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Abstract regularized equilibria: application to Becker’s
household behavior theory

J. X. Cruz Neto1 · J. O. Lopes1 · A. Soubeyran2 · J. C. O. Souza1

Abstract
In this paper, we consider an abstract regularized method with a skew-symmetric mapping 
as regularization for solving equilibrium problems. The regularized equilibrium problem 
can be viewed as a generalized mixed equilibrium problem and some existence and unique-
ness results are analyzed in order to study the convergence properties of the algorithm. The 
proposed method retrieves some existing one in the literature on equilibrium problems. We 
provide some numerical tests to illustrate the performance of the method. We also propose an 
original application to Becker’s household behavior theory using the variational rationality 
approach of human dynamics.

Keywords Equilibrium problem · Variational rationality · Desires · Traps · Household 
behavior · Resource allocation problems

1 Introduction

Let K ⊂ Rm be a nonempty, closed and convex set and consider a bifunction F : K ×K → 
R such that

(P1) F(x, x) = 0 for all x ∈ K ;
(P2) F(·, y) : K −→ R is upper semicontinuous for all y ∈ K ;
(P3) F(x, ·) : K −→ R is convex and lower semicontinuous for all x ∈ K .
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The equilibrium problem (EP) consists of finding x∗ ∈ K such that

F(x∗, y) ≥ 0, ∀ y ∈ K . (1)

This problem will be denoted by EP(F, K ) and its solution set by S(F, K ). Equilibrium
problems have been widely studied both on the issue dealing with conditions for existence
of solutions (e.g., Iusem et al. 2009; Iusem and Sosa 2003; Konnov and Dyabilkin 2011;
Chadli et al. 2015) and algorithmic purposes (see, for instance Bento et al. 2016; Burachik
and Kassay 2012; CruzNeto et al. 2019; Flåm and Antipin 1996; Iusem and Nasri 2007;
Iusem and Sosa 2010; Konnov 2003; Langenberg 2012; Mordukhovich et al. 2012; Moudafi
2007, 1999; Nguyen et al. 2009; Oliveira et al. 2013; Hieu 2018;Mashreghi and Nasri 2012).
It represents a rather general and suitable format for investigation and solution of various
problems arising in mathematical physics, economics, operations research, game theory, and
other fields; see for instance (Blum and Oettli 1994; Muu and Oettli 1992; Panicucci et al.
2009). The term equilibrium problem was coined in Blum and Oettli (1994), but the problem
itself was studied in much early work of Fan (1972). As pointed out in Blum and Oettli
(1994), EP includes as particular case scalar and vector optimization problems, saddle-point
(minimax) problems, variational inequalities, Nash equilibria problems, complementarity
problems and fixed point problems.

One of the most popular strategy for solving (EP) is the so-called regularization method.
The Tikhonov regularization method for ill-posed problems is well-known for minimization,
monotone inclusion and fixed-point problems. This approach was introduced for solving an
equilibrium problems by Moudafi (1999), see also Moudafi and Théra (1999) and Iusem and
Sosa (2010). This iterative method solves at each iteration the regularized EP(Fk, K ), i.e.,
given xk it computes xk+1 as follows:

xk+1 ∈ S(Fk, K ), (2)

where
Fk(x, y) = F(x, y) + γk〈x − xk, y − x〉 (3)

and {γk} is a positive bounded auxiliar sequence. This kind ofmethodwas studied for instance
in Bento et al. (2016), Burachik and Kassay (2012), Blum and Oettli (1994) and Konnov
(2003) in different contexts and it consists of solving at each iteration a regularized (EP)
instead of the original problem. Burachik and Kassay (2012) generalized the method (2) by
using Bregman functions on the regularization term as follows:

Fk(x, y) = F(x, y) + γk〈∇φ(x) − ∇φ(xk), y − x〉, (4)

where φ is Bregman function; see Burachik and Kassay (2012) for more details. If φ(x) =
1
2 ||x ||2 then (4) reduces to (3). In order to generalize (4), Bento et al. (2016) proposed the
following regularization in (2):

Fk(x, y) = F(x, y) + λk〈∇1d(x, xk), y − x〉, (5)

where ∇1d stands to the gradient of the mapping of d with respect to the first variable. They 
established convergence results for a more general setting of bilevel equilibrium problems 
which include equilibrium problems. Oliveira et al. (2013) considered existence of solutions 
of (EP) using a Tikhonov-type regularization given by F̃ (x, y) = F(x, y) +λg(x, y), where  
g : K × K → R is a strongly monotone bifunction and λ >  0.

A more general class of problem than (EP) is the so-called Mixed Equilibrium Problem 
(MEP). This problem was studied by Ceng and Yao (2008), see also Yao et al. (2009) and
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related literatures. The mixed equilibrium problem consists of finding x∗ ∈ K such that

F(x∗, y) + ψ(y) − ψ(x∗) ≥ 0, ∀ y ∈ K , (6)

where ψ : K −→ R is a given function. This problem is denoted by MEP(F, K ). We refer
toMuu and Quy (2019), Oyewole et al. (2020) and Shamshad and Nisha (2019) for a variants
of this problem. Note that, if ψ ≡ 0, then the mixed equilibrium problem (6) reduces to the
equilibrium problem (1). A more general version of (6) can be considered as finding x∗ ∈ K
such that

F(x∗, y) + ϕ(x∗, y) − ϕ(x∗, x∗) ≥ 0, ∀ y ∈ K , (7)

where ϕ : K × K −→ R is a given function. We call this problem of generalized mixed
equilibrium problem (GMEP). An inexact version of problem (7), in the sense that each
subproblem is solved inexactly, can be considered as follows: given δ ≥ 0, a point x∗ ∈ K
is a δ-solution of the inexact mixed equilibrium problem if it satisfies

F(x∗, y) + ϕ(x∗, y) − ϕ(x∗, x∗) ≥ −δ, ∀ y ∈ K . (8)

In this case, if ϕ ≡ 0, then (8) becomes the inexact equilibrium problem studied by Hung
and Muu (2012). We denote the inexact equilibrium problem (8) by I E P(F, K , δ).

The aim of this work is twofold. Firstly, we analyze the existence and uniqueness of
solutions for a mixed equilibrium problem given by (7) in order to propose an abstract
regularized algorithm for solving equilibrium problems such that it generalizes some existing
regularized methods in the literature. The motivation to consider this kind of regularization
comes from application in behavioral sciences using recent Variational Rationality (VR)
approach of human dynamics by Soubeyran (2009, 2010, 2016, 2019a, b). In this context, the
regularization term can be seen as a crude formulation of the complex concept of resistance
to change; see for instance Bento and Soubeyran (2015), CruzNeto et al. (2020), Bento
et al. (2019, 2018) and Soubeyran and Souza (2020). As a second contribution, we give
an application in behavioral sciences of our abstract regularization approach of equilibrium
problems. We propose a dynamic version of the famous static Becker’s “allocation of time
problem" using the VR approach; see Becker (1965).

