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I. INTRODUCTION

Among many other topics, John Weymark has contributed to the literature on the better
understanding of inequality indexes of the Gini family (see, e.g., Weymark (1981)) as well as
on optimal income taxation (see, e.g., Weymark (1986a,b, 1987)). In particular, he has studied
optimal taxation with a discrete distribution of types and studied the question of ”bunching”, a
situation in which some agents, of different types, choose a same net income/gross income bun-
dle. The present article articulates both literatures, providing an extension of Simula and Tran-
noy (forthcoming), our first article on optimal non-linear income tax setting for rank-dependent
welfare functions à la Yaari (1987) in a continuous population setting. It pays full attention to
the question of bunching, that was assumed away in the companion paper, and to the similari-
ties and differences between the continuous and discrete settings.

In this framework, individual welfare weights depend on the position of individuals in the
distribution of indirect utility. We consider individual weights consistent with second-order
stochastic dominance. Social welfare can be written as the egalitarian benchmark, deflated
by inequality measured by the Gini, S-Gini or ”illfare-ranked single-series Ginis” introduced
by Donaldson and Weymark (1980) as well as Bossert (1990). The illfare-ranked single series
Ginis are referred to as the ”A-family” below, given that they have extensively been studied by
Aaberge (2000). Beyond Lorenz agreement, the S-Gini family favors a reduction of inequality
in the lower part of the distribution, while the A-family places more weight on a reduction of
inequality in the upper part. Weymark (1987) and Simula (2010) already considered optimal
income taxation for a social welfare function with exogenous individual weights, diminishing
with productivity. The parametric families we consider are specific examples of such decreasing
weights.

Following Mirrlees (1971), the productivity of each agent is private information, and the
benevolent policymaker only knows how productivity is distributed within the population. As
a result, the optimal allocation maximizes rank-dependent welfare subject to the tax-revenue
and incentive-compatibility constraints. The latter are necessary and sufficient to provide each
agent with the right incentive for them to truthfully report their private information, i.e., to
behave in the way chosen by the policy-designer. Incentive-compatible allocations verify two
conditions: on the one hand, indirect utility must increase at a sufficient rate to induce truth-
telling; on the other hand, gross income (or equivalently net income) must be non-decreasing
with productivity. A situation in which the ”monotonicity” condition on gross income is bind-
ing is referred to in the literature as ”bunching”. In other words, ”bunching” is said to occur
in a social optimum when agents with different productivity levels choose the same gross-
income/net-income combination. Absent bunching, ranks in terms of indirect utility, gross
income, net income and productivity are all the same. In addition, providing agents behave in
a rational way, these ranks corresponds to those in the actual allocation. Ranks then become ”in-
variant” and provide a standard with respect to which tax rates may be expressed, as suggested
by Trannoy (2019). To cast light on the main mechanisms and intuitions, we consider that in-
dividual utility is quasi-linear, linear with respect to net income. Such preferences are widely
used in the literature following Piketty (1997) and Diamond (1998), even though assuming that
there is no income effect on gross income is obviously restrictive.1

1In the above-mentioned companion paper (Simula and Trannoy, forthcoming), we relax this assumption but focus-
ing on cases in which bunching is assumed away.
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For a continuous population and relying on the two families of parameterized rank-dependent
welfare functions presented above (with Gini social welfare function as a common element), we
pay special attention to situations in which the optimal allocation is not ”fully separating” in a
continuous setting. Even if there is no specific reason to expect that bunching would be more
frequent in the rank-dependent setting, the rank-dependent approach offers a unique oppor-
tunity to say more about this question, and provide a set of new exogenous conditions. The
latter are derived using an implicit expression for the gross income function and the various
parameters of the model. This expression (Proposition 1) is obtained using Fubini’s theorem,
allowing for mass points in the distribution of welfare weights, which accommodates ”limit”
cases such as the Rawlsian maximin, and without resorting to differentiability of the gross in-
come function. This is one of the article’s technical contributions.

Thanks to rank-dependent welfare weights, we are able to obtain several conditions on the
parameters of the model, under which bunching in the social optimum is either present or pre-
cluded. These conditions are derived exploiting the implicit expression for the optimal gross
income function, coming out from the optimization process. It is particularly simple due to
the combined assumptions of quasi-linear individual preferences and rank-dependent social
welfare weights. To study bunching, we restrict the class of preferences to those for which
the marginal dis-utility of gross income is convex, but less convex the higher the agent’s pro-
ductivity. While the Spence-Mirrlees condition is about the sign of the cross derivative of the
utility function with respect to productivity and gross income, our condition is on the slopes
of this cross derivative with respect to gross income, on the one hand, and productivity, on the
other hand. It thus correspond to additional sorting conditions. When it holds, the discussion
about bunching only depends on the shape of the productivity distribution and the class of
rank-dependent social welfare functions (S-Gini or A-families).

We in particular resort to log-concavity of the type’s survival function or log-convexity of
the type’s probability density function (pdf). Under log-concavity of survival function of the
productivity distribution and for the whole A-family (including Gini), the optimal allocation
does not involve any bunching whatsoever; if the focus is on reducing inequality in the top of
the income distribution, bunching is precluded. The same assumption of log-concavity does
not guarantee the absence of a pooling equilibrium when we pay closer attention to reducing
inequalities in the lower part of the distribution, as for the S-Gini family. We then are only able
to prove that the optimal gross income function is increasing above a productivity threshold.

We also examine specific distributions as did Boadway et al. (2000) for quasi-linear-in-leisure
preferences and weighted utilitarianism and Boadway and Jacquet (2008) for separable prefer-
ences and the ”Rawlsian” maximin. The findings in Boadway et al. (2000) regarding the absence
of bunching for any exponential distribution of productivity are extended to our setting. In ad-
dition, the result in Boadway and Jacquet (2008) regarding the absence of bunching under the
maximin, quasi-linear-in-consumption preferences, and a Weibull probability density for types
(with scaling parameter above 1), appears as a subcase of a result we obtain for all productivity
distributions with a log-concave survival function. Indeed, the maximin appears as a limit case
to the S-Gini family, and in this situation, bunching does not occur in the social optimum under
the considered assumptions.

Many articles on optimal taxation, among which several of us (Simula and Trannoy (2010),
Lehmann et al. (2014) or Simula and Trannoy (forthcoming)), adopt the ”first-order” approach,
ignoring the monotonicity constraints for gross income, and checking it ex post in numerical
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simulations. Brito and Oakland (1977) and Lollivier and Rochet (1983) were the first to explain
how to formally account for this difficulty which already had been noted by Mirrlees (1971). For
continuous populations, Lollivier and Rochet (1983) considered an example in which bunching
occured in the social optimum, showing the limitations of the first-order approach. In addition,
Ebert (1992) provided an other example of bunching and examined whether the general features
of the ”optimal” schedule obtained when ignoring the possibility of bunching were preserved
in the ”full” optimum. For a discrete population, Weymark (1986b) –focusing on quasilinear-
in-leisure preferences– provided an example in which the solution to the ”relaxed problem”
(ignoring possible bunching) cannot be the solution to the full problem, before showing how
to solve the full problem through ”ironing” techniques. Also for a discrete population, Simula
(2010) provided conditions for bunching to occur in the social optimum when preferences are
quasi-linear, linear with respect to consumption.

