
HAL Id: hal-03555421
https://amu.hal.science/hal-03555421

Submitted on 6 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Second Order GDEVS Abstraction of Electronic Circuits
Nesrine Driouche, Maamar El Amine Hamri, Norbert Giambiasi

To cite this version:
Nesrine Driouche, Maamar El Amine Hamri, Norbert Giambiasi. Second Order GDEVS Abstraction
of Electronic Circuits. Society for Modeling and Simulation International (SCS); Society for Modeling
and Simulation International (SCS), 2016, �10.22360/SummerSim.2016.SCSC.017�. �hal-03555421�

https://amu.hal.science/hal-03555421
https://hal.archives-ouvertes.fr

Second Order GDEVS Abstraction of Electronic Circuits

N. Driouche M. Hamri N. Giambiasi
Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296

13397, Marseille cedex 20, France
{nesrine.driouche, amine.hamri, norbert.giambiasi}@lsis.org

ABSTRACT
Generalized discrete event is a well-known paradigm since
2000 to model and simulate continuous systems. Electronic
circuits is composed of individual electronic components ex-
cited by continuous signals in order to carry out complex op-
erations, to move data, etc. However the designers do not do
experimentations and analyses directly on electronic circuits,
they need conceptual models. Discrete event simulation pro-
vides to designers an alternative to analyse such circuits. In
this context, the GDEVS (Generalized Discrete EVent Sys-
tem) formalism provides an efficient framework to abstract
faithfully the trajectory of continuous systems.

The approach discussed in this paper, attempts to supply to
the designers of electronic circuits a framework based on
piecewise polynomial functions of second order to abstract
continuous signals and to allow discrete event simulations.
We have already designed a software tool to validate the dis-
cussed approach, which is under development.

Author Keywords
GDEVS; Logic Gates; Piecewise polynomial signals.

ACM Classification Keywords
I.6.5 SIMULATION AND MODELING (Model Develop-
ment) : Modeling methodologies.

INTRODUCTION
Nowadays, the use of electronic circuits in order to electrify
objects (personal computer, cellular phone, etc.) is an obvi-
ous fact. For example, the number of transistors in central
processor units (CPU) doubles each year (from 2300 transis-
tors at 1970 to 1 million at 2010 for the Itanium 2 processor
c©), smart cities grow more and employ more connected de-

vices (Internet of Things), etc. For these reasons, the design
and analysis of electronic circuits remains a topical research
field.

The Modeling and Simulation (M&S) covers the field of elec-
tronic circuits. It allows designers to experiment such circuits
without manufacturing; thus, a cheap but efficient solution
arises to designers and manufacturers. Moreover, the litera-
ture in this field provides two kinds of simulation. The dis-
crete time simulation widely used to compute output signals

SummerSim-SCSC 2016 July 24-27 Montreal, Quebec, Canada
c© 2016 Society for Modeling & Simulation International (SCS)

of designed circuits. But, the computation time remains con-
siderable due to useless computations that occur each update
of the time. Whereas, the discrete event simulation provides
basic and efficient algorithms to compute output signals at
right time with less statements.

By looking at discrete event simulation, Discrete Event sys-
tem Specification (DEVS) [8] provides a general and exten-
sible framework to design and to simulate any dynamic sys-
tem, so electronic circuits are perfectly adapted to this frame-
work. The designer may model elementary components us-
ing DEVS atomic, then he couples these components using
DEVS coupled to make the network of components which
represent the electronic circuit. Finally, the DEVS core simu-
lation computes expected outputs according to injected inputs
to the circuit.

Few works attempt to employ DEVS as a basis of modeling
and simulation logic gates (an abstraction of electronic cir-
cuits). Studies proposed in [7, 1] , use logic gates as an appli-
cation to DEVS in order to validate the proposed approaches
and do not tackle the main problems of logic gates. In fact,
these works use simple abstraction of input and output sig-
nals into two boolean values 0 and 1, they do not consider the
unknown state that occurs often in rs-latches and flip-flop at
initialization, synchronisation between concurrent subgates,
etc.