In the seminal work Becker (1965), “A theory of the allocation of time", the Nobel prize
Becker (Becker 1965) revolutionized the modeling of household behavior. Following the
splendid comments of Chappori and Lewbel (1965), " Becker (1965) is not the first study to
consider time use in the home, e.g., he cites Jacob Mincer (1962), who considers a married
woman’s time trade-off between housework and paid work. Nor is it quite the first to propose
a household production function, in which purchased goods are converted into commodities
like meals that generate utility. An earlier household production article he does not cite is
Terence Gorman (1980), which was written in 1956 and widely circulated as a working
paper for decades before it was finally published. However, what Becker does uniquely is
to merge goods consumption with time use in the production of household utility. Previous
models of labour supply considered consumption and leisure as distinct goods that separately
provide utility. In contrast, Becker emphasizes that there are many different types of time
use, just as there are many types of consumption goods, and that different types of time
use and consumption goods combine in different ways to yield commodities, e.g., prepared
meals, from which we get utility. He then draws a variety of important implications from
the observation that various types of time and consumption combine into a single household
objective function with a single overall budget constraint. In doing so, Becker (along with
Mincer) created the foundational modeling framework for virtually all modern household
level analyses of consumption and time use, in what was sometimes called the “New Home
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Economics". Becker’s model is in some ways more general than those in common use today,
in particular, he emphasizes that different types of time (e.g., weekends versus weekdays)
should have different shadow prices within the household. This is in contrast to the vast
majority of models today that associate a single observable wage rate to each individual’s
time.

The modern literature has generalized Becker in two main directions. A first strand of
the literature considers unitary models which, like Becker’s original time allocation theory,
treat the household as maximizing a single utility function under a resource constraint. They
are often dynamic and forward looking. A second strand of the literature follows a second
Becker’s paper (Becker 1974), where the allocation of resources within a household is deter-
mined by bargaining among household members, with outcomes that may therefore depend
on the determinants of the bargaining power of each household member.Wewill not examine
this second extension.

The paper is organized as follows. In Sect. 2, we recall some basic concepts and results in
equilibriumproblems. In Sect. 3,we showan existence result for our regularized bifunction. In
Sect. 4, we present a generalized regularization algorithm for solving an equilibrium problem
and study its convergence analysis. The method is performed in some academic examples
in Sect. 5. An original application to Becker’s household behavior theory is given in Sect. 6.
Finally, some conclusions are presented.

2 Preliminaries

In this section, we recall some definitions and known results which will be used in the
following sections. Usually, existence results for EP( f , K ) require either boundedness of
the feasible set K or certain coercivity conditions. We recall the classical Ky Fan inequality
result from Fan (1972) in case of Minimax Problems.

Theorem 1 Assume that F satisfies the Conditions (P1)–(P3) and K is compact. Then
S(F, K ) is nonempty.

Recently, many efforts were concentrated for obtaining coercivity conditions, which guar-
antee existence of solutions on unbounded feasible sets; see e.g. Iusem et al. (2009) and
Burachik and Kassay (2012) and references therein. For such coercivity conditions it has
been assumed beyond the first three basic assumptions on equilibrium problems, i.e., (P1)–
(P3), one has been considered the following properties:

(P4) F(x, y) + F(y, x) ≤ 0 for all x, y ∈ K (monotone bifunction);
(P5) For any sequence {zn} ⊂ K with lim

n→∞ ‖zn‖ = ∞, there exists u ∈ K and n0 ∈ N

such that F(zn, u) ≤ 0, ∀ n ≥ n0.

Thus, under all these assumptions they obtained a well known result of existence of solution
for the problem EP(F, K ); see (Iusem et al. 2009, Theorem 4.2). For sake of completeness,
wepresent a versionof the proof (adapted to theEuclidean space)which requires the following
result proved by Ky Fan in 1961 in the context of convex feasibility problems; see (Fan 1961,
Lemma 1).

Lemma 1 Let Y be a nonempty subset of Rm and, for each y ∈ Y , consider a closed subset
C(y) of Rm. If the following two conditions hold:

(C1) the convex hull of any finite subset {x1, . . . , xk} of Y is contained in ∪k
i=1C(xi );

4



(C2) C(y) is compact for at least some y ∈ Y ;

then ∩y∈YC(y) �= ∅.
Theorem 2 Assume that F satisfies the Conditions (P1)–(P5). Then S(F, K ) is nonempty.

Proof Let n ∈ N be arbitrary. Define Kn := {x ∈ K : ‖x‖ ≤ n} (since Kn is nonempty for
sufficiently large n, in what follows, for the sake of simplicity, we suppose without loss of
generality that Kn is nonempty for all n ∈ N, furthermore it is compact) and LF (n, y) := {x ∈
Kn : F(y, x) ≤ 0}which is compact (closed from (P2) and bounded due to LF (n, y) ⊂ Kn).

We intend to invoke Lemma 1 with Y = Kn,C(y) = LF (n, y), and thus, we must check
the validity of its hypotheses. Firstly, we verify (C1). For this, take x1, . . . , xk ∈ Kn and
λ1, . . . , λk ∈ [0, 1] such that

∑k
i=1 λi = 1, and denote by x̄ = ∑k

i=1 λi xi . We must verify
that x̄ belongs to ∪k

i=1LF (n, xi ), i.e., that x̄ ∈ Kn and that F(xi , x̄) ≤ 0 for some i . Indeed,

x̄ ∈ Kn from convexity of Kn and ‖x̄‖ ≤ ∑k
i=1 λi‖xi‖ ≤ n

∑k
i=1 λi = n. Now, from (P1)

and (P3), we have 0 = F(x̄, x̄) ≤ ∑k
i=1 λi F(x̄, xi ), so F(x̄, xi ) ≥ 0 for some i , thus

by (P4) F(xi , x̄) ≤ 0. In the sequel, we verify (C2). Since C(y) = LF (n, y) is compact
(as seen previously) and nonempty (since F(y, y) = 0 by (P1), implies y ∈ C(y)) for all
y ∈ Kn , and therefore (C2) holds. Thus, we are within the hypotheses of Lemma 1, and we
conclude that ∩y∈Kn LF (n, y) is nonempty for each n ∈ N, so that for each n we may choose
xn ∈ ∩y∈Kn LF (n, y). We distinguish two cases:

(i) There exists p ∈ N such that ‖x p‖ < p, or
(ii) For all n ∈ N, ‖xn‖ = n . In this case, assumption (P5) ensures the existence of u ∈ K

and n0 such that F(xn, u) ≤ 0 for all n ≥ n0. Take p ≥ n0 such that ‖u‖ < p where
F(x p, u) ≤ 0.

In both cases (i) or (i i), we will show that x p is a solution of EP(F, K ). Since x p ∈
∩y∈Kp LF (p, y), we have F(y, x p) ≤ 0, for all y ∈ Kp , by (P4) we get F(x p, y) ≥ 0, for
all y ∈ Kp . Thus, we only need to show that F(x p, w) ≥ 0, for all w ∈ K/Kp . Let ȳ given
by ȳ = x p (case (i)) or ȳ = u (case (i i)), so F(x p, ȳ) ≤ 0. Now, take any w ∈ K/Kp , thus
there exists t ∈ (0, 1) such that zt := (1 − t)ȳ + tw belongs to Kp and F(x p, zt ) ≥ 0. By
(P3), we have

0 ≤ F(x p, zt ) ≤ (1 − t)F(x p, ȳ) + t F(x p, w) ≤ t F(x p, w)

which implies that F(x p, w) ≥ 0, and hence, we conclude that F(x p, y) ≥ 0, for all y ∈ K ,
i.e., x p is a solution of EP(F, K ). ��

The following definition was introduced by Antipin (1996) which encompasses a large
class of functions that has interesting properties and can be used to make well-defined an
equilibrium problem.