Moreover, we obtain tax formulas when the productivity distribution is discrete and com-
pare them with the formulae obtained in the continuous framework (Simula and Trannoy, forth-
coming). The mathematical derivations in the continuous and discrete population cases follow
the same structure in this article, adapted from the way to proceed in Simula (2010). The La-
grangian is expressed in terms of gross income thanks to the quasilinearity-in-consumption
assumption. We find expressions which are as close as possible to the ”ABC” formula for a
continuum of types; in spite of their similarities, they remain however essentially distinct. The
question of the convergence to the continuous case is still an open question.

The article is organized as follows. Section II presents the setting. Section III establishes
an implicit expression for optimal gross income in the ”relaxed” optimal income tax problem
which ignores the monotonicity condition. Section IV characterizes the bunching pattern, de-
riving conditions on the primitives of the model. Section V focuses on a discrete population
of types to show similarities and differences with regards to the continuous setting. Section VI
provides concluding comments.

II. FROM WEIGHTS DEPENDING ON RANKS TO
OPTIMAL TAXATION

The set-up is taken from Simula and Trannoy (forthcoming). We reproduce it so as to be
able to analyze the bunching issues and develop its discrete counterpart. We start with rank-
dependent social welfare function and then present how they connect to the literature on in-
equality measurement. We here assume a continuous population of individuals, differing with
a single dimension of heterogeneity. This setting is maintained in Sections III and IV.

II.1. Connecting Rank-Dependent Social Welfare with Inequality Indexes

We consider a population of individuals, heterogeneous with respect to a variable x. For
simplicity, we assume that the latter is uni-dimensional and smoothly distributed according
to the cumulative distribution function (CDF) denoted F(x), with support X ⊆ R+. We call
f (x) the corresponding probability density function (pdf). The average value of x within the
population is µ =

∫
X x f (x)dx.

We define the quantile function as F−1(p) = x, where p ∈ [0, 1] stands for the rank or
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”position”, and introduce weights to capture the social planner’s aversion to inequality. The
marginal weights are denoted λ(p) and the cumulated weights Λ(p) =

∫ p
0 λ(ρ)dρ. In the entire

article, we require weights to be consistent with the Lorenz criterion, implying that they belong
to the set:

L = {∀p ∈ (0, 1), λ(p) > 0 and λ′(p) < 0; Λ(0) = λ(1) = 0; Λ(1) = 1}. (1)

Assuming that λ(p) is positive and decreasing implies that the welfare of every individual
counts, but to a lower extent the higher the rank. The other assumptions correspond to normal-
izations. On this basis, rank-dependent social welfare (Yaari, 1987, 1988) is defined as:

W =
∫ 1

0
λ(p)F−1(p)dp. (2)

If W = µ, it corresponds to the case of an egalitarian distribution. Otherwise, there is a
positive gap ∆ ≡ µ−W between the egalitarian benchmark and social welfare W . Dividing
this gap by µ, we obtain the mean-invariant inequality index, denoted I, and case rewriteW as:

W = µ(1− I). (3)

This ”abreviated form” highlights the close connection between rank-dependent social wel-
fare functions and inequality indexes: social welfare W can then be measured as the mean µ,
deflated by the inequality index I. The trade-off between economic efficiency and equity is
therefore summarized in the social objective function in a very transparent way.

In various places below, we pay special attention to two important families of rank-dependent
social welfare functions:

- The ”A”-family is obtained when Λ(p) = (δp− pδ)/(δ− 1) and δ ≥ 2.2

- The S-Gini family (Donaldson and Weymark, 1980) is obtained when Λ(p) = 1− (1− p)δ

and δ ≥ 2.

We also consider a ”variation” of the A-family obtained when δ→ 1. In that case, the cumulated
weights are given by Λ(p) = p(1 − log(p)) and the corresponding inequality index I is the
Bonferroni index of inequality.3

For any δ > 2, the weights λ(p) are concave for the A-family, and convex for the S-Gini
family. This has the following implication if we consider a fixed transfer taking place between
two agents with equal difference in ranks. For the A-family, the equalizing effect of such trans-
fer is stronger at higher ranks. The priority is thus given to the reduction of inequalities at the
top of the distribution. On the contrary, for the S-Gini family, the equalizing effect of the transfer
becomes larger the lower the ranks considered. The main focus is thus on reducing inequalities
at the bottom of the distribution.

The A and S-Gini families have a single element in common, obtained when δ = 2 and,
thus, Λ(p) = p(2− p). In that case, it can be shown that the inequality measure I is the Gini

2Aaberge (2000) refers to this class as the Lorenz family for δ = 2, 3, .... It corresponds to the integer subfamily of
the ”illfare-ranked single-series Ginis” discussed by Donaldson and Weymark (1980) and Bossert (1990). We refer to the
latter as the ”A” family. Aaberge (2009) and Aaberge et al. (2020) have indeed shown the usefulness of this family for
analyzing inequality when Lorenz curves intersect.

3Let µ(x) =
(∫ x

0 xdF(x)
)

/F(x) and r(x) = (µ− µ(x))/µ. The Bonferroni inequality index is
∫

X r(x)dF(x).
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coefficient whileW corresponds to the Gini social welfare function introduced by Sen (1974). It
is interesting to note that the marginal social weights λ(p) = 2(1− p) vary with respect to the
rank in a linear way, diminishing from 2 to 0, and being equal to 1 for the median individuals.4

When the parameter δ increases, the S-Gini and A-families tend to two important bench-
marks, the Rawlsian maximin on the one hand and pure utilitarianism on the other hand.

II.2. Relaxed and Full Optimal Income Tax Problems

Following Simula and Trannoy (forthcoming), we consider a population of agents differing
with respect to productivity θ belonging to a compact subset

[
θ, θ
]

of the positive real line.
The parameter of heterogeneity θ is smoothly distributed, with cumulative density function H
and probability density function h = H′ (satisfying h > 0 over its support). Its distribution is
common knowledge; but the exact productivity of a given agent is only known to herself. The
connection with the distribution of x introduced above will be made clear below.

The starting point is the utility maximization problem of an agent with given productivity
θ. The latter chooses consumption c and taxable income z so as to maximize:

u(c, z; θ) = c− v(z; θ) = z− T(z)− v(z; θ), (4)

where T(z) stands for the nonlinear income tax schedule. It should be noted that the dis-utility
of gross income v(z; θ) is written in a more general way than the more commonly-used multi-
plicative form where v(z; θ) = ν(z/θ).5 In that case, gross income is obtained as the product
of the wage rate and working hours. The specification that we use is not just a theoretical re-
finement. Indeed, empirical findings do not bolster the case for a multiplicative form, except
for shift work. In addition, we let the dis-utility of gross income v(z; θ) be increasing and con-
vex in gross income z. Hence, v′z(z; θ) > 0 and v′′zz(z; θ) > 0. In addition, we assume that the
Spence-Mirrlees condition is satified.

ASSUMPTION 1 (Spence-Mirrlees Condition). v′′zθ(z; θ) < 0.

Assumption 1 has the following interpretation. When productivity goes up, it becomes eas-
ier for an agent to increase gross income by a small given amount dz. We do not mention it
explicitly in Propositions and Lemmas below, but it holds in the rest of the article.

The first-order condition of Agent θ’s utility maximization program is:

1− T′(z) = v′z(z; θ). (5)

We call c(θ) and z(θ) the optimal consumption and taxable income, and V(θ) = c(θ)− v(z(θ); θ)

the corresponding indirect utility. Because of the taxation principle, a tax function is equivalent
to the specification of a (c(θ), z(θ))-allocation subject to incentive-compatibility constraints. The

4For every interior p, the cumulated weights are larger in the Bonferroni case than in the Gini one, implying that the
former stresses poverty more than the latter.

