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Abstract The generation of wind waves at the surface of an established underly-
ing vertically sheared water flow, of constant vorticity, is considered. A particular
attention is paid to the role of the vorticity in water on wind-wave generation
in finite depth. The present theoretical results are compared with experimental
data obtained by [Young & Verhagen(1996)], in the shallow Lake George (Aus-
tralia), and the least squares fit of these data by [Young (1997)]. It is shown that
without vorticity in water there is a deviation between theory and experimental
data. However, a good agreement between the theory and the fit of experimental
data is obtained when negative vorticity is taken into account. Furthermore, it is
shown that the amplitude growth rate increases with vorticity and depth. A limit
to the wave energy growth, corresponding to the vanishing of the growth rate, is
obtained. The corresponding limiting wave age is derived in a closed form showing
its explicit dependence on vorticity and depth. The limiting wave age is found to
increase with both vorticity and depth.

Keywords Shear instability · Rayleigh equation · wind-wave generation ·
vorticity

1 Introduction

Understanding the physics of wind-wave generation is a fundamental problem in
oceanography. [Miles(1957)] is one of the first to address theoretically the transfer
of wind energy to ocean surface waves. He studied the linear stability of an inviscid
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2 Malek Abid, Christian Kharif

parallel shear flow described by a boundary layer in the air above a flat surface of
irrotational water of infinite depth, at rest. Miles found that the transfer of energy
occurs at the critical layer level where the wind velocity equals the phase velocity of
the surface waves. [Hristov, Miller & Friehe (2003)] confirmed experimentally the
importance of the critical layer theory on the structure of the wave-induced air
flow in open ocean. Many theoretical and numerical investigations in deep water
have been devoted to this problem, among them one can cite [Valenzuela(1976)],
[Kawai(1979)], [Beji & Nadaoka(2004)], [ Stiassnie & al. (2007)] and more recently
[Young & Wolfe(2014)]. For a detailed review on wind wave generation one can re-
fer to the book by [Janssen(2004)].
Very recently, within the framework of deep water, [Kharif & Abid (2020)] found
in the case of water flows of negative vorticity a limit to wave energy growth de-
pending on the magnitude of the vorticity.
Until now there is no theoretical study on the effect of finite depth on wind-wave
generation, except the paper by [Montalvo & al. (2013)] who considered an irro-
tational water flow. They considered the Miles’ theory of wave amplification by
wind in the case of finite depth and found that the wave growth of young waves
is comparable to that of deep water whereas for old waves a finite-depth limited
growth is reached.
[Young & Verhagen(1996)] conducted experiments in a shallow lake which is 20
km long by 10 km wide with an approximately uniform water depth of 2 m, and
collected data set of approximately 1000 observations. From these experiments
they showed that at large fetch the evolution of both the total energy and peak
frequency ceases, and both parameters become depth limited. They confirmed the
existence of an asymptotic limit to growth depending on the depth. However, they
have not considered the possibility of the presence of vorticity in water that is
likely to occur in a shallow lake due to wind at the water surface and friction at
the bottom. This feature will be addressed in the sequel.

In this study we revisit the Miles theory of wind wave generation at the surface of
a pre-existing underlying water flow of constant vorticity in finite depth. Constant
vorticity is the first approximation that one may consider to simplify the mathe-
matical computation to obtain preliminary results on the effect of the vorticity on
wind wave generation in shallow water, and the first step toward a more general sit-
uation with depth-dependent vorticity. We consider the case of a logarithmic wind
profile in the air. In section 2 the mathematical formulation is presented. Section 3
is devoted to the validation of our numerical results. The finite depth effect in the
presence of vorticity is presented in section 4, as well as the comparison of our the-
oretical results with the experimental data of [Young & Verhagen(1996)] and the
least squares fit of these data by [Young (1997)]. Our conclusions are summarized
in section 5.

2 Mathematical formulation

The approach developed in what follows is similar to those of [Janssen(2004)] and
[Thomas(2012)] except that we now consider a water flow of constant vorticity in
finite depth. For a detailed description of the method without water vorticity in
deep water one can refer to [Thomas(2012)].
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Vortical wind-generated gravity-waves 3

The inviscid governing equations of the flow in air and water are the following

∇ · u = 0, (1)

du

dt
= −∇p

ρ
+ g, (2)

dρ

dt
= 0, (3)

with
d

dt
=

∂

∂t
+ u · ∇,

and where u is the fluid velocity, ρ is the fluid density, p is the pressure and g is
the acceleration due to gravity.
Equation (1) corresponds to mass conservation, equation (2) is the Euler equation
and equation (3) means incompressible fluids.