Definition 1 A mapping ϕ : K × K → R is said to be skew-symmetric if

(A1) ϕ(x, x) − ϕ(x, y) − ϕ(y, x) + ϕ(y, y) ≥ 0, ∀x, y ∈ K .

If the inequality holds strictly, for all x, y ∈ K such that x �= y, we say that ϕ is strictly
skew-symmetric.

Skew-symmetric functions have some properties similar to monotonicity of the gradient
and non-negativity of the second derivative of a convex function. For more properties and
applications of skew symmetric functions we refer to Antipin (1996).

We will consider the following assumptions on the mapping ϕ:
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(A2) ϕ(x, ·) : K −→ R is convex in the second argument, for all x ∈ K ;
(A3) ϕ : K × K −→ R is continuous.

Example 1 Let f : Rm → R and g : Rm → R+ be a convex functions. Define the bifunctions
ϕi : Rm × R

m → R, i = 1, 2, given by ϕ1(x, y) = f (y) − f (x) and ϕ2(x, y) = g(x)g(y).
One can check that they satisfy assumptions (A1)–(A3). Indeed,

ϕ1(x, x) − ϕ1(x, y) − ϕ1(y, x) + ϕ1(y, y) = 0

and

ϕ2(x, x) − ϕ2(x, y) − ϕ2(y, x) + ϕ2(y, y) = (g(x) − g(y))2 ≥ 0.

Conditions (A2) and (A3) directly follow from the convexity of f and g.

We recall that a set-valued operator T : Rm ⇒ R
m is called monotone (resp. strongly

monotone with constant γ > 0) if

〈x − y, u − v〉 ≥ 0,
(〈x − y, u − v〉 ≥ γ ||x − y||2)

for u ∈ T (x) and v ∈ T (y). A monotone operator is maximal if (considered as a graph) is it
not strictly contained in any other monotone operator on Rm . We denote the domain of T by
dom (T ) and it is given by dom (T ) = {x ∈ R

m : T (x) �= ∅}.
Example 2 Let T : Rm → R

m be a single-valued maximal monotone operator and define
ϕ(x, y) = 〈T (x), y〉. Then the condition (A1) is valid, i.e.,

ϕ(x, x) − ϕ(x, y) − ϕ(y, x) + ϕ(y, y) = 〈T (x) − T (y), x − y〉 ≥ 0, ∀x, y ∈ dom (T ).

Moreover, one can easily check that ϕ is convex in the second argument (condition (A2))
and continuous (condition (A3)).

Given x ∈ R
n , we will denote by

ϒ(x) = ||x − argmin
y∈K{F(x, y) + 1

2
||y − x ||2}||.

The next proposition will be used in Sect. 5. It measures the quality of a candidate to solution
of an (EP). It is a well known characterization of a solution of an equilibrium problem;
see Iusem (2011).

Proposition 1 A point x∗ ∈ S(F, K ) if and only if ϒ(x∗) = 0.

3 Existence and uniqueness of solution for GMEP

Let F be a bifunction, ϕ a regularization mapping and a constant λ > 0. We will consider
the auxiliar bifunction F̄ : K × K → R defined by

F̄(x, y) = F(x, y) + λ (ϕ(x, y) − ϕ(x, x)) . (9)

Before present our results it is worth to mention some important examples of regularization 
existing in the literature which satisfy the assumptions made in the regularization ϕ for 
solving the equilibrium problem (1).
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• Moudafi (1999), Moudafi and Théra (1999) and Iusem and Sosa (2010), the authors
considered the regularized auxiliar bifunction given by

F̃(x, y) = F(x, y) + λ〈x − x̄, y − x〉,
where x̄ ∈ K is fixed. Defining ϕ(x, y) = 〈x − x̄, y − x〉, one can check that ϕ is a
skew-symmetric. Moreover, it satisfies the conditions (A2) and (A3).

• Burachik and Kassay (2012), the following regularized bifunction F̃ is considered

F̃(x, y) = F(x, y) + γ 〈∇φ(x) − ∇φ(x̄), y − x〉,
where φ is a Bregman function. Note that defining ϕ(x, y) = 〈∇φ(x) − ∇φ(x̄), y − x〉,
we have that ϕ is skew-symmetric, and furthermore it satisfies the conditions (A2) and
(A3).

• CruzNeto et al. (2019), the authors studied the following regularized equilibrium prob-
lems

F̃(x, y) = F(x, y) + γ (Dφ(y, x̄) − Dφ(x, x̄)),

where Dφ(x, y) = φ(x) − φ(y) − 〈∇φ(y), x − y〉 is the Bregman distance associated
to the Bregman function φ. Considering ϕ(x, y) = Dφ(y, x̄) − Dφ(x, x̄) we have that ϕ
is a skew-symmetric mapping which satisfies the conditions (A2) and (A3).

• Oliveira et al. (2013) considered the following Tikhonov-type regularization

F̃(x, y) = F(x, y) + λg(x, y),

where g : K × K → R is a strongly monotone bifunction which satisfies (A2), g(·, y)
is upper semicontinuous and g(x, ·) is lower semicontinuous, for all x, y ∈ K . Note that
a strongly monotone bifunction is a (strongly) skew-symmetric mapping. It is worth to
mention that we will consider both existence of solution and algorithmic approach for
solving (EP) in a more general context than in Oliveira et al. (2013).

From now on, we consider K ⊂ R
m a closed and convex set, F : K ×K → R a bifunction

such that conditions (P1)–(P4) hold and ϕ be a generalized regularization mapping such
that assumptions (A1)–(A3) hold.

As shown by Iusem et al. (2009) condition (P5) is a sufficient condition for the existence
of solutions of (EP). Next, we consider a less restrictive condition than (P5) (here called
(P6)) which was introduced by Burachik and Kassay (2012).

Theorem 3 Let x̄ ∈ K be fixed. We have that F̄ satisfies conditions (P1)–(P4). Moreover,
if for every sequence {zn} ⊂ K such that limn→∞ ‖zn‖ = ∞ implies

(P6) lim inf
n→∞

[
F(x̄, zn) + λ

(
ϕ(zn, zn) − ϕ(zn, x̄)

)]
> 0,

then F̄ satisfies condition (P5).

Proof One can easily check that F̄ satisfies (P1)–(P3) having inmind that K ⊂ intD, where
D = domϕ. Now, we claim that F̄ satisfies (P4). Indeed, we have

F̄(x, y) + F̄(y, x) = F(x, y) + F(y, x)

+λ (ϕ(x, y) − ϕ(x, x) + ϕ(y, x) − ϕ(y, y)) ≤ 0,

where the inequality comes from the fact that F ismonotone due to (P4),ϕ is skew-symmetric
from (A1) and λ > 0. Thus, the first part of the assertion is proved. Next, we will show that
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F̄ satisfies (P5) under the assumption (P6). Let {zn} ⊂ K be an arbitrary sequence such
that limn→∞ ‖zn‖ = ∞. From (9), we have

F̄(zn, x̄) = F(zn, x̄) + λ
(
ϕ(zn, x̄) − ϕ(zn, zn)

)
.