5Note that z is not bounded from above. This implies that agents always have a possibility to earn sufficiently to pay
tax liabilities required from them, and that we do not have to account for a nonnegativity on z when solving the optimal
income tax problem. This precludes bunching due to the violation of this nonnegativity constraint, a phenomenon
highlighted in Boone and Bovenberg (2007).
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latter ensure that a θ-individual has an incentive to disclose private information, i.e., her pro-
ductivity level θ. This is the case providing:

V(θ) = max
θ′

c(θ′)− v(z(θ′); θ)for any (θ, θ′) ∈
[
θ, θ
]2

. (6)

As is well-known (see, e.g., Salanié (2005)), this is equivalent to:

V′(θ) = −v′θ(z(θ); θ), (7)

z(θ) non-decreasing. (8)

Equation (7) is the first-order condition for incentive compatibility. It ensures that indirect util-
ity V(θ) increases at a sufficient rate to prevent agents from downward mimicking. Condi-
tion (8) is the second-order condition for incentive compatibility. Note that we do not require
θ → z(θ) be differentiable in the general case. When it is differentiable, (8) may be rewritten as:
z′(θ) ≥ 0.

Because T(z(θ)) = z(θ)− c(θ), the government’s budget constraint can be written as:

θ∫
θ

(z(θ)− c(θ))dH(θ) ≥ E, (9)

where E is an exogenous amount of public expenditures. We focus on the case in which the tax
policy is purely redistributive. Hence, E = 0 from now on. Moreover, in any social optimum,
(9) will be binding. Using (6), we obtain c(θ) = V(θ) + v(z(θ); θ), which can be substituted into
the binding government’s budget constraint (9) to get:

θ∫
θ

(z(θ)−V(θ)− v(z(θ); θ))dH(θ) = 0. (10)

We let x = V. Consequently, p = F(V(θ)) = H(θ), which also implies: F−1(p) = V(θ). The
social objective is to maximize a weighted sumW of indirect utilities V(θ), with weights given
by λ(p) = λ(H(θ)), i.e.,

W =

θ∫
θ

λ(H(θ))V(θ)dH(θ). (11)

The optimal income tax problem can therefore be stated as follows:

PROBLEM 1 (Full Problem). Choose z(θ) and c(θ) to maximize W subject to the incentive-
compatibility constraints (7) and (8) as well as the tax-revenue constraint (10).

We also formulate a variation of Problem 1 from which the second-order condition for incentive
compatibility (8) has been removed.

PROBLEM 2 (Relaxed Problem). Choose z∗(θ) and c∗(θ) to maximize W subject to the first-
order condition for incentive compatibility (7) and the tax-revenue constraint (10).

The so-called ”first-order approach” consists in solving Problem 1 without explicitly ac-
counting for the second-order condition for incentive compatibility (8). The idea is to solve the
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Relaxed Problem and verify in a second step whether its solution generates a non-decreasing
pattern of taxable income θ → z∗(θ). If this is the case, it is also the solution to the Full Problem,
and z(θ) = z∗(θ) at any productivity θ in

[
θ, θ
]
.

III. OPTIMAL GROSS INCOME ALLOCATION FOR THE
RELAXED PROBLEM

By the taxation principle (Hammond, 1979; Guesnerie, 1995), characterizing a nonlinear in-
come tax schedule is equivalent to finding an allocation of gross and net incomes satisfying the
incentive compatibility constraints (7) and (8). In Simula and Trannoy (forthcoming), we solved
the Relaxed Problem and found ”ABC” formulae for optimal marginal tax rates. In this Section,
we derive the conditions that the gross income function solution to the Relaxed Problem has
to satisfy, to check in Section IV whether it is monotone increasing, and therefore also provides
the solution to the Full Problem.

The method of derivation follows the same steps as Brett and Weymark (2017) in a political-
economy setting.6 The main advantage of this procedure is to solve the optimal income tax
problem in a clear and transparent manner, without resorting to optimal control theory. The
proof carries through even in cases when the gross income function θ → z(θ) would be non-
differentiable.

In addition, this derivation accommodates the possibility of mass points in the distribution
of social weights. On this basis, the Rawlsian maximin in particular can be obtained as a limit
case of the L-class. More generally, cumulated social weights Λ are allowed to be defined as
a step function, which is continuous almost everywhere, with a finite number of discontinuity
points. This proof complements those provided in Simula and Trannoy (forthcoming), based
on optimal control theory and on a small tax reform perturbation respectively, both valid for a
continuous distribution of cumulated social weights Λ(p).

We first use the first-order condition for incentive compatibility (7). Integrating between θ

and any given θ, we obtain:

V(θ) = V(θ)−
θ∫

θ

v′θ(z(t); t)dt. (12)

Replacing the latter intoW given in (11) yields:

W = V(θ)

θ∫
θ

λ(H(θ))dH(θ)−
θ∫

θ

λ(H(θ))

 θ∫
θ

v′θ(z(t); t)dt

 dH(θ). (13)

Because Λ(1) = 1 for any θ → λ(θ) in L, the first term on the right-hand side of (13) is equal

6Brett and Weymark (2017) characterize the income tax schedule maximizing the utility of a given agent subject to
incentive-compatibility constraints and budget balancedness. Brett and Weymark (2017) themselves rely on Lollivier
and Rochet (1983) who present a simple non-linear taxation model in which the agents, with quasi-linear in labor
preferences, are indexed by a one-dimensional parameter.
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to V(θ). Therefore, (13) may be rearranged as:

W = V(θ)−
∫∫

θ≤t≤θ≤θ

λ(H(θ))v′θ(z(t), t)dH(θ)dt. (14)

Making use of Fubini’s Theorem, which does not require differentiability of θ → z(θ), this
simplifies into:

W = V(θ)−
θ∫

θ

v′θ(z(θ), θ) [1−Λ(H(θ))] dθ. (15)

It is worth noting that the above derivation does not require the weight function λ to be con-
tinuous. We only need them to be Lebesgue integrable. Therefore, the derivation remains valid
for Rawlsian weights, with a mass point at θ and thereafter equal to zero.

The next step is to plug in V(θ) as defined in (12) into the government’s budget constraint
(10). We obtain:

θ∫
θ

(z(θ)− v(z(θ); θ)−V(θ))dH(θ) +

θ∫
θ

θ∫
θ

v′θ(z(t); t) dt dH(θ) = 0, (16)

which is equivalent to:

V(θ) =

θ∫
θ

(z(θ)− v(z(θ); θ))dH(θ) +

θ∫
θ

θ∫
θ

v′θ(z(t); t) dt dH(θ) (17)

because
∫ θ

θ λ(θ)dH(θ) = 1. We then employ Fubini’s Theorem to evaluate the double integral
and get:

θ∫
θ

θ∫
θ

v′θ(z(t); t) dt dH(θ) =

θ∫
θ

v′θ(z(θ); θ)(1− H(θ))dθ, (18)

which remains valid even if H is a step function. Consequently, (17) may be rearranged as:

V(θ) =

θ∫
θ

(z(θ)− v(z(θ); θ))dH(θ) +

θ∫
θ

v′θ(z(θ); θ)(1− H(θ))dθ (19)

The above expression may now be substituted into (15), which yields:

W =

θ∫
θ

[(z(θ)− v(z(θ); θ))] dH(θ) +

θ∫
θ

v′θ(z(θ); θ) [Λ(H(θ))− H(θ)] dθ. (20)

The Relaxed Problem amounts to choosing θ → z(θ) such thatW defined in (20) is maximum.
The first-order condition is:

1− v′z(z(θ); θ))h(θ) = −v′′θz(z(θ); θ) [Λ(H(θ))− H(θ)] for any θ ∈
[
θ, θ
]

, (21)
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which may also be rearranged as follows:

1− v′z(z(θ); θ)) = −v′′θz(z(θ); θ)
Λ(H(θ))− H(θ)

h(θ)
for any θ ∈

[
θ, θ
]

, (22)

providing h(θ) > 0, as assumed in this Section. We obtain the following Lemma.