We consider the linear stability of the following solution of the system of equations
(1)-(3) which corresponds to a flat air-water interface

u = U0ex, g = −gez, ρ = ρ0(z), p0(z) = g

∫
ρ0(z)dz, (4)

where U0 corresponds to the velocity in the air and in the water, ρ(z) corresponds
to atmospheric density and water density and ex and ez are unit vectors in the
x-direction and z-direction, respectively.

U0(z) =

{
Ua(z) , z > 0
Uw(z) , −h < z < 0

}
, ρ0(z) =

{
ρa , z > 0
ρw , −h < z < 0

}
,

where Ua is the wind velocity and Uw the flow velocity in the water, h is the water
depth, ρa and ρw are the atmospheric density and water density, respectively. We
assume the conservation of the momentum flux in the atmospheric boundary layer
and the water flow is assumed to be vertically sheared with constant vorticity.
Consequently The following velocity profiles will be used:

Ua(z) =
u∗
κ

ln(1 +
z

z0
), Uw(z) = Us +Ωz,

where u∗ is the friction velocity, κ is the von Karman constant and z0 is the rough-
ness length of the air-water interface given by the Charnock relation z0 = αchu

2
∗/g.

For the flow velocity in the water the shear Ω and Us are constant.

Let us perturb the equilibrium given by equations (4) with an infinitesimal per-
turbation

U = U0 + u′, p = p0 + p′, ρ = ρ0 + ρ′. (5)

Note that the fluid is incompressible and nonhomogenous. Therefore, the fluid den-
sity is constant on streamlines and this is ensured by equation (3). Consequently,
this conservation leads to an equation for ρ′.
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4 Malek Abid, Christian Kharif

Substituting the expressions (5) into equations (1)-(3) and linearising gives

∂u′

∂x
+
∂w′

∂z
= 0, (6)

∂u′

∂t
+ U0

∂u′

∂x
+ w′U ′0(z) = − 1

ρ0

∂p′

∂x
, (7)

∂w′

∂t
+ U0

∂w′

∂x
= − 1

ρ0

∂p′

∂z
+
ρ′

ρ20

dp0
dz

, (8)

∂ρ′

∂t
+ U0

∂ρ′

∂x
+ w′

dρ0
dz

= 0, (9)

where w′ is the vertical component of the velocity perturbation.
The solutions of the linearized problem are sought in the following form (normal
modes)

[u′, w′, p′, ρ′] = [u1(z), w1(z), p1(z), ρ1(z)] exp[i(kx− ωt)], (10)

where k and ω are the wavenumber and frequency of the perturbation, respectively.

Substituting the expressions (10) into the linearized equations and using g =
−p′0/ρ0 gives the following Sturm-Liouville problem

d

dz

(
ρ0W

2 dψ

dz

)
−
(
k2ρ0W

2 + g
dρ0
dz

)
ψ = 0, (11)

where W = U0 − c, c = ω/k and ψ = w1/W .

As stated above, the water flow is assumed to be vertically sheared with constant
vorticity: U0 = Us + Ωz, where the shear Ω and Us are constant. Note that the
vorticity is −Ω. Without loss of generality we consider a frame of reference in
which Us = 0. Hence, equation (11) in water reads

d

dz

(
ρw(Ωz − c)2 dψw

dz

)
−
(
k2ρw(Ωz − c)2 + g

dρw
dz

)
ψw = 0.

Let us assume dρw/dz = 0, then

(Ωz − c)d
2ψw

dz2
+ 2Ω

dψw

dz
− k2(Ωz − c)ψw = 0. (12)

A critical layer in water corresponding to Ωz − c = 0 exists for negative values of
Ω (positive vorticity). Consequently, (12) reads

d2ψw

dz2
+

2Ω

Ωz − c
dψw

dz
− k2ψw = 0. (13)

The equation (13) can be transformed to a reduced form

d2θ

dz2
(z) + q1(z)θ(z) = 0, (14)

with the following change of variables

ψw(z) = θ(z) exp
(
−1

2

∫ z

0

2Ω

Ωz′ − cdz
′
)
, q1(z) = −k2−1

2

d

dz

( 2Ω

Ωz − c

)
−1

4

( 2Ω

Ωz − c

)2
,
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Vortical wind-generated gravity-waves 5

that is
ψw =

c

c−Ωz θ(z), q1(z) = −k2.