Since F is monotone from (P4), the following inequality holds

F̄(zn, x̄) = F(zn, x̄) + λ
(
ϕ(zn, x̄) − ϕ(zn, zn)

) ≤
− [

F(x̄, zn) + λ
(
ϕ(zn, zn) − ϕ(zn, x̄)

)]
. (10)

From (P6), we have that there exists n0 ∈ N such that

F(zn, x̄) + λ
(
ϕ(zn, zn) − ϕ(x̄, zn)

)
> 0,

for all n ≥ n0, which means from (10) that F̄(zn, x̄) < 0, for all n ≥ n0. This completes the
proof. ��
Remark 1 One can easily check that if ϕ satisfies (A1), i.e., ϕ is skew-symmetric and x̄ ∈ K ,
then the following condition (P6*) implies (P6), and hence, from Theorem 3 it implies (P5):

(P6∗) lim inf
n→∞

[
F(x̄, zn) + λ

(
ϕ(x̄, zn) − ϕ(x̄, x̄)

)]
> 0.

Next, we provide a class of mapping ϕ in which condition (P6) holds, and hence, condition
(P5) is verified. We consider the very important class of strongly skew-symmetric functions
ϕ, i.e., it satisfies the following assumption:

(A4) ϕ(x, x) − ϕ(x, y) − ϕ(y, x) + ϕ(y, y) ≥ γ ‖y − x‖2, for some γ > 0.

Theorem 4 Assuming either

(i) K is bounded, or
(ii) ϕ is strongly skew-symmetric.

Then, F̄ satisfies condition (P5).

Proof Using Theorem 3 it is enough to check that condition (P6) holds under (i) or (ii). If (i)
is satisfied, i.e., if K is bounded, then one can easily check that condition (P6) holds since
there is no {zn} ⊂ K such that ||zn || → ∞ as n → ∞. Hence, it is enough to prove that (ii)
implies condition (P6). Take a sequence {zn} ⊂ K such that ||zn || → ∞ and x̄ ∈ K fixed.
From (A4), we have

F(x̄, zn)+λ(ϕ(zn, zn)−ϕ(zn, x̄)) ≥ F(x̄, zn)+λ(ϕ(x̄, zn)−ϕ(x̄, x̄))+γ ‖zn − x̄‖2. (11)

Since the mapping F(x, ·) is convex for all x ∈ K , then for any u ∈ ∂F(x̄, ·)(x̄), we have
F(x̄, zn) ≥ F(x̄, x̄) + 〈u, zn − x̄〉 = 〈u, zn − x̄〉, (12)

taking into account that F(x̄, x̄) = 0. Again, since ϕ(x, ·) is convex for all x ∈ K , for any
v ∈ ∂ϕ(x̄, ·)(x̄) and λ > 0, we obtain

λ(ϕ(x̄, zn) − ϕ(x̄, x̄)) ≥ λ〈v, zn − x̄〉. (13)

Adding inequalities (12) and (13), we have

F(x̄, zn) + λ(ϕ(x̄, zn) − ϕ(x̄, x̄)) ≥ 〈u, zn − x̄〉 + λ〈v, zn − x̄〉. (14)

Using (14) in (11), we have

F(x̄, zn) + λ(ϕ(zn, zn) − ϕ(zn, x̄)) ≥ 〈u, zn − x̄〉 + λ〈v, zn − x̄〉 + γ ‖zn − x̄‖2,
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≥ −‖w|‖zn − x̄‖ + γ ‖zn − x̄‖2 (15)

wherew = u+λv and applying the Cauchy-Schwartz inequality. Using the fact that ||zn || →
∞ in (15), then there exists n0 ∈ N such that the right-hand side of (15) is positive for all
n ≥ n0, and hence, we conclude (P6). Therefore, the desired result follows from Theorem 3.

��

Example 3 Let us consider ϕ(x, y) = 〈T (x), y〉, where T : Rm → R
m is a strongly maximal

monotone (single-valued) mapping with modulus τ > 0. One can prove that ϕ satisfies (A4)
with γ = τ .

Example 4 The Tikhonov-type regularization analyzed in Oliveira et al. (2013) is given by
ϕ(x, y) = g(x, y), where g : K×K → R is aβ-stronglymonotone bifunction, i.e., g(x, y)+
g(y, x) ≤ −β||x−y||2, for all x, y ∈ K . It generalizes the regularization considered in Iusem
and Sosa (2010), Moudafi (1999) and Moudafi and Théra (1999), where the regularization
auxiliar bifunction is given by g(x, y) = 〈x− x̄, y−x〉 is stronglymonotonewith 0 < β ≤ 1.
In this case, one can easily check that ϕ satisfies (A4) with γ = β.

The next result establishes the existence and uniqueness of the solution of the GMEP (7)
which can also be viewed as the regularized equilibrium problem EP(F̄, K ).

Theorem 5 The following assertions hold:

(i) If condition (P6) holds, then E P(F̄, K ) admits at least one solution;
(ii) If ϕ is strictly skew-symmetric, then E P(F̄, K ) admits at most one solution.

Altogether, if condition (P6) holds and ϕ is strictly skew-symmetric, then E P(F̄, K ) has a
unique solution.

Proof From Theorem 3, we have that F̄ satisfies condition (P5). Thus, from Theorem 2, we
obtain that EP(F̄, K ) has a solution. This proves the first assertion. To prove (ii), we assume
that both x1 and x2 solve EP(F̄, K ). Hence,

0 ≤ F̄(x1, x2) = F(x1, x2) + λ(ϕ(x1, x2) − ϕ(x1, x1)). (16)

0 ≤ F̄(x2, x1) = F(x2, x1) + λ(ϕ(x2, x1) − ϕ(x2, x2)). (17)

Adding (16) with (17), we get

0 ≤ F(x1, x2) + F(x2, x1) − λ(ϕ(x1, x1) − ϕ(x2, x1) − ϕ(x1, x2) + ϕ(x2, x2)).

Since λ > 0, F is monotone and ϕ is strictly skew-symmetric, then it follows from last
inequality that x1 = x2 and the second assertion is proved. The last statement is a direct
combination of (i) and (ii). ��

Remark 2 Note that item (ii) of the previous results holds if, in particular, ϕ is strongly skew-
symmetric (condition (A4)). This is the case when ϕ is a Tikhonov-type regularization as
given in Oliveira et al. (2013); see Example 4. Therefore, our last result generalizes (Oliveira
et al. 2013, Theorem 3.2). This is an important generalization because there are strongly
skew-symmetric functions which are not a bifunction (strongly monotone); see, for instance,
Example 3.
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4 Generalized regularization algorithm

Recall that we are assuming that F satisfies conditions (P1)–(P4) and ϕ verifies assumptions
(A1)–(A3). In this section, we additionally assume that condition (P5) holds. As we prove
in last section, there are some sufficient condition to guarantee condition (P5) is valid, for
instance, if condition (P6) holds, or K is bounded, or ϕ is strongly skew-symmetric.

Next, we define and analyze the convergence of an inexact algorithm for solving
EP(F, K ). Given two sequences of parameters {λk} and {δk} such that 0 ≤ λk < λ̄,
for some λ̄, and δk ≥ 0. Let {xk} ⊂ K be a sequence such that xk is a solution of
the inexact equilibrium problem I E P(Fk, K , δk), where Fk : K × K → R is given by
Fk(x, y) = F(x, y) + λk (ϕ(x, y) − ϕ(x, x)) . This means that xk ∈ K satisfies

F(xk, y) + λk

(
ϕ(xk, y) − ϕ(xk, xk)

)
≥ −δk,∀ y ∈ K . (18)

In the sequel, we consider {xk} the sequence generated by (18). It is worth to mention that
the well definition of {xk} follows from Theorem 5.

Theorem 6 Assume that lim→∞ λk = 0 and lim→∞ δk = 0.

