt+1. His/her second period budget constraint

is:

dt+1 = (1 + rt+1)st + pt+1mt (6)

Combining (5) and (6), the following inter-temporal budget constraint can be

obtained (IBC hereafter):

wt = ct +
dt+1

1 + rt+1

− pt+1mt

1 + rt+1

+ ptmt (7)

The maximization of utility with respect to mt, ct, dt+1 subject to the IBC leads to

the following first order conditions:

dt+1

ct
=

1 + rt+1

1 + ρ
(8)

pt+1

pt
= 1 + rt+1 (9)

5The consideration of a more general CES utility function doesn’t affect the guidelines given in

this paper.
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(8) is the standard Euler equation which established that the marginal rate of substi-

tution between consumption while young and consumption while old has to be equal

to their relative price. (9) is the well known Hotelling’s rule, i.e. a non-arbitrary

condition between the two assets in this economy, capital and resources, which estab-

lished that the resources price increases at the interest rate.

2.1.3. The firms

Firms produce the representative good Yt using a Cobb-Douglas technology. They

use capital Kt, labor Nt, and resources Xt, with constant returns to scale for a given

level of technology At, which grows at an exogenous rate a such that:

At+1 = (1 + a)At (10)

The extraction and use of the resources in the production process generate a flow of

pollution et such that:

Et = φXt (11)

Pollution resulting from the use of the resources in the production process generates a

productivity loss. The consideration of flow pollution is not so reductive: there exists

a wide variety of pollutant with short lifetime that may cause productivity losses.

For example sulfur dioxide resulting from the burning of fossil fuel is a major cause

of acid rain. Tropospheric ozone resulting from fossil fuel burning6 generates health

issues that may affect directly the productivity of workers (Zivin & Neidell, 2012).7 θ

captures the detrimental impact of pollution on the level of production. Nielsen et al.

(1995) and Schou (2000) model the detrimental effect from pollution on productivity

in the same way. The production function is thus Yt = AtK
α
t L

β
tX

ν
t E
−θ
t which gives

6More precisely, ozone is produced through the interaction of nitrogen dioxide with dioxygen and

sun.
7An effect of pollution on health also affects agents utility and would be better modeled if also

introduced in the utility function. For the sake of simplicity, I do not consider the impact of pollution

on utility which could be analyzed in future research.
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in per worker variables:

yt = Atk
α
t x

ν
t e
−θ
t (12)

with α + β + ν = 1. Thus, the model assumes constant returns to scale from the

firm point of view. Indeed, the environmental externality is not taken into account

by individual firms but they consider the aggregated level of pollution as given while

they decide their production plans.8

Capital is remunerated at the interest rate rt and depreciates at a rate δ over the

period. Firms pay a wage wt to their workers and buy the natural input at its price

pt. The profit of the representative firm is thus:

Πt = Atk
α
t x

ν
t e
−θ
t − (rt + δ)kt − wt − ptxt (13)

The focus is put on the case θ < ν and ν and θ are both positive. That is, for

an identical amount of resources and emissions, I assume that the positive impact

of resources on income outweighs its negative one. A similar assumption may be

found in Schou (2000), where pollution is also seen as a flow. The standard profits

maximization leads to the following first order conditions:

rt = αAtk
α−1
t xνt e

−θ
t − δ (14)

pt = νAtk
α
t x

ν−1
t e−θt (15)

wt = βAtk
α
t x

ν
t e
−θ
t (16)

Each factor is thus remunerated at its marginal productivity.

From equation (14)-(16), it appears that a decrease in the level of emissions in-

creases the marginal productivity of production factors. Such a decrease is condi-

tioned to a reduction of resources use. A reduction of resources use cause an increase

in the marginal productivity of resources and a decrease in the marginal productivity

of other factors.

8This is consistent for global pollution. Results and insights given in this paper are not qualita-

tively affected if one consider local pollution.
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2.2. Intertemporal Equilibrium and Balanced Growth Path

The economy produces a representative good which may be consumed or saved as

physical capital. Following Diamond (1965), the good market clearing condition is:9

st = kt+1 (17)

Lemma 1. An intertemporal competitive equilibrium is a solution of the following

system for k0,m−1,m0 given

kt+1 =

[
β

2 + ρ
− νmt

mt−1 −mt

]
(1 + a)tkαt (mt−1 −mt)

ν−θφ−θ (18)

(1 + a)kαt+1(mt −mt+1)
ν−θ−1

kαt (mt−1 −mt)ν−θ−1
= 1 + α(1 + a)t+1kα−1t+1 (mt −mt+1)

ν−θφ−θ − δ (19)

Equation (18) comes from the combination of the market clearing condition with

the intertemporal budget constraint while equation (19) comes from the Hotelling

rule.