The reduced form of (13) is

d2θ

dz2
(z)− k2θ(z) = 0, (15)

Hence, the solution of equation (13) satisfying the boundary condition ψw(z =
−h) = 0 is

ψw(z) =
Ac

c−Ωz
sinh k(z + h)

cosh kh
.

A critical layer occurs in the water flow if the following relation is satisfied

c−Ωz = 0.

Let zc = c/Ω be the critical layer level. The critical layer depth in water, hc,
only occurs for Ω < 0. Using the leading order of the phase velocity, c0, given by
equation (22), the critical layer depth is

hc =
tanh kh

2k
+

tanh kh

2k

√
1 +

4gk

Ω2 tanh2 kh
.

Note that this critical layer depth has been derived using the linear phase velocity,
c0, in the presence of constant vorticity and without wind. In the presence of wind,
c = c0 + O(ρa/ρw). To avoid the presence of a critical layer in water we assume
that h < hc +O(ρa/ρw). Due to the quite small values of Ω used, this assumption
does not imply that our study is confined to extremely shallow water waves.

Equation (11) is integrated between two points below (z = 0−) and above (z = 0+)
the air-water interface

ρ0W
2 dψ

dz

∣∣∣0+
0−

=

∫ 0+

0−

(
k2ρ0W

2 + g
dρ0
dz

)
ψ dz,

with
dρ0
dz

= (ρw − ρa)δ(z),

where δ is the Dirac delta function. Note that the formal relation∫ +∞

−∞
δ(z)dz = 1,

indicates that δ has the physical dimension of m−1.
It follows

ρaW
2(0+)ψ′a(0+)− ρwW 2(0−)ψ′w(0−) = g(ρa − ρw)ψ(0)

where ψ(0) = ψa(0) = ψw(0) due to continuity of ψ. It results

ρa(Ua(0+)− c)2ψ′a(0+)− ρw(Ωz − c)2(0−)ψ′w(0−) = g(ρa − ρw)ψ(0),

c2(ρaψ
′
a(0+)− ρwψ′w(0−)) = g(ρa − ρw)ψ(0),

c2
(
ρaψ

′
a(0+)− ρw(Ak +

AΩ

c
tanh kh)

)
= g(ρa − ρw)ψ(0).
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6 Malek Abid, Christian Kharif

Because we consider linear waves, without loss of generality we can set A = 1

c2
(
ρaψ

′
a(0+)− ρw(k +

Ω

c
tanh kh)

)
= g(ρa − ρw) tanh kh. (16)

If we ignore wind effect in equation (16), we obtain the linear dispersion relation of
gravity waves propagating at the free surface of a flow of finite depth of constant
vorticity

kc2 + (Ω tanh kh)c− g tanh kh = 0.

Let ε = ρa/ρw and c = c0 + c1ε + O(ε2) the Taylor series in ε in the presence of
wind (note that without wind ε = 0). Substituting the expansion of c into equation
(16) gives

At ε0

kc20 + (Ω tanh kh)c0 − g tanh kh = 0.

At ε1

c1 =
c20ψ
′
a(0+)− g tanh kh

2kc0 +Ω tanh kh
.

Following [Janssen(2004)] and [Thomas(2012)], the equation (11), in the atmo-
spheric medium, is reduced to the following form

d

dz

(
W0

dψa

dz

)
− k2W 2

0ψa = 0, (17)

ψa(0) = 1,

limψa(z) = 0 as z → +∞,

where W0 = U0 − c0.

The growth rate γa of wave amplitude is

γa = Im(kc0 + kc1ε) = kε Im(c1),
γa
ω0

=
εc0

2kc0 +Ω tanh kh
Im(ψ′a(0+)),

where ω0 = kc0 and Im denotes imaginary part.

[Thomas(2012)] has shown that

Im(ψ′a(0+)) =
i

2
W(ψa, ψ

∗
a)(0+),

where W is the Wronskian given by

W(ψa, ψ
∗
a)(0+) = ψa(0+)ψ′∗a (0+)− ψ′a(0+)ψ∗a(0+) = −2iIm(ψ′a(0+)),

and ψ∗a denotes the complex conjugate.