(i) If the sequence {xk} has a cluster point, then it belongs to S(F, K );
(ii) Additionally, ifϕ satisfies condition (A4) and S(F, K ) is non-empty, then {xk} is bounded.
Proof Let x∗ be an accumulation point of {xk} and {xk j } be a subsequence converging to x∗.
From (18), we have

Fk(x
k, y) = F(xk, y) + λk

(
ϕ(xk, y) − ϕ(xk, xk)

)
≥ −δk, ∀ y ∈ K ,∀k ∈ N.

In particular the inequality above is valid for all k j . Thus, taking the limit with k j → ∞ and
using that λk → 0 and δk → 0, we get F(x∗, y) ≥ 0, for all y ∈ K . Now, let us prove the
second assertion. Let xk be a solution of I E P(Fk; K , δk) and x∗ ∈ S(F, K ). Then,

Fk(x
k, x∗) = F(xk, x∗) + λk(ϕ(xk, x∗) − ϕ(xk, xk)) + δk ≥ 0

and, from (P4), we have that F(xk, x∗) ≤ 0, respectively. Combining last two inequalities,
we have

λk(ϕ(xk, x∗) − ϕ(xk, xk)) + δk ≥ 0. (19)

One has that λk ≤ λ̄ and δk ≤ δ̄, for some positive real number λ̄, δ̄ > 0, for all k ∈ N and
hence, by (19), we have

ϕ(xk, x∗) − ϕ(xk, xk) + δ̄

λ̄
≥ 0. (20)

Since ϕ is strongly skew-symmetric with modulus γ > 0, we obtain

ϕ(x∗, x∗) − ϕ(xk, x∗) − ϕ(x∗, xk) + ϕ(xk, xk) ≥ γ ||xk − x∗||2. (21)

Adding inequalities (20) and (21), we have

ϕ(x∗, x∗) − ϕ(x∗, xk) ≥ γ ||xk − x∗||2 − δ̄

λ̄
. (22)

By (A2), we have that ϕ(x∗, ·) is convex and this implies that

ϕ(x∗, xk) − ϕ(x∗, x∗) ≥ 〈v, xk − x∗〉, (23)
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where v ∈ ∂ϕ(x∗, x∗). Thus, adding inequalities (22) and (23), we obtain

γ ||xk − x∗||2 + 〈v, xk − x∗〉 ≤ δ̄

λ̄
.

The assertion directly follows from last inequality. ��
Remark 3 In Oliveira et al. (2013, Theorem 3.3) is proved that if {xk} satisfying (18) with
lim→∞ λk = 0, δk = 0, for all k ∈ N, and ϕ is a strongly monotone bifunction such that
lim sup||y||→∞

ϕ(x,y)
||x−y|| < +∞, then {xk} is bounded if, and only if, EP(F, K ) is non-empty.

Our previous result extends this result and enables a broad class of regularization including
the one proposed in Oliveira et al. (2013) to solve equilibrium problems. Example 3 shows a
class of regularization which fit with our set of assumption and does not verify the hypothesis
in Oliveira et al. (2013, Theorem 3.3).

5 Numerical experiments

In this section, we illustrate our method for solving some academic problems considered in
Santos and Scheimberg (2011) and Santos and Souza (2020) using different kind of regu-
larizations. The algorithms have coded in MATLAB using the subroutine “quadprog" on
a notebook 8 GB Intel Core i7 Dual-Core. For all tests, both inner and outer stop criteria is
‖xk, j − xk, j+1‖ < ε, for some ε > 0. The subproblems (18) are solved applying Projected
Subgradient Method (PSM) given by

xk, j+1 = PC

[

xk, j − β j

γ j
g j

]

, with β j ≥ 0,
∑

β j = +∞,
∑

β2
j < +∞

with g j ∈ ∂y Fk(xk, j , xk, j ), γ j = max{1, ‖g j‖}, where ∂y Fk stands to the subdifferential of
Fk with respect the variable y; see Santos and Scheimberg (2011).

It is worth to mention that regularization such as (3), (4) and (5) are well known and
very popular for regularization methods in optimization. An important computational issue
about these regularization is that when, for instance in equilibrium problems, the subproblem
are solved with PSM which takes g j ∈ ∂y Fk(xk, j , xk, j ) one has that the regularization
plays no role in the algorithm. This happens because using these regularizations we have
∂y Fk(xk, j , xk, j ) = ∂y F(xk, j , xk, j ).

Next, we perform the proposed method comparing the performance of the regularization
(3) with other regularizations which the previous mentioned issue does not happens, i.e.,
∂y Fk(xk, j , xk, j ) �= ∂y F(xk, j , xk, j ). In the sequel, we consider the following regularization,
for all k ∈ N:

I. ϕ(x, y) = λk〈x − xk, y − x〉;
II. ϕ(x, y) = λk〈T (x), y〉, where T (x) = ∇h(x) with h(x) = x2 as in Example 2;
III. ϕ(x, y) = λk(〈T (x), y〉 + ψ(x) − ψ(y)), where T (x) = ∇h(x) with h(x) = x2 and

ψ(t) = log t as in Oliveira et al. (2013, Remark 3.2).

In Tables 1, 2 and 3, we report the number of iterates (k) until the method satisfies the
stopping rule ‖xk, j − xk, j+1‖ < ε. It is worth to mention that for a general regularization
it is not proved that if xk+1 = xk , then the method returns a solution. However, we use this
classical stopping rule followed by the accuracy ϒ∗ = ϒ(xk) in the last iterate xk showing
how far from the solution the method stopped. The minimum, maximum and the median of
the cpu time until the method stop is also reported. In Figs. 1 and 2, we show the behaviour
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Table 1 Example 5: 10 times with random initial points in [−10, 10] × [−10 × 10], λk = 1 and ε = 10−4

Regularization Iterations (k) Min CPU time (s) Max CPU time (s) Median CPU time (s) Solution found

I 4 0.2432 0.5086 0.3411 (0.5, 0.5)

II 3 0.0806 0.0910 0.0836 (0.5, 0.5)

III 2 0.0889 0.1052 0.0977 (0.5, 0.5)

Table 2 Example 6: 10 times with random initial points in [−10, 10]×[−10×10], λk = 0.001 and ε = 10−3

Regularization Iterations (k) Min CPU time (s) Max CPU time (s) Median cpu time (s) Solution found

I 14.2 0.4337 4.3946 2.7958 (5.0042, 8.9971)

II 14 3.5532 3.9570 3.6818 (5.0063, 8.9954)

III 15 2.7884 2.9132 2.8244 (5.0077, 8.9941)

Table 3 Example 7: the initial point x0 = (1, 3, 1, 1, 2) and ε = 10−3 as in Santos and Scheimberg (2011)
and λk = 0.001

Regularization Iterations (k) CPU time (s) ϒ(xk )

I 2 0.4015 4.6e–04

II 2 0.4103 9.1e–04

III 2 0.4026 1.1e–03

of method using three different regularizations for 10 randomly initial points for Example 5
and 6, respectively.

We consider different choice for the sequence λk setting constant for all k ∈ N. We take
βk = 100/3k and γk = max{3, ‖gk‖} in the PSM.

Example 5 Consider the 2-dimensional nonsmooth equilibrium problem defined by the
bifunction F(x, y) = |y1| − |x1| + y22 − x22 and the constraint set given by K ={
x ∈ R

2+ ; x1 + x2 = 1
}
. One can check that F is monotone and the solution set is the

single point x∗ = ( 12 ,
1
2 ).