PROPOSITION 1. Gross income levels z∗(θ) solutions to the Relaxed Problem are determined
by:

−1− v′z(z∗(θ); θ))

v′′θz(z
∗(θ); θ)

=
Λ(H(θ))− H(θ)

h(θ)
for any θ ∈

[
θ, θ
]

. (23)

The latter equation is of particular interest for the study of bunching because it provides the
optimal gross income function implicitly. Its LHS is related to individual preferences, while the
RHS is determined by the distributions of both productivity and social weights.

Thanks to the first-order condition of the individual utility maximization program (5), 1−
v′z(z∗(θ); θ) is equal to the marginal tax rate solution to the Relaxed Problem, that we call T′∗. If
we define p′ = π and G(p, π) as

G(p(θ), π(θ)) =
Λ(p(θ))− p(θ)

π(θ)
, (24)

Formula (23) implies that the tax function and gross income z∗ solutions to the Relaxed Problem
are related through:

T′∗(z∗(θ)) = −v′′θz (z
∗(θ); θ) G(p(θ), π(θ)). (25)

First, −v′′θz(z
∗; θ) in (25) is directly related to the Spence-Mirlees single-crossing condition. This

term tells us how the slope of the indifference curve in the gross-income/net-income space
should vary with productivity. It is is non-negative under the Spencer-Mirrlees condition, im-
plying that the dis-utility of working an extra hour decreases with productivity. The more it
does so, the steeper the profile of marginal tax rates will be. Indeed, the potential downward
mimicking behavior then becomes less stringent. Everything else being equal, the optimal tax
schedule can thus be more marginally progressive. Second, we see that (25) corresponds to
a joint determination of the optimal marginal tax rates and the optimal gross income levels.
They do not, in particular, incorporate any term related to consumption. This feature allows a
sequential determination of the optimal allocation: in a first step, gross incomes and marginal
tax rates are jointly obtained. Optimal consumption levels can then be characterized in a sec-
ond step. This two-step procedure is a byproduct of quasi-linear preferences as well as weights
which only depend on ranks. It was emphasized in a discrete population setting by Simula
(2010), who develops a sequential procedure to construct the optimal allocation. In other words,
(25) captures an interaction between two endogenous variables: the marginal tax rate, on the
one hand, and gross income, on the other hand. Applying the implicit function theorem to
T′∗(z) + v′′θz(z

∗; θ)G(p, π) = 0, the effect of marginal tax rates on gross income are given by:

∂z∗

∂T′∗
= − 1

v′′′zzθ (z
∗; θ) G(p, π)

. (26)

Therefore, the following Corollary is obtained:
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COROLLARY 1. Everything else being equal, gross income z∗ decreases with the marginal tax
rate if and only iff v

′′′
zzθ > 0.

This result expresses a relationship between two endogenous variables, computed at the
social optimum. This relationship depends on a third derivative of the work disutility v′′θz. As
it turns out, such derivatives will play a key role in the study of bunching.

IV. BUNCHING

This Section explores the possibility of bunching in our framework. More precisely, we
examine cases in which θ → z∗(θ) is non-decreasing, so that the allocation solution to the Full
Problem does not involve any bunching of types; it is then ”fully separating”. We also examine
the opposite situation, in which some types are bunched together. In the following, we place
ourselves in situations in which z∗(θ) is differentiable.

IV.1. General Properties

We let θp be the solution in θ to: p = F(θ). The latter increases with p because F is increas-
ing. Given this definition, note that z∗(θp) being strictly increasing with rank p is a sufficient
condition for bunching not to arise, so that z(θp) = z∗(θp) for any rank p. Moreover, a neces-
sary and sufficient condition for bunching to arise is that z∗(θp) be non-increasing. In that case,
z(θ) 6= z∗(θ) on at least a subset of

[
θ, θ
]

with positive measure.
The first strategy we follow is to look at conditions on the primitives of the model for which

z∗(θ) is increasing over
[
θ, θ
]

and therefore equal to z(θ). Its starting point is to consider the
Relaxed Problem’s first-order condition (23). We rewrite it as:

1− v′z(z) + v′′θz(z; θ)Γ(θ) = 0, (27)

where Γ(θ) ≡ G(p(θ), π(θ)) only depends on how types are distributed within the population.
Applying the implicit function theorem, we obtain:

z∗′(θ) = −
−v

′′
θz + v

′′′
zθθΓ(θ) + v

′′
θzΓ′(θ)

−v′′zz + v′′′zzθΓ(θ)
= −

v
′′′
zθθΓ(θ) + v

′′
θz(Γ

′(θ)− 1)
−v′′zz + v′′′zzθΓ(θ)

(28)

where some arguments have been omitted. We know that Γ(θ) > 0 , v′′z (z; θ) > 0, v′′θz(z; θ) < 0.
Consequently, gross income z∗(θ) is strictly increasing if we add Γ′(θ) ≤ 1 and the following
condition:

ASSUMPTION 2. The marginal dis-utility of gross income is convex, but less convex the higher
the productivity: v′′′zzθ(z; θ) < 0 and v′′′zθθ(z) > 0.

The assumptions on the third derivatives of v(z; θ) are additional requirements to the Spence-
Mirrlees condition, v′′zθ(z; θ) < 0 (see Assumption 1 above). The first one, v′′′zzθ(z; θ) ≤ 0, already
appeared in Corollary 1. The marginal dis-utility of highly productive individuals is then less
convex than that of less productive agents. The second one, v

′′′
zθθ(z) > 0, requires the marginal

dis-utility of gross income to decrease with productivity at a decreasing rate. Both conditions
are verified when an iso-elastic specification is used for the dis-utility of gross income v(z; θ).
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They are also satisfied when the dis-utility of gross income takes the often used multiplica-
tive form, v(z; θ) = φ(z/θ), as soon as we add φ′′′ > 0 to the classical conditions φ′ > 0 and
φ′′ > 0. From now on, we assume that this Assumption is verified. The following Proposition
summarizes the result.

PROPOSITION 2. Let Assumption 2 be verified and Γ′(θ) ≤ 1 for any θ. Then, the solution to
the Relaxed Problem is the solution to the Full Problem. In particular:

(i) z(θ) = z∗(θ) for any θ ∈
[
θ, θ
]
;

(ii) The solution is fully separating, i.e., does not involve any bunching.

On this basis, our strategy is to check whether Γ′(θ) ≤ 1 for the different scenarios we
consider. Starting from the definition of Γ(θ) and differentiating, we obtain:

Γ′(θ)− 1 = (λ(p(θ))− 2)− (Λ(p(θ))− p(θ))π′(θ)
π2(θ)

. (29)

First, note that a sufficient condition for the second term on the right-hand side (RHS) to be
non-positive is π′(θ) ≥ 0. Second, the first term on the RHS is always negative for the Aaberge
Family including Gini because λ(0) = 0 < 2 and λ′(p) < 0. For the two other families, S-Gini
and Bonferroni respectively, the first term is negative providing λ(p(θ)) < 2. Because λ(·) is
monotone decreasing while p is monotone increasing, then (λ ◦ p) (.) is monotone decreasing.
In addition, λ(0) > 2 and λ(θ) = 0, there exists θ∗ in

(
θ, θ
)

such that (i) λ(p(θ∗)) = 2 and (ii)
λ(p(θ)) < 2 if and only if θ ≥ θ∗ . Consequently, the first term in (29) is negative for all θ > θ∗.
The following Proposition follows from these observations.