In ordert to approximate accurately signals of electronic cir-
cuits, we propose to use the Generalized Discrete EVent sys-
tem Specification (GDEVS) [3] to catch more faithfully the
signal dynamics. GDEVS is a uniform paradigm to model
and simulate continuous systems. In fact, Giambiasi & Car-
mona [2] showed that such a paradigm is able to model con-
tinuous functions (like integrator, etc.) using piecewise poly-
nomial functions. On our part, we successfully used GDEVS
to model and simulate logic gates based on piecewise linear
functions. However, we hope to extend this previous work to
piecewise polynomial functions of second order to approxi-
mate more accurately signals while computing the right time
of outputs.

The paper is organized into three main parts : the first part re-
calls definitions on GDEVS formalism, then the second part
discusses the proposed approach and highlights the contri-
butions of a second order GDEVS abstraction for the logic
gates; and finally, the third part introduces the software GDE-
VSLogic (currently under development) for modeling and
simulation of logic gates.

STATE OF THE ART

Generalized Discrete Event System Formalism
For complex real-world systems that are highly dynamic, the
use of piecewise constant input-output trajectories, for a given
sampling time interval, may not succeed in accurately mod-
eling the system behavior. Traditionally, under these cir-
cumstances, the sampling time interval is shortened to limit
the representational error and achieve acceptable accuracy,
at the cost of increased simulation execution time. GDEVS
[3] adopts a radically new approach wherein it focuses on
a system characteristic, namely the function that represents
the system behavior in the given time period, and increases
its complexity from an identity function (classical Discrete
Event System models) to a higher order function. In this sec-
tion, we recall the concept of generalized discrete events.

A piecewise polynomial trajectory, expressed through sym-
bol w and shown in Figure 1, is a collection of individual
segments over a continuous time base.

w(t)

tt3 t4t2t1

Figure 1. Piecewise polynomial trajectory.

The key characteristics include the following:

• There exists a finite number of time intervals [tei, tei+1],
with which tuples (a0, a1, ..., an) are associated, where the
ai are constants, and

• ∀t ∈ [tei, tei+1]w(t) = a0 + a1t++ ant
n

w[te0,ten] = w[te0,te1] ◦w[te1,te2] ◦ ...◦w[ten−1,ten] where ◦
represents the left concatenation operator over the individ-
ual segments.

The coefficient values of a given individual segment
w[tei,tei+1] are defined by the tuple (a0, a1, . . . ,). Formally,
the coefficient function Coef associates for each polynomial a
tuple of real constants over the time interval [te0, ten]. Thus,
Coef : Ψ → An, where Ψ a set of polynomials, and A a
set of real constants. Also, the following function holds for
a given continuous polynomial segment w[tei,tei+1] over the
time interval [tei, tei+1], the components of the coefficients
are (n+ 1) constants.

In order to determine a polynomial trajectory on a time inter-
val, given the coefficients as a function of time, the inverse
function, Coef−1 is defined:

Coef−1 : An → P where P is the set of polynomials of
order n+ 1

Coef−1(a0, a1, . . . , an) = a0 + a1t+ . . .+ ant
n

and w[ti,tj] ◦ Coef−1 : An → A
′

Consequently, under GDEVS, events are defined for the coef-
ficients obtained from piecewise polynomial trajectory. Oth-
erwise, a coefficient event or a generalized discrete event is
an instantaneous change of at least one of component tuple
that defines the coefficient values, i.e. : in a given time inter-
val [t0, tn] of a piecewise polynomial trajectory, there exists
a generalized discrete event at time ti if:

Coef(w[ti−1,ti]) 6= Coef(w[ti,ti+1])

In this study, we are interested in GDEVS event of sec-
ond order that means signals are approximated into piece-
wise polynomial functions of second order. Consequently,
each GDEVS event is a triplet of constants (a, b, c) ∈ R3

and the corresponding trajectory is the polynomial function
at2 + bt + c. Thus, the trajectory shown in Figure 1 may be
defined with the following piecewise function :

trajectory(t) =

a0t

2 + b0t+ c0 if t ∈ [0, t1[
a1t

2 + b1t+ c1 if t ∈ [t1, t2[
a2t

2 + b2t+ c2 if t ∈ [t2, t3[
a3t

2 + b3t+ c3 if t ∈ [t3, t4[

(1)

This abstraction corresponds to four GDEVS events
(a0, b0, c0), (a1, b1, c1), (a2, b2, c2) and (a3, b3, c3) that oc-
cur at time 0, t1, t2 and t3 respectively.