Example 6 Consider the 2-dimensional variational inequality problem given by F(x) =
(2x1 + 8

3 x2 − 34, 2x2 + 5
4 x1 − 24.25) and the constraint set defined by K = {x ∈ R

2 :
0 ≤ xi ≤ 10, i = 1, 2}. The solution set of this problem is a single point x∗ = (5, 9).

Example 7 Consider the equilibrium problem where the constraint set K is given by

K =
{

x ∈ R
5 :

5∑

i=1

xi ≥ −1, −5 ≤ xi ≤ 5, i = 1, 2, . . . , 5

}

12



Fig. 1 The initial points, iterates of the sequence using three regularizations and the solution found

Fig. 2 The initial points, iterates of the sequence using three regularizations and the solution found

and the bifunction F is of the form F(x, y) = 〈Px + Qy + q, y− x〉, in which the matrices
P , Q and the vector q are given by

P =

⎡

⎢
⎢
⎢
⎢
⎣

3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎦

; Q =

⎡

⎢
⎢
⎢
⎢
⎣

1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎦

and q =

⎡

⎢
⎢
⎢
⎢
⎣

1
−2
−1
2

−1

⎤

⎥
⎥
⎥
⎥
⎦

.
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6 Application to Becker’s household behaviour theory

In this last section we give an application in behavioral sciences of our abstract regularization
approach to solve equilibrium problems. We propose a dynamic version of the famous static
Becker’s “allocation of time problem" (Becker 1965), using a recent variational rationality
approach of human dynamics (Soubeyran 2009, 2010, 2016, 2019a, b).

6.1 Household behavior

6.1.1 Becker’s allocation of timemodel. The static case.

Consider the Becker’s household model and, for easy reading, let us adapt the notations to
our framework. LetU (Z1, . . . , Zm) be the utility function of a household over the quantities
of final commodities (Z1, . . . , Zm) ∈ R

m+. This household produces at home these final
goods. He uses the vector of inputs y j = (r j , t j ) to produce the quantity Z j = h j (y j ) of
each final good j . Each r j is a bundle (quantity vector) of intermediate goods purchased
at the vector of prices p j , and t j is a bundle of time use quantities. Becker defined t j as a
vector also, to distinguish between, e.g., daytime from nighttime hours, or weekdays from
weekends. Moreover he assigns a vector of wage rates w j to t j , thereby assuming that,
e.g., the cost of a unit of time on weekends and weekdays would generally be different
(Chappori and Lewbel 1965). Rather than have one budget constraint for goods and another
one for time, Becker supposes that the household can trade-off time for money, and so only
faces the single budget constraint

∑m
i=1(p jr j + w j t j ) ≤ S, where S > 0 represents a

full income. In this setting the household chooses a vector of resources y to maximize an
‘earnings’ function g(y) = U [h1(y1), . . . , hm(ym)], where y = (y1, . . . , ym) is a vector
of resources (inputs and times) subject to his household’s single budget constraint and to
the production functions for each commodity. Then he solves the static resource allocation
problem sup {g(y), y ∈ K } , where K = {

y ∈ X = R
m+, 〈q, y〉 ≤ S

}
, q = (q1, . . . , qm)

and q j = (p j , w j ) > 0, j ∈ J = {1, 2, ..,m} .

In this application, we are interested in a dynamic formulation of this famousmodel, using
the recent variational rationality approach of human dynamics (Soubeyran 2009, 2010, 2016,
2019a, b).

6.2 The variational rationality approach: an experience dependent formulation

6.2.1 Stay and change human dynamics

The (VR)variational rationality approach (Soubeyran 2009, 2010, 2016, 2019a, b)modelizes
and unifies a lot of different models of stay and change human dynamics which appeared
in behavioral sciences (economics, management sciences, psychology, sociology, political
sciences, decision theory, game theory, artificial intelligence, etc.). Stays refer to static phases
where, each period, an agent performs again and again the same bundle of activities, exploit-
ing existing capabilities. This leads to the formation of temporary habits, routines, rules and
norms, etc.... Changes represent transformation phases (including need’s recognition, explo-
ration, evaluation, learning and training change activities) where an agent stops doing some
activities, continues doing others and starts doing new activities. These changes help to form
and break habits and routines, etc.... This dynamical approach considers entities (an agent,
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an organization or several interacting agents), which are, at the beginning of the story, in an
undesirable initial position. Being unable to reach immediately (one period) their final desired
positions (desires), they try, each period, to improve their current position, to progressively
approach and reach their desired ends (desires). The goal of this approach is to examine
the transition problem: how such entities will accept to follow an acceptable and feasible
transition before being able to reach their final desires; how they accept to overcome a lot of
intermediate obstacles, difficulties and resistances to change; how a high initial motivation
to change, a succession of not too high intermediate sacrifices and high enough intermediate
satisfactions can sustain their motivation to change during the transition in order to persevere
until reaching the final desired position.

This (VR) approach admits a lot of variants, based on the same short list of general prin-
ciples and concepts. The five main concepts refer to moves (changes and stays), worthwhile
moves, worthwhile transitions made of a succession of worthwhile moves, variational traps,
worthwhile to approach and reach but not worthwhile to leave, and desires not advantageous
to leave.

6.2.2 Feasible activities

Bundles of activities. The variational rationality approach considers bundles of activities
x ∈ X . They refer to different lists of elementary activities (tasks) which can be done within
a period. In the present application relative to an allocation of activities problem (Becker
1965), x = (r , t) = (x1, . . . , xm) ∈ X is a bundle of elementary activities x j = (r j , t j ), j ∈
J = {1, . . . ,m} , where t = (t1, . . . , tm) and r = (r1, . . . , rm). In this context (r j , t j ) is the
task x j = “spending the specific time t j ∈ R+ to use the bundle of inputs r j ∈ 
 j in order
to produce the quantity Z j = h j (x j ) ∈ R+ of the home final good j ∈ J = {1, . . . ,m} ".
That is, the home production function is Z = h(x).

Set of feasible bundles of activities The Becker’s resource constraint.
∑m

j=1(p jr j +
w j t j ) = 〈α, x〉 ≤ S defines a bounded convex polytope

K = {x ∈ X , 〈α, x〉 ≤ S} ,

where α = (α1, . . . , α j ., . . . , αm) ∈ R
m++ with α j = (p j , w j ) > 0.

6.2.3 Moves

Definition Consider two successive periods; the current period k+1 and the previous period
k. In this simplified version of the variational rationality approach a current movem = (x, y)
goes from x = xk = having done the bundle of activities x in the previous period k to
y = xk+1 = doing the bundle of activities y in the current period k + 1. This move is a
change if y �= x and a stay if y = x . In general, a move is m = (x, ω, y) where ω ∈ �

modelizes a transition stage, that is a preparation stage where an agent chooses and becomes
able to do the bundle of activities y within the current period.

Extensive and intensive moves Soubeyran (2019a,b) make the important distinction
between extensive and intensive moves. In this paper, this distinction will play a major
role for the definition of resistance to move (see later). When doing a move, an agent, each
period, either stops, continues and starts doing some activities (extensive move), or he per-
forms, each period, the same list of activities, but more or less of each (intensive move). In
the first case we move, i) for some j ∈ J from x j > 0 to y j = 0, for others j from x j = 0
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to y j > 0 and for the last j we have x j = y j > 0. In the second case all x j > 0 and y j > 0
remain strictly positive.