PROPOSITION 3. Let Assumption 2 and π′(θ) ≥ 0 be verified. Then:

(i) For any Aaberge social welfare function (including Gini, i.e., δ = 2), the solution to the
Relaxed Problem is the solution to the Full Problem, i.e., the optimal solution.

(ii) For the S-Gini and Bonferroni families, the unconstrained solution θ → z(θ) is increasing
beyond θ∗ such that λ(p(θ∗)) = 2.

If we instead assume that the pdf of productivity π(θ) is single-peaked, reaching its mode
at θM, we obtain:

PROPOSITION 4. Let Assumption 2 hold and π′ be single-peaked, with mode θM. Then:

(i) For any Aaberge social welfare function (including Gini, i.e., δ = 2), the solution to the
Relaxed Problem θ → z(θ) is increasing for all θ < θM.

(ii) For the S-Gini and Bonferroni families, the unconstrained solution θ → z(θ) is increasing
for all θ in

[
θ∗, θM], providing θ∗ defined by λ(p(θ∗)) = 2 is below θM.

IV.2. Log-Concave and Log-Convex Distributions

In this Subsection, we maintain Assumption 2 and establish properties of the optimal so-
lution using log-concavity or log-convexity. Any given function f is said to be log-concave on
an interval if and only if log( f ) is concave on this interval. It turns out that if the probability
density function of productivity h(θ) is log-concave on its support, then the corresponding sur-
vival function, 1− H(θ), is also log-concave. To see that, let us consider π′ > 0. Then pπ′ <
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π2 ⇒ −π′ + pπ′ < π2 ⇒ −(1 − p)π′ < π2, implying a log-concave survival function. If
π′ < 0 instead, then −(1− p)π′ < π2 ⇒ −π′ + pπ′ < π2 ⇒ pπ′ < π2, implying again a
log-concave survival function. In addition, many commonly used distributions, such as the
normal, exponential, Weibull (with scaling parameter above 1) or power distributions, gener-
ate a log-concave h(θ) and, thus, a log-concave 1− H(θ). See Table 1 in Bagnoli and Bergstrom
(2005). Because log-concavity of the survival function is less demanding than log-concavity of
the pdf, we resort to the former rather than the latter whenever possible.

PROPOSITION 5. Let Assumption 2 be verified and consider any Aaberge social welfare func-
tion (including Gini, i.e., δ = 2). If the survival function 1− H(θ) is log-concave, then:

(i) Γ′(θ)− 1 < 0, so that z∗(θ) = z(θ) for any θ in
[
θ, θ
]
;

(ii) There is no bunching whatsoever.

Proof. For Aaberge social weights, note that:

Γ′(θ)− 1 =
2− δ− δpδ−1

δ− 1
+

p
δ− 1

−(1− pδ−1)π′

π2 (30)

where arguments on the RHS have been removed for notational convenience and δ ≥ 2. There
are two cases to consider:

- For θ such that π′ ≥ 0: Γ′(θ) ≤ 1 given that δ ≥ 2 and p belongs to [0, 1].

- For θ such that π′ < 0: Log-concavity of 1− H(θ) = 1− p implies that −(1−p)π′

π2 < 1.
Therefore,

Γ′(θ)− 1 <
2− δ− δpδ−1

δ− 1
+

p
δ− 1

≡ Υ(δ). (31)

It turns out that Υ′(δ) = −1− (pδ−1 + δ(δ− 1)pδ−2) < 0 for δ ≥ 2. Because Υ(2) = −p,
we conclude that, for δ ≥ 2, Γ′(θ)− 1 < 0. �

We now turn to the S-Gini family of social welfare functions. We are not able to show
that there is no bunching whatsoever for this whole family. Assuming a log-concave survival
function 1− H(θ), we are able to show that the solution θ → z∗(θ) is increasing above some
threshold denoted θ̂.

PROPOSITION 6. Let Assumption 2 be verified and consider any S-Gini social welfare function
(including Gini, i.e., δ = 2). If the survival function 1− H(θ) is log-concave, then:

- There is a productivity threshold θ̂ defined by p̂ = p(θ̂) = 1− [1/(δ− 1)]1/(δ−1);

- For any θ > θ̂, z∗(θ) is strictly increasing.

Proof. Given S-Gini weights, one obtains:

Γ′(θ)− 1 = δ(1− p)δ−1 − 2−
(1− p)

[
1− (1− p)δ−1)

]
π′(θ)

π2(θ)
, (32)

=
[
δ(1− p)δ−1 − 2

]
+
[
1− (1− p)δ−1

] [
−(1− p)

π′(θ)

π2(θ)

]
. (33)

Because δ ≥ 2, the first square bracket is non-positive. There are two cases to consider:
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- At any θ for which π′(θ) ≥ 0: the product of the two square brackets on the RHS of (33)
is negative except for p = 1 where it is zero. Consequently, Γ′(θ) < 0 for any θ in (θ, θ).
Then θ̂ = θ and z∗(θ) is increasing, implying z(θ) = z(θ) for all θ in

[
θ, θ
]
.

- At any θ for which π′(θ) < 0: We can rely on log-concavity of the survival function,
implying Γ′(θ)− 1 < (δ(1− p)δ−1− 2)+ (1− (1− p)δ−1) = (δ− 1)(1− p)δ−1− 1 ≡ Υ(δ).
In addition:

Υ(δ) < 0⇔ (1− p)δ−1 <
1

δ− 1
⇔ p̂ = p(θ̂) ≡ 1−

(
1

δ− 1

) 1
δ−1

< p. (34)

Consequently, Γ′(θ) < 1 for any p ∈ ( p̂, 1). �

For example, when δ = 3, we obtain p̂ = 1−
√

1/2 ≈ 0.29.
When δ tends to infinity, so that the S-Gini social welfare function tends to the Rawlsian

maximin, [1/(δ− 1)]1/(δ−1) tends to 1, so that p̂ tends to 1 and θ̂ to θ. Consequently, z∗(θ) is
increasing for all θ and z(θ) = z∗(θ). The following Proposition summarizes this result.

PROPOSITION 7. Let Assumption 2 be verified and consider the Rawlsian social welfare func-
tion (maximin). If the survival function 1− H(θ) is log-concave, then the optimal allocation
does not involve any bunching of types.

Four points are worth noting. First, it follows from Proposition 7 that, under Assumption
2, adopting the ”first-order approach” consisting in solving the Relaxed Problem instead of the
Full Problem implies no loss of generality whatsoever to solve for the maximin allocation as
soon as the survival function of productivity 1 − H(θ) is log-concave. Second, the findings
in Boadway et al. (2000) regarding the absence of bunching for any exponential distribution of
productivity and quasi-linear in leisure preferences are extended to quasi-linear in consumption
preferences. Third, the result in Boadway and Jacquet (2008) regarding the absence of bunching
under a Weibull probability density for types (with scaling parameter above 1) and quasi-linear
in consumption preferences are a subcase of Proposition 7. Last, it is insightful to compare
p̂ to the value of p∗ introduced in Proposition 3 and for which λ(p∗) = 2. It turns out that:
p̂ > p∗ ⇔ (1/(δ− 1))1/(δ−1) < (2/δ)1/(δ−1) ⇔ 2 ≤ δ, which is always satisfied. This is natural
because of the positivity of the second term of (29) when the conditions of Proposition 7 are
verified.