Then
γa
ω0

= i
εc0

2(2kc0 +Ω tanh kh)
W(ψa, ψ

∗
a)(0+). (18)

Let χ = w/w(0) be the normalised vertical component of air velocity. Then, equa-
tion (17) becomes the following Rayleigh equation

W0

( d2
dz2
− k2

)
χ = W

′′

0 χ, (19)
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Vortical wind-generated gravity-waves 7

with

χ(0) = 1,

and

limχ(z) = 0 as z → +∞.

The Rayleigh equation has a singular point where the phase velocity, c0, of
the waves equals the mean wind velocity U0. Consequently, the height, zc, of the
critical layer in the atmosphere satisfies U0(zc) = c0.

The growth rate can be rewritten as a function of the Wronskian of the solutions
of the Rayleigh equation

γa
ω0

= i
εc0

2(2kc0 +Ω tanh kh)
W(χ, χ∗)(0+). (20)

One can show that W ′(χ, χ∗) = 0. Consequently, the Wronskian is constant for
z > zc and z < zc as well and may show a jump W(zc + ε) − W(zc − ε), with
ε > 0, at the critical height. Due to the boundary condition at infinity, limW = 0
as z → +∞, W(z) = 0,∀z > zc. Finaly, the jump is equals to −W(zc − ε) and is
given by the following expression

−W(zc − ε) = lim I(∆, ε) as ∆→ 0,∆ > 0,

with

I(∆, ε) = −4i
W

′′

0c

W ′0c
|χc|2 arctan

(
ε
W ′0c
∆

)
.

The result is

−W(zc − ε) = −2iπ
W

′′

0c

|W ′0c|
|χc|2,

where W
′′

0c = W
′′

0 (z = zc), W
′

0c = W
′

0(z = zc) and χc = χ(z = zc).

The expression of the Wronskien is

W = 2iπ
W

′′

0c

|W ′0c|
|χc|2, z < zc.

The normalised growth rate of surface wave amplitude is

γa
ω0

= − πεc0
2kc0 +Ω tanh kh

W
′′

0c

|W ′0c|
|χc|2, (21)

with

c0 = −Ω tanh kh

2k
+

√
g tanh kh

k
+
Ω2 tanh2 kh

4k2
. (22)

Equation (21) can be written differently

γa
ω0

= − πεc0√
4gk tanh kh+Ω2 tanh2 kh

W
′′

0c

|W ′0c|
|χc|2. (23)

As mentioned previously, we assume the conservation of the momentum flux in
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8 Malek Abid, Christian Kharif

the atmospheric boundary layer. Consequently, the wind profile is given by the
following logarithmic law

Ua(z) =
u∗
κ

ln(1 +
z

z0
), (24)

where u∗ is the friction velocity, κ is the von Karman constant and z0 is the
roughness length of the air-water interface given by the Charnock relation z0 =
αchu

2
∗/g.

Within the framework of a logarithmic law we obtain

W
′′

0c

|W ′
0c|

= − 1

z0
exp(−κ c0

u∗
).

To derive the expression of the growth rate of the wave amplitude as a function
of the wave age c0/u∗ we use as reference velocity u∗ and reference length u2∗/g.
Let c∗ = c0/u∗, k∗ = u2∗k/g, Ω∗ = u∗Ω/g, h∗ = gh/u2∗ and z0∗ = gz0/u

2
∗ be the

dimensionless variables and parameters. Note that z0∗ = αch. In dimensionless
form, the growth rate of the wave amplitude is

γa
ω0

=
ρa
ρw

π

z0∗

c2∗
2− c∗Ω∗ tanh(kh)

exp(−κc∗)|χc|2, (25)

with

c∗ = −Ω∗ tanh(k∗h∗)

2k∗
+

√
tanh(k∗h∗)

k∗
+
Ω2
∗ tanh2(k∗h∗)

4k2∗
.

Note that 2− c∗Ω∗ tanh(k∗h∗) = 2− tanh(k∗h∗) + k∗c
2
∗ > 1.

Using z0∗ = αch, equation (25) reads

γa
ω0

=
ρa
ρw

π

αch

c2∗
2− c∗Ω∗ tanh(kh)

exp(−κc∗)|χc|2. (26)

The dimensionless amplitude growth rate depends only on the wave age and vor-
ticity.