This paper mainly focuses on balanced growth path because they constitute the

only cases where long-run positive growth is possible, as noted in Agnani et al. (2005).

Moreover, it is in accordance with stylized facts of growth literature.

Definition 1. An intertemporal equilibrium where all variables grow at a constant

rate is defined as a balanced growth path (BGP hereafter).

Let µh be the BGP notation of the ratio ht+1/ht. According to definition 1, µm

should be constant. Thus, (2) implies a constant rate of extraction along the BGP,

i.e. qt = qt+1 = q. The system represented in Lemma 1 allows to characterize the

BGP of this economy.

Proposition 1. The balanced growth path of the economy exists, is unique, and is

9Proof is reported in Appendix A.
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characterized by the following growth factors:

µy = µk = µc = µd = µs = µw = µ = (1 + a)
1

1−α (1− q)
ν−θ
1−α

µx = µm = µe = 1− q

µp =
µ

µx

µA = 1 + a

µr = 1

and q satisfying the following non-linear equation:

(1 + a)
1

1−α (1− q)
ν−θ
1−αα(2 + ρ)q

βq − ν(1− q)(2 + ρ)
=

(1 + a)
1

1−α (1− q)
ν−θ
1−α

1− q
− (1− δ) (20)

Proof. Proof is reported in Appendix B.

From proposition 1, it appears that a higher extraction rate is associated with a

lower growth while looking at (1) and (12), an increase in q implies a higher income.

It is thus necessary to distinguish between short and long run impacts of a higher

extraction rate. In the short run, an increase in q, ceteris paribus, implies an increase

of one input in the production process. Current production thus increases. Never-

theless, it will be harder to maintain this level of production, because less natural

resources are available to produce. In the long run, the higher the extraction rate, the

more the economy needs capital to compensates for resources depletion. The pressure

on natural resources thus limits future growth possibilities.

2.3. Local dynamics

Noting that

(1 + a)tkα−1t (mt−1 −mt)
ν−θφ−θ =

1

α

[
(1 + a)µαk,t

[
qt(1− qt−1)

qt−1

]ν−θ−1
− 1 + δ

]
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and taking the ratio of equation (19) evaluated in both t and t+ 1, the system given

in Lemma 1 may be written in growth factors :
µk,t+1 = 1

α

[
β

2+ρ
− ν(1−qt)

qt

] [
(1 + a)µαk,t

[
qt(1−qt−1)

qt−1

]ν−θ−1
− 1 + δ

]
(1 + a)µα−1k,t+1

[
qt+1(1−qt)

qt

]ν−θ
=

(1+a)µαk,t+1

[
qt+1(1−qt)

qt

]ν−θ−1
−1+δ

(1+a)µαk,t

[
qt(1−qt−1)

qt−1

]ν−θ−1
−1+δ

Then, defining zt+1 = qt, the system may be written as follows

µk,t+1 = 1
α

[
β

2+ρ
− ν(1−qt)

qt

] [
(1 + a)µαk,t

[
qt(1−zt)

zt

]ν−θ−1
− 1 + δ

]
(1 + a)µα−1k,t+1

[
qt+1(1−qt)

qt

]ν−θ
=

(1+a)µαk,t+1

[
qt+1(1−qt)

qt

]ν−θ−1
−1+δ

(1+a)µαk,t

[
qt(1−zt)

zt

]ν−θ−1
−1+δ

zt+1 = qt

Linearizing this system around the BGP, we get
dµk,t+1

dqt+1

dzt+1

 =


A B C

A(G−D)+H
E−I

B(G−D)+J−F
E−I

C(G−D)+K
E−I

0 1 0



dµk,t

dqt

dzt


where

A =
(
βq−ν(1−q)(2+ρ)

(2+ρ)q

)
1

1−q G = α−1
µ

(
µ

1−q − 1 + δ
)