We were able to provide results for the S-Gini and A families. The following remark exam-
ines what would happen for the Bonferroni social welfare function.

REMARK 1 (Bonferroni Social Welfare Function). With Bonferroni social weights, Λ(p)− p =

−p log p, λ(p)− 1 = −1− log p and thus:

Γ′(θ)− 1 = −2 + log p
[

pπ′(θ)

π2(θ)
− 1
]

. (35)

If log p is concave, then pπ′(θ)
π2(θ)

< 1 and, thus, pπ′(θ)
π2(θ)

− 1 < 0. Because log p < 0, we then have:

log p
[

pπ′(θ)
π2(θ)

− 1
]
> 0. We therefore cannot say anything about the sign of Γ′(θ)− 1.

A second remark focuses on the variation of Γ′(θ).
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REMARK 2. Computing Γ′′(θ), we obtain:

Γ′′ = λ′π − (λ− 1)π′

π
− (Λ− p)(

π′′π − 2π′2

π3 ), (36)

in which the (θ) arguments were removed for notational convenience. We see that the sign of
Γ′′(θ) depends on the sign of π′ and π′′.

- Because λ′(θ) < 0 in L, the first term on the RHS of (36) is strictly negative.

- There exists θ∗∗ such that λ(p(θ∗∗)) = 1, λ(p(θ)) > 1 for θ < θ∗∗ and λ(p(θ)) < 1 for θ

> θ∗∗. Then, the second term on the RHS of (36) is always strictly negative when the sign
of π′ switches from positive to negative exactly at θ∗∗, which is the case for any single-
peaked distribution the mode of which coincides with θ∗.

- We always have Λ(p)− p > 0 for the S-Gini, A- and Bonferroni families. Moreover, a log-
concave probability density function satisfies π′′(θ)π(θ) < [π′(θ)]2 for any θ. This implies
that the third term on the RHS of (36) is always positive for a log-concave probability
density function, and therefore for any concave probability density function (concavity
implying log-concavity).

- Therefore, we cannot conclude about the sign of Γ′′(θ) for log-concave probability density
functions. There is indeed a conflict between the sign of the above terms. On the contrary,
if the probability density function h(θ) is log-convex. Then, π′′(θ)π(θ) > [π′(θ)]2, so that
the third term on the RHS of (36) is negative, as the first two terms.

The above remark allows us to formulate the following Proposition.

PROPOSITION 8. Let Assumption 2 be satisfied and social weights belong to the A-family (in-
cluding Gini). Let the probability density function be (i) single-peaked, (ii) log-convex and
such that (iii) its mode θM coincides with the value of productivity for which λ′(θ) = 1, i.e.,
θM = θ∗∗. Then, θ → z∗(θ) is increasing on it support, so that z(θ) = z∗(θ). The optimal
allocation is therefore full separating.

Proof. Given the above conditions, the function Γ′(θ) is always decreasing. In addition, Γ′(0) <
1. Consequently, Γ′(θ)− 1 < 0 for all θ in

[
θ, θ
]
. �

Proposition 8 applies to log-convex probability density functions. According to Table 3 in
Bagnoli and Bergstrom (2005), the Weibull (for scaling parameter below 1), the Gamma (for
scaling parameter between 0 and 1) and the Pareto distributions have this property. However,
Proposition 8 also requires the mode to be in the interior of the support, a condition that is not
satisfied for a Pareto distribution (often used to describe the distribution of productivities at the
top). For the log-normal distribution, often used to describe the distribution of productivities
(except at the top), we know that the cumulative probability function is log-concave, but the log-
concavity/log-convexity of the probability density function is undetermined in general. In that
case, we cannot sign Γ′(0)− 1 and can only rely on Proposition 4 making use of unimodality.

IV.3. Local Properties

In this Subsection, we establish a few local conditions regarding the solution in gross income
to the Relaxed Problem. First, note that Γ′′(0) = λ′(0)π(0)− (λ(0)−1)π′(0)

π(0) . For all parametric
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families introduced above, we have λ(0)− 1 > 0. Therefore, if we add the following Assump-
tion, we are able to sign z′(θ) in the lower part of the distribution.

ASSUMPTION 3. Γ′′(0) < 0 when π′(0) > 0.

We already know that Γ′(0)− 1 < 0. Therefore, if we make Assumption 3 and let π′(0) > 0,
the following Lemma is obtained:

LEMMA 1. Let Assumptions 2 and 3 be satisfied. If π′(0) > 0, then there is a θ̃ > θ (with
θ̃ possibly arbitrarily large) such that the solution in gross income to the Relaxed Problem is
strictly increasing on

[
θ, θ̃
]
.

For the upper bound of the support, θ, we have: Γ′′(θ) = λ′(θ)π(θ) + π′(θ)
π(θ)

. We know that

λ′(θ−) < 0 for any weights in L (where the notation θ− stands for the limit to the left of θ). In
addition, it is likely that π′(θ−) ≤ 0. We can therefore formulate the following Lemma.

LEMMA 2. Let Assumption 2 be verified. If π′(θ−) ≤ 0, the solution to the Relaxed Problem
θ → z(θ) is increasing on an interval with upper bound θ.

IV.4. Results for Specific Distributions

We now consider specific distributions of productivity to see whether we may say more
regarding the bunching or separating pattern of the optimal allocation.

PROPOSITION 9. Let Assumption 2 be verified, and productivity be described by a Pareto distri-
bution with parameters A > 0 and k > 1. For the Gini welfare function, the optimal allocation
is fully separating.

Proof. We have: H(θ) = (A/θ)k = E > 0, implying p = 1 − (A/θ)k = 1 − E, 1 − p = E,
π(θ) = k (A)k /θk+1 = kE/θ, π2(θ) = k2E2/θ2, π′(θ) = −k(k + 1)Ak/θk+2 = −k(k + 1)E/θ2.
Consequently,

Γ′(θ) = λ(p(θ))− 1 +
(Λ(p(θ))− p(θ))k(k + 1) E

θ2

π2(θ)
. (37)

Replacing with Gini weights, and using 1− p = E,

Γ′(θ) =
1
k
+ E(1− 1

k
) =

1
k
+ (1− p)(

k− 1
k

) < 1 (38)

for k > 1 and p ∈ [0, 1]. �

PROPOSITION 10. Let Assumption 2 be verified, and productivity be described by a Pareto
distribution with parameters A > 0 and k > 1. For social weights belonging to the A-family,
the optimal allocation is fully separating.

Proof. Starting from (37), and plugging weights for the A-family,

Γ′(θ) =
1

(δ− 1)
(1− δpδ−1) +

1
(δ−1) (p(1− pδ−1) (k+1)

k

E
. (39)
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Using a majoration argument, we establish that:

Γ′(θ) <
1

δ− 1
(1− δp(k)δ−1) +

1
δ−1 (p(k)(1− p(k)δ−1)2

1− pk
(40)

for any k > 1. Moreover, we check that: Γ′(θ, k = 1) < 1 for any p and deduce that:

1
δ− 1

(1− δp(k)δ−1) +
1

δ−1 (p(k)(1− p(k)δ−1)
k+1

k

1− p(k)
< 1, (41)

implying Γ′(θ) < 1. �

PROPOSITION 11. Let Assumption 2 be verified, and productivity be described by a Pareto
distribution with parameters A > 0 and k > 1. For S-Gini (including Gini) welfare weights,
then the sign of Γ′(θ)− 1 follows that of p̃− p(θ) with p̃ = 1− ( k−1

1+k+kδ )
1

δ−1 .