The Rayleigh equation (19) is written in dimensionless form

(Ua∗ − c∗)(
d2

dz2∗
− k2∗)χ∗ = U

′′

a∗χ∗, (27)

where

Ua∗ =
1

κ
ln(1 +

z∗
z0∗

), χ∗ =
w∗
w∗(0)

, w∗ =
w

u∗
.

The dimensionless unknown χ∗ is computed numerically by solving equation (27)
with the method of [Conte & Miles(1959)]. The dimensionless growth rate of the
wave amplitude γa/ω0 is calculated once the critical value of χ∗ is known. Rayleigh
equation could be written for water. However, U ′′w(z) = 0 cancels the singularity
at z = hc + O(ρa/ρw) and consequently any instability mechanism in the water
flow.
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Fig. 1 Dimensionless energy growth rate as a function of the inverse of wave age without vor-
ticity (Ω = 0). Experimental data of [Young & Verhagen(1996)], ∗, and the least squares fit by
[Young (1997)] −◦. [Montalvo & al. (2013)] dot-dashed. The solid line corresponds to present
results. The depth used corresponds to δ = gh/U2

10 = 0.2, using [Young (1997)] notation.

3 Validation

To validate our approach in finite depth we have compared our results, in the
absence of vorticity (Ω = 0), with numerical results of [Montalvo & al. (2013)],
the experimental data of [Young & Verhagen(1996)], and the least squares fit by
[Young (1997)]. The empirical relationship derived by [Young (1997)] to fit the
experimental data reads

γE = A(
U10

c0
− 0.83) tanhn(

U10

c0
−B), (28)

where γE is the energy growth rate of water waves, A = 6.8×10−5, B = 1.25δ−0.45

and U10 ' 11.6u∗/κ (see [Montalvo & al. (2013)]). The value n = −0.45 was
obtained by Young from a least squares fit to the data. Note that this relationship
should depend on vorticity through c0 while Young did not consider vorticity effect.
Figure 1 displays the dimensionless growth rate of wave energy as a function of
the inverse of wave age in the absence of vorticity. A good agreement is found
between our results and those of [Montalvo & al. (2013)] despite the occurrence of
a small deviation when the slope of the curve becomes very steep. One can observe
a deviation between the result of the least squares fit of experimental data and
the theoretical ones. A physical ingredient seems to be absent in the theoretical
approach and will be addressed in the next section.
Note that in the limiting case of deep water (kh → ∞) our results are in full
agreement with those of [Beji & Nadaoka(2004)] and [ Stiassnie & al. (2007)].

4 Vorticity effects in finite depth

Very recently, [Kharif & Abid (2020)] have shown for the infinite depth case that
the amplitude growth rate, of wind generated waves, increases with vorticity except
for quite old waves. They also found a limit to the wave energy growth, in the
case of negative vorticity, corresponding to the vanishing of the growth rate. The
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Fig. 2 (Color online) Dimensionless amplitude growth rate as a function of the wave age for
different values of the dimensionless depth h∗: 100 (◦), 200 (∗), 300 (squares),∞ (dashed) and
different values of the dimensionless vorticity Ω∗: a) -0.02, b) 0, c) 0.02.

limiting wave age they found is equal to 1/Ω∗. We consider here the case of finite
depth and find that the limit of the growth rate of waves depends not only on
vorticity, Ω∗, but also on the depth h∗. Figure 2 shows the dimensionless growth
rate of the wave amplitude as a function of the wave age for different values of the
dimensionless depth and different values of the dimensionless vorticity. We can see
that the growth rate of waves generated at the surface of a vertically sheared flow
of constant vorticity decreases as the intensity Ω∗ increases and vanishes when a
limit to the wave amplitude growth is reached corresponding to a limiting wave
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Fig. 3 (Color online) Limit phase speed as a function of depth for different values of vorticity:
blue Ω∗ = −0.03, black Ω∗ = 0, red Ω∗ = 0.0226, magenta Ω∗ = 0.06 and green Ω∗ = 0.1.
The squares correspond to AUSWEX experimental data from [Donelan & al. (2006) ].

age. The opposite of this behavior, observed in the infinite depth case for old waves
when the vorticity is positive, does not occur in finite depth. There is no wave age
for which the amplitude growth rate curve with Ω∗ < 0 crosses the curve with
Ω∗ = 0, in finite depth, at least for h∗ ≤ 300. Furthermore, for a given finite depth,
figure 2 also shows that the limiting wave age is greater when Ω∗ < 0, and that
the limiting wave age, for a given vorticity, increases with depth.