B =
(
βq−ν(1−q)(2+ρ)

(2+ρ)q

)
µ(ν−θ−1)
(1−q)qα + ν

αq2

(
µ

1−q − 1 + δ
)

H = α
1−q

C = −µ(ν−θ−1)
(1−q)2qα

(
βq−ν(1−q)(2+ρ)

(2+ρ)q

)
I = ν−θ

q

(
µ

1−q − 1 + δ
)

D = α
1−q J = (ν−θ−1)µ

q(1−q) −
ν−θ
q(1−q)

(
µ

1−q − 1 + δ
)

E = (ν−θ−1)µ
q(1−q) K = − (ν−θ−1)µ

q(1−q)2

F = − (ν−θ−1)µ
q(1−q)2

The model has been calibrated with the following annual rates : a = 0.028, δ = 0.027,

ρ = 0.016. We assume that one period account for 25 years and we take α = 0.3, β = 0.65,

ν = 0.05 and θ = 0.5ν. It follows that q ≈ 0.39 and µ ≈ 2.63. With these values, it appears

that the system exhibits saddle-path stability. Indeed, our system include two predeter-

mined variables and one forward looking variable, and we obtain only one eigenvalue with
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absolute value larger than one.10 Sensitivity analysis has been performed and this result

appears very robust.

2.4. The impact of flow pollution on sustainability

In this work, I define sustainability as the ability of the economy to sustain a non-

declining balanced consumption path. The economy will contract if 1− (1 + a)
1

θ−ν < q̂ i.e.

if β < (1+a)
1

θ−ν (2+ρ)ν

1−(1+a)
1

θ−ν
≡ l(θ). This condition is less likely to be satisfied when θ increases.

Proposition 2. The detrimental effect of pollution on production enhances sustainability.

Proof. ∂l(θ)
∂θ < 0

In addition, it can be shown that an increase in θ causes a higher growth.

Proposition 3. When pollution hurts productivity more severely, growth is higher.

Proof. See Appendix C.

Proposition 2 may be seen as a consequence of Proposition 3. Indeed, if growth in-

creases, the ability of the economy to sustain a non-declining consumption path increases

too because consumption increases at the economy rate of growth. Prima facie, these two

propositions may appear puzzling. Nevertheless, they can be simply explained as the com-

bination of three effects. Firstly, for a given extraction rate, an increase in θ causes a

decrease in the importance of resources for growth. That is, when θ increases, it dimin-

ishes the adverse effect of growth imposed by the necessary decreasing resources extraction.

To put it differently, θ diminishes the net resources contribution to growth and thus its

implicit negative contribution. Secondly, an increase in θ diminishes resources extraction.

Indeed, we have just seen that an increase in the detrimental effect of pollution causes

higher growth, all been equal. The marginal productivity of resources thus increases faster,

and so do resources prices. This provide an incentive for households to buy more resources

while young to finance their old age, which reduces resources extraction. Thirdly, capital

10Simulated eigenvalues of the Jacobian Matrix are 2.33176, 0.30094, 0.
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accumulation is enhanced by an increase in θ, because equation (9) established that the re-

turns of capital has to equalize the returns of resources to avoid any possibility of arbitrage

between the two assets. Households thus increase their savings in capital. To summarize,

when pollution affects productivity more severely, resources are less important for growth,

households postpone consumption while young at the benefit of old age consumption by

investing in both resources and capital so that resources are used in smaller amounts, and

capital accumulation is enhanced.

3. The Ramsey Economy

3.1. The Model

The present section is devoted to the presentation of the Ramsey economy. We assume

that the economy is managed by a benevolent social planner which has to maximize the

welfare of the dynasty of households. Thus, the planner takes care of both present and

future generations. Since each generation prefers present than future consumption, future

consumption is discounted at a rate ρ (as in the decentralized economy). ρ is thus an

intragenerational discount rate that represents preferences of households. In addition, the

planner could decide to attach different weights to different generations in its objective

function. This possibility is captured by the parameter γ which is the social discount

rate. Here, this rate reflects solely the weight that the central planner attaches to each

generation and can be seen as an intergenerational discount rate. There exist great debates

in the literature on the value of such a rate. One may argue that the central planner

shouldn’t favor closer in time generation. In such a case, the policy maker should choose

γ = 0 (Ramsey, 1928; Pigou, 1932; Solow, 1986). Nevertheless, the uncertainty about future

economic conditions argue for positive discount rate. For example, our framework is not

robust to the existence of a backstop technology that may appear in the future and which

will modify the production function (resources may become unnecessary in the future).