Proof. With S-Gini weights:

Λ(p)− p = 1− (1− p)δ − p = (1− p)(1− (1− p)δ−1) (42)

and λ(p)− 1 = δ(1− p)δ−1 − 1. Using 1− p = E,

Γ′(θ) =
1
k
+ Eδ−1(δ +

(k + 1)
k

) =
1
k
+ Eδ−1(

1 + k + kδ

k
). (43)

Consequently,

Γ′(θ) ≶ 1 ⇔ Eδ−1(
1 + k + kδ

k
) ≶

k− 1
k

. (44)

Rearranging, the latter is equivalent t o: p ≶ 1− ( k−1
1+k+kδ )

1
δ−1 . �

V. THE DISCRETE POPULATION CASE

The objective of this Section is to highlight the similarities and differences between the so-
lutions to the rank-dependent optimal income tax problem for a continuous population and
for a discrete population. The discrete population framework can be seen as an extension to
the setting developped in Simula and Trannoy (forthcoming). Optimal income taxation with
a finite number of types has been examined by Stiglitz (1982, 1987), providing key insights in
a two-type model. This setting was extended to any given number of agents by Röell (1985)
under a very weak redistributive assumption, by Weymark (1987, 1986a,b) when agents have
quasilinear-in-consumption preferences, and then by Simula (2010) when preferences are quasi-
linear, linear in gross income, as in Equation (4). See also Simula and Trannoy (2011), in which a
discrete-type optimal income taxation model is used to decentralize the so-called ”ELIE” trans-
fers proposed by Kolm (2004). To a large extent, these studies pay attention to the character-
ization of the socially optimal gross-income/net-income allocation, which contrasts with the
literature considering a continuum of types, the main focus of which is the derivation of opti-
mal marginal tax rates (for a survey see, e.g., Piketty and Saez (2013)).
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V.1. Continuous Benchmark

As a benchmark, we recall elements obtained in Simula and Trannoy (forthcoming) for a
continuous type space. We first note that the elasticity of taxable income with respect to the
marginal retention rate is equal to:

ε1−T′(z, θ) =
∂z

∂(1− T′)
1− T′

z
=

v′z(z; θ)

zv′′zz(z; θ)
, . (45)

while the elasticity of taxable income with respect to productivity is given by:

εθ(z, θ) =
∂z
∂θ

θ

z
= −

θv′′zθ(z; θ)

zv′′zz(z; θ)
. (46)

The ratio of both elasticities, denoted e(z, θ), is equal to:

e(z, θ) ≡ ε1−T′(z, θ)

εθ(z, θ)
= − v′z(z; θ)

θv′′zθ(z; θ)
. (47)

Given these definitions, Proposition 2 in Simula and Trannoy (forthcoming) establishes that
optimal marginal tax rates satisfy:

T′∗(z∗)
1− T′∗(z∗)

=
1

e(z∗(θ); θ)︸ ︷︷ ︸
A

1− p(θ)
θπ(θ)︸ ︷︷ ︸

B

Λ(p(θ))− p(θ)
1− p(θ)︸ ︷︷ ︸

C

. (48)

In this ABC formula, marginal tax rates are the product of three factors respectively: A captures
efficiency, B depends on the type and C summarizes ethical views.

V.2. Discrete Setting

We now turn to the discrete setting. The size of the population is normalized to 1. We define
the type distribution by a discrete probability measure {θk, πk; k = 1, ..., K}, where the support
is a finite set of K points in a compact subset A of the positive real line. The probability of any
subset S of A is given by

p(S) = ∑
θk∈S

πkδk (49)

with δk the Dirac measure at θk. We let F(x) be the CDF, i.e., the step function corresponding to
this discrete probability measure. Namely, F : A → [0, 1] with p = F(θ) gives the cumulative
proportion of people for whom θk ≤ θ for any θ in S . By construction, we have:

pk =
k

∑
j=1

πj, (50)

which corresponds to the rank of agents with productivity θk. For later use, note that pk −
pk−1 = πk. In addition, it should be highlighted that p = F(θ) is constant between two consec-
utive steps (θk, θk+1) of the CDF. We define the quantile function as the right inverse of F, i.e.,
F−1(p) = supF(θ)≤p θk . The marginal weights λ(p) and cumulative weights Λ(p) are step func-
tions, with an upward jump at each θk, and a plateau for any θ in [θk, θk+1[. The rank dependent
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social welfare function is therefore given by:

W =

1∫
0

λ(p)F−1(p)dp. (51)

Evaluating the integral for the discrete distribution, we obtain:

W = θ1

p1∫
0

λ(p)dp + θ2

p2∫
p1

λ(p)dp + ...θK

pK∫
pK−1

λ(p)dp = ∑
k

θk [Λ(pk)−Λ(pk−1)] . (52)

If we denote by g(pk) the per-capita social weight of group k, i.e.,

g(pk) =
Λ(pk)−Λ(pk−1)

pk − pk−1
(53)

the social objective may be rewritten as:

W =
K

∑
k=1

θk · g(pk) · πk. (54)

Applying the mean value theorem, there exists for every k, a cumulative probability p in [0, 1],
with pk−1 < p < pk, such that g(pk) = λ(p). Given that λ(p) is strictly decreasing in L, the
per-capita social weight g(pk) is also strictly decreasing with k.

V.3. Marginal Tax Rate Formula

The way in which the optimal marginal tax rates are derived is formally similar to Sim-
ula (2010). The novelty is to show the similarities with the derivation of formulas for optimal
marginal tax rates in the continuous case. In this way, we complement the important article by
Hellwig (2007), which shows that optimal income taxation in the tradition of Mirrlees (1971) is
built on a single rock, irrespective of whether the population is continuous or discrete. How-
ever, Hellwig (2007) does not provide a comparison of optimal income tax formulas for either
a continuous or a discrete population.

The proof exploits the fact that, when Assumption 1 is satisfied, only the local and down-
ward incentive-compatibility conditions are binding. This implies that an incentive-compatible
allocation must be such that v(zk+1; θk+1) = v(zk; θk+1) for any k = 1, ..., K − 1. This corre-
sponds to the first-order condition for incentive compatibility (7) highlighted above. The equiv-
alent to the second-order condition for incentive compatibility (8) is now: z = (z1, ..., zK) non-
decreasing in the sense that zk+1 ≥ zk for any k = 1, ..., K − 1. See Guesnerie and Seade (1982)
for a detailed presentation. On this basis, and following the same steps as in Simula (2010), it is
straightforward to establish that the Relaxed Problem formulated above is now equivalent to:

PROBLEM 3 (Relaxed Discrete-Population Problem). Find gross incomes z1, ..., zK maximizing:

W =
K

∑
k=1

θk · g(pk) · πk −
K

∑
k=1

(Λk − pk) [v(zk; θk)− v(zk; θk+1)] . (55)
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It is worth noting that (55) is analogue, in the discrete setting, to (20) in the continuous case.
The Full Discrete-Population Problem is similar, with the extra requirement that the solution
vector z is non-decreasing. From now on, we focus on the ”first-order approach” and assume
that the monotonicity condition on z is verified. WhenW as defined in (55) is maximized:(

1− v′z(zk; θk)
)