The wave age corresponding to γa = 0 can be determined easily as follows.
In the limit k → 0, the limiting phase speed, corresponding to the wave age with
γa = 0, is given by (for a finite depth h)

lim c0 = −hΩ
2

+

√
gh+

h2Ω2

4
, as k → 0.

Hence,

lim c∗ = −h∗Ω∗
2

+

√
h∗ +

h2∗Ω2
∗

4
, as k∗ → 0, (29)

which is the dimensionless phase speed of linear long waves in the presence of
constant water vorticity.
Contrarily to the case of infinite depth this expression of the limiting wave age
is valid for both positive and negative vorticity. Note that without vorticity the
limiting wave age is given by lim c∗ =

√
h∗. Hence, the growth rate of wind gen-

erated waves is depth limited in this case. When Ω 6= 0, for a given finite depth,
the limiting phase speed increases with positive vorticity (Ω < 0) and decreases
otherwise. For a given vorticity, the limiting phase speed increases with h. These
features are in agreement with the results presented in figure 2 where dimension-
less amplitude growth rate as a function of the wave age, for different values of
the dimensionless depth and vorticity, is depicted.

The dimensionless limiting wave-age as a function of dimensionless depth, for
different values of vorticity, is presented in figure 3, as well as the AUSWEX experi-
mental data from [Donelan & al. (2006) ]. It is clearly seen that taking the vorticity
in water into account is important in determining the limiting wave age, namely in
the case of negative vorticity (Ω∗ > 0). Indeed, the AUXEWEX data are obtained
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Fig. 4 (Color online) Dimensionless energy growth rate as a function of the inverse of wave
age. Without vorticity (Ω∗ = 0): experimental data of [Young & Verhagen(1996)], ∗, and
the least squares fit by [Young (1997)] −◦. [Montalvo & al. (2013)] dot-dashed. The solid line
corresponds to present results. With vorticity: red, Ω∗ = 0.0226, blue, Ω∗ = −0.0226. The
depth used corresponds to δ = gh/U2

10 = 0.2, using [Young (1997)] notation.

from experiments on wind waves conducted in the Lake George which is a shallow
lake (Australia). The combined action of wind and the friction at the bottom leads
to the formation of a shear flow in the water of negative vorticity. To go further in
this direction, let us revisit the experimental data of [Young & Verhagen(1996)]
and the fit of [Young (1997)], presented in figure 1, using the vorticity in water.
Knowing the limiting wave age and the depth we can compute the corresponding
vorticity using equation (29):

Ω∗ = (−(lim c∗)
2 + h∗)/(h∗ lim c∗). (30)

From this expression, it is interesting to note that lim c∗ = 1/Ω∗ when h∗ →∞.
From both equations (28) and (30) we have obtained the value Ω∗ = 0.0226.
The corresponding dimensionless energy growth-rate curve, obtained with our ap-
proach, is presented in figure 4. As it can be seen in this figure the agreement
between our vortical flow results and the least squares fit of the experimental data
is very good, stressing the importance of taking the vorticity in water into account,
namely in finite depth.

5 Conclusion

The Miles theory of wind wave generation has been revisited by considering a pre-
existing underlying water flow of constant vorticity in arbitrary depth. We found
that the wave energy growth rate is an increasing function of the vorticity and
depth and showed that this growth rate is limited. This limit depends both on
vorticity and depth. The corresponding limiting wave age is related to vorticity
and depth according to the following relation

Ω =
−(lim c0)2 + gh

h lim c0
,
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and it increases with both vorticity and depth. We have compared our theoretical
results with the experimental data of [Young & Verhagen(1996)] and the empirical
expression derived by [Young (1997)] in the light of the dependence of the limiting
wave age on vorticity. We found that water vorticity could play an important role
in the growth of wind waves generated in the presence of an underlying vortical
flow, whatever the depth.

To go beyond the assumption of constant vorticity, it would be interesting to
extend this study to depth-dependent water vorticity and this is the object of a
future work.
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