Since this is likely to happen in the very long run, a positive social discount rate allows

to avoid an overweighting of distant generations’ welfare. Moreover, the existence of far

distant generations is not guaranteed.
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The planner has to solve the following Ramsey problem:

max
{ct;dt;Mt;kt;et}∞t=0

=
1

1 + ρ
ln(d0) +

∞∑
t=0

1

(1 + γ)t+1

[
ln(ct) +

1

1 + ρ
ln(dt+1)

]
(21)

subject to :

yt = Atk
α
t x

ν
t e
−θ
t (22)

yt = ct + dt + kt+1 − (1− δ)kt (23)

At+1 = (1 + a)At (24)

et = φxt (25)

mt = (1− qt)mt−1 (26)

xt = qtmt−1 (27)

m−1 =
∞∑
t=0

qtmt−1 (28)

k0, m−1, e−1, A0 > 0 (29)

where γ is the social discount rate. (22) represents the production function. (23) estab-

lished that the economy consumes or invests exactly its net production in each period. (24)

represents the exogenous technological progress. (25) is the emissions implied by the re-

sources use while (26) and (27) represents the dynamics of the resources. (28) is a total

exaustibility condition for the resources while (29) represents initial endowments.

The first order conditions of the previous problems may be reduced to:

1 + γ

1 + ρ
=
dt
ct

(30)

(1 + ρ)
dt+1

ct
= αAt+1k

α−1
t+1 x

ν
t+1e

−θ
t+1 + 1− δ (31)

At+1k
α
t+1x

ν
t+1e

−θ
t+1(νx

−1
t+1 + φθe−1t+1)

Atkαt x
ν
t e
−θ
t (νx−1t + φθe−1t )

= αAt+1k
α−1
t+1 x

ν
t+1e

−θ
t+1 + 1− δ (32)

lim
t→∞

(
1

1 + γ

)t kt+1

ct
= 0 (33)

(30) is an intergenerational optimality condition establishing that the marginal rate of sub-

stitution between consumption of young and old has to be equal to one. (31) is an intragen-

erational optimality condition which states that the marginal rate of substitution between
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consumption while young and consumption while old has to be equal to the marginal prod-

uct of physical capital net of depreciation. (32) characterizes the optimal inter-temporal

resources allocation which indicates that the depletion of the resources stock implies an im-

plicit return equal to the physical capital return. This condition implies that the economy

should satisfy the Hotelling rule. (33) is the transversality condition associated with the

planner’s problem.

Combining (22)-(33) one can define the balanced growth path of this Ramsey economy.

Proposition 4. The optimal balanced growth path is defined by the following growth rate:

µ̃y = µ̃k = µ̃c = µ̃d = µ̃ = (1 + a)
1

1−α (1− q̃)
ν−θ
1−α

µ̃x = µ̃m = µ̃e = 1− q̃

µ̃A = 1 + a

and q̃ = γ
1−γ .

Proof. Proof is reported in Appendix D.

The optimal extraction rate only depends on the social rate of time preference. To

put it differently, the Ramsey economy follows a path that depends on the central planner

trade-off between generations. A higher social preference for the present implies a higher

depletion rate of the resources stock, and a lower growth. On the contrary, a society which

strongly cares about future generations is more conservative and achieve a larger rate of

growth in the long run, because it preserves its resources stock. To decentralize the optimal

balanced growth path, a government should find an instrument able to put the extraction

rate at the optimal level γ/(1 + γ), keeping the rate of growth of other variables at their

optimal level. In section 4, it will be shown that the optimal balanced growth path may be

decentralized using a tax.

Before looking at the decentralization of the Ramsey optimal allocation, one should

analyze how changes in θ affects the optimal balanced growth path.

3.2. Comparative statics

This section analysis how movements in θ impact the optimal rate of growth.
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Proposition 5. The optimal long run rate of growth increases with the detrimental effect

of pollution.

Proof.