πk − (Λ(pk)− pk)
(
v′z(zk; θk)− v′z(zk; θk+1)

)
= 0, ∀k = 1, ..., K− 1. (56)

In the continuous-population case, the above condition corresponds to (21). We let:

T′(zj; θk) = 1− v′z(zj; θk). (57)

This corresponds to the ”implicit marginal tax rate” faced by the θk-individuals at gross income
zj. In particular, T′(zk; θk+1) corresponds to the marginal tax rate an agent with productiv-
ity θk+1 would face when choosing the gross-income level zk designed for the θk-individual.
Note that T′(zj; θk) only depends on gross income because, in the gross-income/net-income
space, any given θk-individual’s indifference curves are obtained from one another through
vertical displacements, due to quasilinear-in-consumption preferences. Using the above defini-
tion, Equation (56) may be rewritten as:

T′(zk; θk) =
Λ(pk)− pk

πk

[
v′(zk; θk)− v′(zk; θk+1)

]
,

=
1− pk

πk

Λ(pk)− pk
1− pk

[
v′(zk; θk)− v′(zk; θk+1)

]
. (58)

Following Simula (2010), we define the Spence-Mirrlees wedge as:

SM(zk; θk; θk+1) = T′(zk; θk+1)− T′(zk; θk) = MRS(zk; θk)−MRS(zk; θk+1),

= v′z(zk; θk)− v′z(zk; θk+1), (59)

where MRS(zj; θk) stands for the marginal rate of substitution of a θk-agent at gross income
zj. Under Assumption 1, the Spence-Mirrlees wage SM(zk; θk; θk+1) is positive. Using this
definition, (59) becomes:

T′(zk; θk) =
1− pk

πk

Λ(pk)− pk
1− pk

SM(zk; θk; θk+1). (60)

In this form, the optimal marginal tax rate appears as the product of three factors: the ”de-
mographic” factor (1− pk)/πk depends on the distribution of the population across ranks; the
”ethical” factor (Λ(pk)− pk)/(1− pk) depends on the society’s preference for redistributing in-
comes across ranks, as captured by p → Λ(p); and the last factor SM(zk; θk; θk+1) ensures that
marginal tax rates are adjusted in such a way that indirect utility increases at a sufficient rate
to prevent downward mimicking of θk-indivuals by θk+1-individuals. Formula (60) shows in a
transparent way the role played by the Spence-Mirrlees condition (here Assumption 1), which
was key for the solution to the optimal income tax problem as emphasized in Mirrlees’s Nobel

20



Lecture (Mirrlees, 1997). Dividing (60) by 1− T′(zk; θk) = v′(zk; θk), we obtain:

T′(zk; θk)

1− T′(zk; θk)
=

1− pk
πk

Λ(pk)− pk
1− pk

SM(zk; θk; θk+1)

v′z(zk; θk)
. (61)

For a discrete population, gross income is not a function, but a vector taking K values, one
for each productivity level. Each of these k values implicitly depends on the marginal tax rate
faced by the θk- individuals, and thus on the retention tax rate, as well as on productivity θk.
Using the differentiability of indifference curves, the elasticities of gross income with respect
to the retention rate (assuming a constant marginal tax rate) and productivity, defined in (45)
and (46) respectively, directly translate to the discrete population setting. To make use of these
definitions, we may rearrange the last factor in the right-hand side of Formula (61) as follows:

SM(zk; θk; θk+1)

v′z(zk; θk)
=

1
zkv′′zz(zk; θk)

MRS(zk; θk)−MRS(zk; θk+1)

v′z(zk; θk)/(zkv′′zz(zk; θk))

=
θk − θk+1

zkv′′zz(zk; θk)

1
ε1−T′(zk; θk)

MRS(zk; θk)−MRS(zk; θk+1)

θk − θk+1

≈ − θk+1 − θk
zkv′′zz(zk; θk)

1
ε1−T′(zk; θk)

MRS′θ(zk; θk), (62)

where the approximation is valid for θk+1 sufficiently close to θk. Because MRS′θ(zk; θk) =

v′′zθ(zk; θk), we obtain:

T′(zk; θk)

1− T′(zk; θk)
≈ 1− pk

πk

Λ(pk)− pk
1− pk

1
ε1−T′(zk; θk)

−θkv′′zθ(zk; θk)

zkv′′zz(zk; θk)

θk+1 − θk
θk

,

≈ 1− pk
πk

Λ(pk)− pk
1− pk

εθ(zk; θk)

ε1−T′(zk; θk)

θk+1 − θk
θk

,

≈ 1
e(zk; θk)

1− pk
θkπk

Λ(pk)− pk
1− pk

(θk+1 − θk) , (63)

where the behavioral term e(zk; θk) is equal to the ratio ε1−T′(zk; θk)/εθ(zk; θk). In this form, the
first-order approximation of the optimal marginal tax rates obtained for a discrete population
is given by the same ABC terms as in the continuous-population case (see Equation (48)), mul-
tiplied by θk+1 − θk. When θk+1 tends to θk, the RHS of (63) tends to zero. This implies that
this approximation does not converge to the continuous-population formula when θk+1 and θk

become arbitrarily close. Indeed, by (60), two consecutive marginal tax rates do not correspond
to the same discrete change, with:

T′(zk; θk) =
1− pk

πk

Λ(pk)− pk
1− pk

SM(zk; θk; θk+1), (64)

T′(zk+1; θk+1) =
1− pk+1

πk+1

Λ(pk+1)− pk+1
1− pk+1

SM(zk+1; θk+1; θk+2). (65)

Taking the limit of (63) does not provide the adequate limit.
Bastani (2015) compares graphically the solutions of the optimal income tax model for a con-

tinuous population, approximated by a discrete distribution, and for a discrete population. The
considered social objective is weighted utilitarianism. He concludes that ”the discrete model
should be considered a viable alternative to the continuous model when using numerical sim-
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ulations to derive optimal income tax” based on a comparison between curves obtained for a
2000 point approximation. In Simula and Trannoy (forthcoming), we provide simulations of
the continuous rank-dependent model, using a discrete approximation of the type distribution.
The question of the numerical convergence remains open in our setting.

VI. CONCLUSION

This article contributes to the exploration of bunching by considering the rank-dependent
optimal income tax setting (Simula and Trannoy, forthcoming). Paying special attention to two
families, generating welfare weights depending on a single-dimension parameter, we derive
conditions on the primitives of the model precluding or implying bunching in the social opti-
mum. In particular, we obtain general results for bunching not to occur for either log-concave
type’s survival functions or log-convex type’s pdf, providing the dis-utility of gross income ver-
ifies an assumption on its third cross derivatives. This assumption can be seen as an additional
sorting condition, linking types and preferences, which complements Spence-Mirrlees condi-
tion. An avenue for further research would be to explore whether this new condition could
help find conditions for a fully separating optimum allocation in the usual welfarist setting.

This article also exhibits ”ABC”-like formulas for optimal marginal tax rates in a discrete
population setting. If the formulas look like the ones obtained for a continuous population in
Simula and Trannoy (forthcoming), we show that the former do not converge to the latter when
the distance between two consecutive productivity levels tend to zero.

Because each population setting has some irreductible specificities, it would be of interest
to explore how comparative statics techniques and properties for discrete-population optimal
income-tax models introduced in Weymark’s (1987) seminal article should be adjusted when a
continuum of agents is considered. This would necessitate a conceptual adjustment of what is
meant by a change in productivity such as those considered for discrete populations by Brett
and Weymark (2008) and Simula (2010).
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