When we consider moves, we start to consider a dynamic version of Becker’s allocation
of time problem. Then, we depart from Becker’s model which is static. To match with the
mathematical formulation of equilibrium problems our dynamic version of Becker’s model
will only treat the case of intensive moves.

6.2.4 Worthwhile balances and worthwhile moves

An experience dependent variational rationality structure. The (VR) approach starts with
a general definition of a worthwhile change: a change is worthwhile if motivation to change
rather than to stay is “high enough" with respect to resistance to change rather than to stay.
This definition allows a lot of variants, given the different aspects ofmotivation tomove (more
than one hundred theories/aspects of motivations exist in Psychology), the different aspects
of resistance to move and different formulations of the sentence "being high enough". To
cover all these different aspects (Soubeyran 2009, 2010, 2016, 2019a, b) defined a general
variational rationality (VR) structure which modelizes successively activities, moves, utility
and costs of moving, advantages and inconveniences to move, motivation and resistance to
move, worthwhile balances and finally worthwhile moves. Two special cases emerge where
utility and costs of moving do not depend of the whole move m = (x, ω, y), but depend
only of the end y of this move, or of the beginning x and the end y of this move, but not
of the transition ω. First, the simplest case where utility g(y) ∈ R and costs C(y) ∈ R+
depend only of doing a bundle of activities y. Second, the intermediate case where utility
gs(y) and costsCs(y) depend of the internal state and the external environment s of the agent,
including, among other things, different reference points (for example the status quo x and
aspiration levels x∗), experience, etc. To match with the mathematical part of this paper, this
application considers a simplified intermediate case (which is still quite complicated), where

(i) a move m = (x, y) does not specify the preparation phase, that is, the transition ω

which goes from x = having done the bundle of activities x in the previous period to
being able to do the bundle of activities y in the current period ;

(ii) the internal state of the agent and the state of his external environment is limited to his
experience s = e ;

(iii) experience e depends only of what the agent have done in the previous period, that is,
e = x . This is the Markov case;

(iv) motivation and resistance to move are identified with advantages and inconveniences
to move. This defines a linear VR structure;

(v) costs of moving which are the sum of two costs, costs of being able to do and costs to
do a bundle of activities y, refer only to costs to do. This is the case when changes are
intensive (see above).

For the justifications of all these simplifications see Soubeyran (2019a, b).

Formulation Then, within this simplified VR structure:

1. gx (y) ∈ R represents the utility of doing a bundle of activities y in the current period,
after having done a bundle of activities x in the previous period;

2. Cx (y) ∈ R is the cost of being able to do a bundle of activities y in the current period,
after having done a bundle of activities x in the previous period;

3. Cx (y) ∈ R is the cost of doing a bundle of activities y in the current period, after having
done a bundle of activities x in the previous period;
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4. C(x, y) = Cx (y) + Cx (y) is the cost of moving from x to y;
5. Ax (x, y) = gx (y) − gx (x) defines advantages to move (change rather than stay);
6. Lx (x, y) = −Ax (x, y) represents losses to move;
7. Ix (x, y) = C(x, y)−C(x, x) defines inconveniences to move (change rather than stay);
8. Mx (x, y) = Ux

[
Ax (x, y)

] ∈ R+ is the utility Ux
[
Ax

]
of advantages to move Ax =

Ax (x, y) ≥ 0. It defines motivation to change rather than to stay;
9. Rx (x, y) = Dx

[
Ix (x, y)

] ∈ R+ is the dis-utility Dx
[
Ix

]
of inconveniences to move

Ix = Ix (x, y) ≥ 0. It defines resistance to change rather than to stay;
10. Bx,ξ (x, y) = Mx (x, y) − ξ Rx (x, y), ξ > 0 represents a worthwhile balance between

motivation and resistance to move;
11. Then, a move m = (x, y) is worthwhile if Bx,ξ (x, y) ≥ 0.

We suppose that:

(a) costs Cx (y) of being able to move from x to y are zero for all intensive movesm = (x,y).
That is, Cx (y) = 0 for all y ∈ K such that the move m = (x,y) is intensive;

(b) the values of advantages and inconveniences to move are linear. That is,Ux
[
Ax (x, y)

] =
Ax (x, y) and Rx (x, y) = Dx

[
Ix (x, y)

] = Ix (x, y) for all x, y ∈ X .

Then, worthwhile balances become

Bx,ξ (x, y) = Ax (x, y) − ξ Ix (x, y) = − [
Lx (x, y) + ξ Ix (x, y)

]
.

6.2.5 Ends: desires and traps

The variational rationality approach (Soubeyran 2009, 2010, 2016, 2019a, b defines succes-
sively the following aspects of an end position. The bundle of activities x∗ is:

• a desire if it is not advantageous to move away from it. That is, if

Ax∗(x∗, y) ≤ 0, ∀y ∈ K .

The bundle of activities x∗ is,

• a weak stationary trap if it is not worthwhile to move away from it. That is, if
Bx∗,ξ (x∗, y) ≤ 0, for all y ∈ K .

• a strong stationary trap if it is strictly not worthwhile to move away from it. That is, if
Bx∗,ξ (x∗, y) < 0, for all y ∈ K , y �= x∗.

• an almost (inexact) stationary trap if it is not enough worthwhile to move away from it.
That is, if Bx∗,ξ (x∗, y) ≤ δ, for all y ∈ K and some δ > 0.

The VR approach defines also variational traps which are worthwhile to reach from an
initial position, but not worthwhile to leave. In the present paper, we will not consider these
variational traps because the generalized regularization algorithm of this paper does not tell
something about them.

6.2.6 Transitions as successions

After having defined worthwhile moves, desires and traps, the VR approach considers dif-
ferent human dynamics. Here are some.

Definition A stay and change human dynamic is a succession of moves mk = (xk, xk+1),
k = 0, 1, . . . , where k + 1 is the current period and k is the previous period. This transition
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can be a succession of worthwhile moves, or a succession of stationary or almost stationary
traps, or a succession of variational traps, etc. To fit with the mathematical part of the paper
we will consider a succession of almost stationary traps x0, . . . , xk, xk+1, . . . such that, for
each k, Bxk ,ξk+1

(xk, y) ≤ δk with δk > 0 and for all y ∈ K . This means that

B
xk ,ξk+1

(xk, y) = Axk (x
k, y) − ξk+1 Ixk (x

k, y)

= −
[
Lxk (x

k, y) + ξk+1 Ixk (x
k, y)

]

≤ δk,

that is, Lxk (x
k, y) + ξk+1

[
C(xk, y) − C(xk, xk)

] ≥ −δk, ∀y ∈ K .

In this context, each period k + 1, an agent moves from a previous trap to a new one. To
be able to do that, he must break the old trap. A way to do that is to choose a new worthwhile
ratio ξk+1 �= ξk .

Definition An aspiration point of a human dynamic
{
xk

}
is a bundle of activities x∗ ∈ X

such that it exists k0 ∈ N such that Axk (x
k, x∗) ≥ 0, or Bxk ,ξk+1

(xk, x∗) ≥ 0, for all k ≥ k0.
This means that, after a succession of moves, an agent wants or finds worthwhile to approach
x∗.

6.3 Dynamic Markov allocation problems with resistance tomove

We are now in a good position to show how, very surprisingly, our abstract regularization
method can modelize a dynamic formulation of the famous Becker’s household’s resource
allocation problem.