∂µ̃

∂θ
= −(1 + a)

1
1−α (1− q̃)

ν−θ
1−α log(1− q̃)

1− α
> 0 (34)

As in the decentralized economy, θ diminishes the net resources contribution to produc-

tion. When time goes by, the resources, which are not reproducible, are used in ever small

amount. Their necessity in the production process thus imposes a negative drag on growth

because an increasing share of the capital stock is used only to compensate for resources

depletion. When θ increases, it decreases the detrimental effect of natural resources on

growth caused by the need to keep diminishing resources extraction. That leads to a higher

growth rate of the economy. However,contrary to what happens in the market equilibrium,

the rate of resources extraction doesn’t depend on θ but only depends on the social rate

of time preference. Indeed, the central planner manage resources in a way that reflects its

intergenerational preferences : since its preferences are not impacted by a change in θ, there

is no reason for the rate of resources extraction to be impacted. Finally, combining (31)

and (32), we get:

(1 + ρ)
dt+1

ct
=
At+1k

α
t+1x

ν
t+1e

−θ
t+1(νx

−1
t+1 + φθe−1t+1)

Atkαt x
ν
t e
−θ
t (νx−1t + φθe−1t )

(35)

Evaluating the right hand side of (35) at the BGP, we can write:

(1 + ρ)
dt+1

ct
= (1 + a)µ̃kµ̃

−1
x (36)

Since µ̃x ∈ (0, 1) is not affected by a change in θ, one can infer that an increase in θ causes

an increase in the right hand side of the last equation, which represents the rate of return of

capital (and resources) on the BGP. It means that, on the BGP, an increase in θ provokes

a decrease in present consumption at the benefit of future consumption. Each generation

thus consume less while young and a greater share of national income could be devoted to

capital accumulation, leading to a higher growth.
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4. Decentralizing the Ramsey optimal balanced growth path

OLG model with a pollution externality are often associated with two market failures.

The first one linked to the pollution, the second one linked to the demographic structure

of the OLG economy. Concentrating on BGP, it appears from propositions 1 and 4 that

pollution doesn’t distort the economy because the flow pollution I am considering evolves

at the extraction rate. In addition, because pollution is not persistent, the generation that

pollutes suffers from its own pollution in the form of lower income. OLG economies are also

known to allow for possible capital overaccumulation, which enables the implementation of

Pareto improving policies. Nevertheless, Rhee (1991), and Gerlagh & Keyzer (2001) have

shown that OLG economies endowed with finite non-renewable resources are efficient in

the Pareto sense, and this results is robust in the model I am using here (Agnani et al. ,

2005). Finally, in the present paper, the need for public intervention comes from the fact

that the present generation doesn’t take into account the negative externality its resources

use today imposes on future generation in the form of a lower resources stock. The aim of

public intervention is thus to solve an intergenerational equity problem.

The aim of the present section is to propose a policy that is able to decentralize the

Ramsey optimal allocation for a given social discount rate calibrated by the policy maker

to reflect intergenerational fairness. Looking at proposition 1 and 4, it immediately appears

that decentralization of the BGP requires to put the market extraction rate at its optimal

level q̃ = γ/(1−γ) letting other growth determinants unchanged.11 This may be performed

using a tax.

Let’s assume that the government tax the resources use at a rate τt. Equation (15)

becomes:

pt + τt = νAtk
α
t x

ν−1
t e−θt (37)

The tax is redistributed to the young generation as a transfer gt such that the government

11Results obtained in this section only apply to the BGP and should not be translated outside.
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budget is balanced:12

τtxt = gt (38)

The budgetary constraint of the young agent (5) is thus modified as follows:

gt + wt = ct + st + ptmt (39)

Proposition 6. If the tax and the resources price increase at the same rate, the balanced

growth path of the economy is defined as in proposition 1.

Proof. Proof is reported in Appendix E.

Decentralization of the optimal balanced growth path thus requires to find the tax level

that enforces q∗ = q̃. In the presence of a tax on resources, equation (18) writes :

kt+1 = Atk
α
t x

ν
t e
−θ
t

[
β

2 + ρ
− ν(1− qt)

qt

]
+

τtxt
2 + ρ

(40)

Dividing both side by kt, it leads to:

µk −
τtxt

(2 + ρ)kt
= Atk

α−1
t xνt e

−θ
t

[
β

2 + ρ
− ν(1− qt)

qt

]
(41)

Since the tax and the resources price increase at the same rate, the fiscal revenues grow at a

rate µxτ = µk, and τtxt/kt is constant on the BGP. Let ξ denote this constant. Evaluating

(40) on the BGP leads to:

(1 + a)
1

1−α (1− q)
ν−θ
1−αα(2 + ρ)q − ξαq

βq − ν(1− q)(2 + ρ)
=

(1 + a)
1

1−α (1− q)
ν−θ
1−α

1− q
− (1− δ) (42)

It follows that the optimal tax is such that:

ξ̃ = − [(1 + a)
1

1−α (1− q̃)
ν−θ
1−α−1 − (1− δ)][βq̃ − ν(2 + ρ)(1− q̃)]

αq̃

−(1 + a)
1

1−α (1− q̃)
ν−θ
1−α (2 + ρ)

(43)

where it should be recalled that q̃ = γ/(1− γ).

12Considering that the tax is invested and then redistributed to old households leads to the same

results.
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Proposition 7. The optimal balanced growth path may be decentralized using a tax such

that ξ = ξ̃.

Calibrating the model with annual discount rates of a = 0.028, δ = 0.027, ρ = 0.016,

ν = 0.05, α = 0.3, β = 0.65, and θ = 0.01, we can characterize ξ̃ for different level of

γ. With the above calibrated values, a negative taxation (i.e. subvention) for resources

extraction is required for an annual discount rate of γ > 0.0202. As previously discussed, a

reasonable value for γ is such that 0 < γ < ρ. A subvention becomes necessary when the

social planner preferences are oriented in favor of close in time generations, such that he or

she considers that current generations are too conservative. In such a case, the policy maker

should subvention the resources use, provoking a decrease in the rate of growth. In case of

very strong social preference in favor of present, the rate of growth may become negative,

leading to (optimal) extinction. This little simulation exercise shows that for reasonable

annual social discount rate values, policy makers should implement a tax on fossil resources

use. In this model with flow pollutants, this tax also helps to fight against pollution and

may also be qualified as an environmental tax.

5. Conclusion and general discussion

In this paper, it is shown that a flow pollution resulting from resources extraction

and affecting current factor productivity could help the economy to reach a non-declining

consumption path, because the net resources contribution to growth is low (as in Schou

(2000) but also because resources use diminishes and capital accumulation increases with

the intensity of pollution effects, thanks to increases in the interest rate and in the resources

price rate of growth on the balanced growth path. I also analyze the ability of a tax to

decentralize the optimal allocation. The differences between the optimal allocation and the

decentralized allocation come from the fact that the central planner takes into consideration

the welfare of unborn generations. A tax on resources use redistributed to the young as

a transfer allows to decentralize the Ramsey optimal equilibrium, modifying the rate of

extraction.

The present paper may be extended in several directions. One of them would be to

dispense with the assumption that pollution is a flow and would introduce pollution as a
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stock. While working with flow pollution is interesting, the introduction of stock pollution

would provide new insights as it allows to tackle with climate change issues. If one assume

(as we do) that pollution is caused by the extraction and use of a non-renewable resources

necessary to production, and accumulates in the atmosphere as in John & Pecchenino

(1994), i.e. with a natural decay, we could expect that pollution would describe a inverse

U-shaped curve across time. Indeed, in the first periods of time, great quantities of resources

would be used in the production, generating large emissions, so that the stock of pollution

would increase. When time goes by, resources would be used in ever smaller amount. At

some point in time, the natural decay would exceed new emissions so that the pollution

stock would start to decrease. An environmental Kuznets curve is thus likely to appear in a

growing economy. A ceiling of pollution could then be introduced in the model to capture

climate change aspects. The aim of a policy fighting climate change would be to reduce

pollution concentration and to spread resources use, and then pollution, across time, to

ensure that the ceiling would be not exceed. Future research should address this issue.

Appendix A. Proof of the Market Clearing Condition

Distribution of revenues from production gives:

yt = wt + (rt + δ)kt + ptxt

The production is used to consume, to save, and to absorb capital depreciation. We have:

yt = ct + dt + st − kt + δkt

Thus:

wt + (rt + δ)kt + ptxt = ct + dt + st − kt + δkt

(1 + rt)kt + pt(xt +mt) = dt

(1 + rt)kt + ptmt−1 = dt

From equation (6), the last equation is true if kt = st−1.
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Appendix B. Proof of Proposition 1

The proof uses continuously definition 1.