6.3.1 A static experience dependent resource allocation model

We start by giving a generalized (but still static) version of the static Becker’s model (1965)
given at the beginning of this section. We suppose that,

(a) the household utility function gx (y) is experience dependent. That is, the utility of con-
suming the bundle of final goods y in the current period depends of how much of all
these final goods the consumer consumed in the previous period, i.e., x . For example a
linear utility function with experience dependent weights is gx (y) = 〈α(x), y〉, where
α(x) = (α1(x), . . . , αm(x)) ∈ R

m+.

(b) the household chain of production does not produce directly final goods from market
goods and labor. In a first upstream stage market goods and labor allow to produce at
home intermediate goods. In a second downstream stage intermediate goods, ingredients
and labor allow to produce at home final goods. The production of intermediate home
goods adds home costs of production Cx (y) ∈ R+ which are experience dependent.

The set of resource constraints K includes now different kind of times spend to pro-
duce intermediate goods. Examples of experience dependent production costs are Cx (y) = 
β(x) ‖y‖2 , β(x) ∈ R+ or Cx (y) = 〈β(x), y〉, where β(x) = (β1(x), . . . , βl (x)) ∈ Rl+. In 
this setting the static maximization program of the household is sup 

{
gx (y) − ξCx (y), y ∈ K 

}
, 

ξ > 0.
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6.3.2 Equilibrium and regularized equilibrium problems as desires and traps problems

Let us show how, in the context of the Becker’s time allocation problem Becker (1965),
the variational rationality approach helps to identify equilibria to desires and generalized
regularized equilibria to stationary traps.

Losses of moving They are the opposite of advantages to move, i.e.,

F(x, y) = L(x, y) = −Ax (x, y) = gx (x) − gx (y),

while advantages to move are Ax (x, y) = gx (y) − gx (x). Then, when moving from the
status quo position xk to y in the current period k + 1, losses of moving are Fk(xk, y) =
−Axk (x

k, y) = gxk (x) − gxk (y).
Hypothesis (P2) and (P3) suppose that the experience dependent utility function ψ(·, ·) :

(x, y) ∈ X �−→ ψ(x, y) = gx (y) ∈ R is, respectively

• lower semicontinuous with respect to the first variable y, for all y ∈ K ;
• concave and upper semicontinuous in the second variable y, for all x ∈ K .

Hypothesis (P1) means that advantages to stay are zero, that is, Ax (x, x) = gx (x)−gx (x) =
0.

Hypothesis (P4) supposes that if advantages to move from x to y are positive, then, there
is no advantages to move from y to x .

Hypothesis (P5) supposes that any dynamicwhich goes to infinity have an aspiration point.
This is a position that, after some time, an agentwants or findsworthwhile to approach.Hence,
the merit of such unbounded dynamics is to do not wander.

Generalized regularization terms They represent home production costs Cx (y) =
C(x, y) = ϕ(x, y). Then, the difference ϕ(x, y) − ϕ(x, x) refers to inconveniences to
move. That is, ϕ(x, y) − ϕ(x, x) = Ix (x, y) = C(x, y) − C(x, x).

Hypothesis (A1) supposes that, if inconveniences to move from x to y are positive, then,
inconveniences to move from y to x are negative, that is, Ix (x, y) + Iy(y, x) ≤ 0, for all
x, y ∈ K . This is true if Cx (y) − Cx (x) + Cy(x) − Cy(y) ≤ 0, for all x, y ∈ K .

Hypothesis (A2) and (A3) suppose that experience dependent costs of production ϕ(·, ·) :
(x, y) ∈ X �−→ ϕ(x, y) = Cx (y) ∈ R are convex in the second argument y (the usual case
of decreasing returns) and are continuous (a natural hypothesis).

Hypothesis (A4)means that Ix (x, y)+ Iy(y, x) ≤ −γ ‖y − x‖2 , γ > 0, for all x, y ∈ K .

That is, if inconveniences to move from x to y are positive, then, inconveniences to move
from y to x are strongly negative.

Example 1 considers strictly convex costs ϕ(x, y) = Cx (y) = ‖y‖2 while example 2
considers the linear case ϕ(x, y) = Cx (y) = 〈T (x), y〉 with experience dependent weights
T (x) = β(x). These costs satisfy hypothesis (A1), (A2) and (A3).

Regularized losses They are Fλ(x, y) = F(x, y) + λ [ϕ(x, y) − ϕ(x, x)] . They represent
the opposite of worthwhile balances

Bx,λ(x, y) = [−F(x, y)] − λIx (x, y) = Ax (x, y) − λIx (x, y).

A regularized loss Fλ(xk, y) = f (xk, y)+λk
[
ϕ(xk, y) − ϕ(xk, xk)

]
refers to the worth-

while balance Bxk ,λk+1
(xk, y). Equilibria and regularized equilibria as desires and traps

At this stage of the presentation, it is evident that equilibria represent desires, while regular-
ized equilibria refer to stationary traps.
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6.3.3 The dynamic household problem: results

The mathematical part of the paper gives three different kinds of results. In term of the
variational rationality approach, Theorems 3 and 4 give sufficient conditions for the existence
of aspiration points, Theorem 5 gives sufficient conditions for the existence of desires, and
the proof of Theorem 6 helps to show when a succession of stationary traps is an improving
worthwhile to move dynamic, made of a succession of worthwhile moves going from a
stationary trap to the next one. A striking result being that such worthwhile successions
of stationary traps modelize the famous “Unfreeze, change, refreeze" Lewin’s behavioral
change model Lewin (1947a, b, 1951) which is at the origin of a huge literature on “change
management" and behavioral interventions in management sciences and health theory (more
than 80 different models and variants). More precisely, here are our results in the context of
behavioral sciences.

1. Theorems 3 and 4 give sufficient conditionswhich guarantee, for each unbounded succes-
sion of moves, the existence of aspirations points “worthwhile to approach" after doing
a sufficient amount of moves. These conditions require that worthwhile balances satisfy
conditions (P1)–(P4) and (P5). Condition (P5) is satisfied if, either condition (P6) works,
or K is bounded or costs to do are strongly skew-symmetric. K is bounded is a weak
hypothesis. It means that, each period, the household have limited resources.

2. A behavioral interpretation of (P6∗) is the following. This hypothesis means that, given
x̄ , for any unbounded human dynamic {zn}, there exists a period n0 such that, after this
period, it is not worthwhile to move away from x̄ to each successive {zn} . This means
that x̄ is a kind of local stationary trap for this dynamic.

3. Theorem 5 shows the existence and unicity of traps if advantages tomove satisfy assump-
tions (P1)–(P4), costs to do satisfy assumptions (A1)–(A4) and condition (P6) holds.

4. Theorem 6 shows the existence of desires as accumulation points of a succession of
almost worthwhile moves if condition (P5) is satisfied.

7 Conclusion

We have proposed a generalized regularization method for solving equilibrium problems. 
At each subproblem, the proposed method solves a generalized mixed equilibrium problem. 
Under some mild assumptions we have proved the well-definition and the convergence of 
the method in the sense that every accumulation point of the sequence generated by the 
method is a solution of the equilibrium problem even if the subproblem are solved inexactly. 
The proposed method retrieves some existing ones in the literature on equilibrium problems 
enlarging the application of this kind of regularization method. An original application to 
Becker’s household behavior theory has given using the variational rationality approach of 
human dynamics as well as some numerical experiments.
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