• A BGP implies a constant extraction rate. Thus, equation (2) implies µm = 1− q.

• Equation (1) implies µx = µm.

• Since emissions are modeled as a linear function of resources use, µe = µx.

• The technological level increases at an exogenous rate a such that µa = 1 + a.

• Evaluating (19) in t+ 1 and t and taking the ratio, we can write:

(1 + a)µαk,t+1µ
ν−θ−1
x,t+1 − 1 + δ

(1 + a)µαk,tµ
ν−θ−1
x,t − 1 + δ

= (1 + a)µα−1k,t+1µ
ν−θ
x,t+1

Evaluating on the BGP, we obtain:

(1 + a)µα−1k µν−θx = 1

which implies:

µk = (1 + a)
1

1−α (1− q)
ν−θ
1−α

• The market clearing condition st = kt+1 implies µs = µk on the BGP.

• Evaluating the ratio of production (12) in t + 1 and t on the BGP: µy = (1 +

a)µαkµ
ν−θ
x = µk.

• From the firms FOC for resources use (15), one can compute µp = (1+a)µαkµ
ν−θ−1
x =

µk
µx

.

• From the firms FOC for labor (16) µw = µk.

• The non-arbitrary condition for households (9) gives µp = 1 + r. Thus, the interest

rate should be constant and µr = 1.

• Since the interest rate is constant, Evaluating the ratio of the Euler equation in t+ 1

and t gives µc = µd.
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• Reintroducing the Euler equation (8) in the IBC (7) one obtain:

wt =
ct(2 + ρ)

1 + ρ

On the BGP, taking the ratio of the last expression in t + 1 and in t, one obtain

µc = µw.

It is now necessary to characterize the constant BGP extraction rate q. Equation (18) may

be rewritten as:

µk,t+1 =

[
β

2 + ρ
− ν(1− q)

q

]
Atk

α−1
t xνt e

−θ
t

which gives:

µk,t+1 =

[
β

2 + ρ
− ν(1− q)

q

]
1

α
(rt+1 + δ)

Using equation (9) and evaluating on the BGP, we can obtain:

(1 + a)
1

1−α (1− q)
ν−θ
1−αα(2 + ρ)q

βq − ν(1− q)(2 + ρ)
=

(1 + a)
1

1−α (1− q)
ν−θ
1−α

1− q
− (1− δ) (B.1)

It may now be established that q∗ is solution to the preceding nonlinear equation. We

denote LHS and RHS the left and right hand sides of (20). RHS(q) is defined on [0; 1[

with RHS(0) = (1+a)
1

1−α−(1−δ). Since limq→1RHS(q) = +∞, RHS(q) admits a vertical

asymptote in q=1. Moreover, ∂RHS(q)∂(q) > 0 and ∂RHS(q)2

∂2(q)
> 0 imply an increasing and convex

function. LHS(q) is defined on[0; q̂[∪ ]q̂; 1] with q̂ = ν(2+ρ)
β+ν(2+ρ) . LHS(q) < 0∀ q < q̂ which do

not allow the possibility of an equilibrium extraction rate given that RHS(q) > 0 ∀ q ∈ [0; 1[.

Since limq→q̂+ = +∞ and limq→1 = 0 it exists a unique q∗ such that (20) is satisfied. This

situation is represented in Figure B.1. It should be noted that the economy contracts if

1− (1 + a)
1

θ−ν < q̂.
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0 1 qν (2 + ρ)
β + ν (2 + ρ)

R HS(q)L HS(q)

Figure B.1: Characterization of the competitive equilibrium extraction rate

Appendix C. Proof of Proposition 3

The BGP of the economy is characterized by µ = (1 + a)
1

1−α (1− q)
ν−θ
1−α .

• Keeping the extraction rate constant, an increase in θ implies an increase in µ since:

∂µ

∂θ
= −(1 + a)

1
1−α (1− q)

ν−θ
1−α ln(1− q)

1− α
> 0

• Keeping θ constant, an increase in q implies a decrease in µ since:

∂µ

∂q
= −(1 + a)

1
1−α (1− q)

ν−θ
1−α−1(ν − θ)

1− α
< 0

• Equation (20) may be rewritten as:

L(q) ≡ (1−q)
ν−θ
1−α =

(1− δ)[ν(1− q)(2 + ρ)− βq]
(1 + a)

1
1+α (2 + ρ)αq − (1 + a)

1
1−α βq(1− q)−1 + (1 + a)

1
1−α ν(2 + ρ)

≡ R(q)
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We then have:

lim
q→0

L(q) = 1

lim
q→1

L(q) = 0

∂L(q)

∂q
< 0

∂2L(q)

∂q2
< 0

and

lim
q→0

R(q) =
1− δ

(1 + a)
1

1−α

lim
q→1

R(q) = 0

lim
q→ˆ̂q−

R(q) = −∞

lim
q→ˆ̂q+

R(q) = +∞

with

ˆ̂q =
αρ+ 2α− β +

√
(−αρ− 2α+ β + ρν + 2ν)2 − 4(αρ+ 2α)(−ρν − 2ν)− ρν − 2ν

2(αρ+ 2α)

Since ∂L(q)/∂θ > 0, an increase in θ implies a decrease in q. This situation is

represented in figure C.2 where the dashed line represents an increase in θ.
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0
1̂ ̂q

R(q)

L (q)

1

Figure C.2: Effect of an increase of θ on q

To summarize, an increase in θ increases growth directly, and indirectly due to

a decrease in the extraction rate q.

Appendix D. Proof of Proposition 4

• A BGP implies a constant extraction rate. Thus, equations (26) and (27) imply

µ̃x = µ̃m = 1− q̃.

• Since emissions are modeled as a linear function of extracted resources µ̃e = µ̃x.

• The low of motion of technology implies µa = 1 + a.

• The ratio of the intergenerational optimality condition (30) evaluated in t+ 1 and in

t gives on the BGP µ̃c = µ̃d.

• The BGP ratio of the production function (22) in t + 1 and in t implies µ̃y = (1 +

a)µ̃αk µ̃
ν−θ
x .

• Taking the ratio of (23) in t+ 1 and t, it appears that a BGP requires µ̃c = µ̃k.
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• The intertemporal resources allocation optimality condition (32) evaluated on the

BGP gives:

(1 + a)µ̃αk µ̃
ν−θ−1
x − 1 + δ = αAt+1k

α−1
t+1 x

ν
t+1e

−θ
t+1

Taking the ratio of the last expression in t + 1 and in t and evaluating on the BGP,

one obtain:

1 = (1 + a)µ̃α−1k µ̃ν−θx

Thus:

µ̃k = (1 + a)µ̃αk µ̃
ν−θ
x = µ̃y

and

µ̃k = (1 + a)
1

1−α (1− q̃)
ν−θ
1−α

• Using (30), (31) and (32), one have (1 + a)µ̃αk µ̃
ν−1−θ
x = (1 + γ)µ̃c. Since µ̃c = µ̃k, it

can be established that q̃ = γ
1−γ .

Appendix E. Proof of Proposition 6

Equations (1), (2), (4), (10),(11), (12), (14), (16) and (17) are not modified by the tax.

Thus, one can conclude from Appendix A that µx = µm = µe = 1 − q, µa = (1 + a),

µs = µw = µy = µk and µr = 1. The introduction of the tax and the transfer don’t

modify the Euler equation (8) or the arbitrary condition between capital and resources (9)

in households investment decisions. Thus µp = 1 + rt+1 and µc = µd.

• If the resources price and the tax level increase at the same rate, taking the ratio of

equation (37) in t+ 1 and in t gives:

µp(pt + τt)

pt + τt
= (1 + a)µαkµ

ν−θ−1
x

Thus, one can conclude that:

µp =
µy
µx

• The IBC with the transfer writes:

wt + gt = ct +
dt+1

1 + rt+1
− pt+1mt

1 + rt+1
+ ptmt
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Substituting equations (8), (16) and (38) and taking into account that the resources

price increases at the interest rate, one can writes:

βAtk
α
t x

ν
t e
−θ
t + τtxt =

ct(2 + ρ)

1 + ρ

Taking the ratio of the last expression and evaluating on the BGP, one obtain:

µc =
µkβAtk

α
t x

ν
t e
−θ
t + µpµxτtxt

βAtkαt x
ν
t e
−θ
t + τtxt

Since µpµx = µk, one have µc = µk.
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