M&S Software of Logic Gates
The World Wide Web (WWW) provides a lot of tools to de-
sign and simulate logic gates like simulink c©, verilog c©, etc.
Some of them provide basic functionalities useful to learn
simple rules on the boolean logic (truth tables), the others
provides advanced functionalities like formal verification of
circuits, stochastic simulations, etc. Tools like verilog and
FPGA are based on programming-driven design for which
knowledge on programming is indispensable for any design
of a given logic gate. Such a design allows constructing large
scale circuits with high number of basic and reused gates and
a complex coupling; unlike tools with graphics-driven design
in which only simple and small circuit can be constructed but
remains a quick and efficient design.

In all these software, the design of logic gates is based essen-
tially on interconnected basic blocks. These gates are often a
composition of a basic gate and, or, or not in order to express
the functional view of a given electronic component and a de-
lay block to express the amount of time necessary for a given
digital pulse crosses the material. A digital pulse is a series of
rise and fall events well stamped according to a global clock.
In addition such a pulse is limited to two voltage values low
and high (by default 0 and 5.0 volts) which corresponds to 0
and 1 in boolean logic, respectively. Unfortunately, this is in-
sufficient to obtain accurate simulations of electronic circuits.

NEW APPROACH
Most methods and tools known from the literature employ a
simple abstraction of a pulse of circuits into two values 0 and
1 corresponding to low and high pulse values, respectively.
In order to design more accurately a pulse, we introduce the

concept of generalized discrete event of second order and the
basic logic gates and, or and not based on this new concept.

GDEVS Event of Second Order
In [5], we proposed the concept of first order abstraction for
discrete events and we applied it successfully to design and
simulate logic gates. However, a second order abstraction
of pulse allows us to design it more accurately over time;
whereas, first order and constant discrete events introduce
more errors. In addition, by using a pulse designed with a
generalized discrete event of second order, we are able to ex-
pect times of crossing with another pulse, and high and low
voltages mathematically, by resolving equations of second or-
der.

Let us consider the following pulse shown on Figure 2, and
the abstractions given on Figures 3, 4 and 5.

Vout

t

Threshold 1

Threshold 0

t1 t2

Figure 2. An electronic pulse.

Vout

tt1 t2

Figure 3. A boolean abstraction of a pulse.

Vout

tt1 t2 t3t0

Figure 4. A linear abstraction of a pulse.

Vout

tt1 t2 t3t0

Figure 5. A second order polynomial abstraction of a pulse.

Figure 5 shows clearly that an abstraction of second order
follows nearly the dynamics of the pulse shown in Figure 2
than those shown in Figures 3 and 4.

Logic Gates Based on Second Order Abstraction
In the electronic circuit field, engineers design a logic gate by
a composition of three blocks in series :

• a boolean functional bloc: may be the and, or or not logical
operator,

• a delay block: catches the input signal and delays it to send
out it at right time, and

• an amplifier block: increases or decreases the power of the
input signal with limiting its value between low and high
voltages.

In order to design such a logic gate in optimized way, we
decide to encapsulate these blocks inside a unique GDEVS
atomic model of second order to design accurately output
pulses and their times. The functions δext(), δint(), λ() al-
low representing the functional block, the function timelife()
allows representing the delay block and the function λ() al-
lows taking into account the block amplifier when the output
is ready to be sent out. Consequently, these three blocks are
designed with only one block.

The purpose of this model is to compute the output pulse ac-
cording to input ones:

pulseout(t) = function(pulsein1(t), pulsein2(t), . . .) (2)

The boolean function is computed according to one of the
following equations :

Andout(t) = min(pulsein1(t), pulsein2(t), . . .) (3)

Orout(t) = max(pulsein1(t), pulsein2(t), . . .) (4)

Notout(t) = Vhigh−low − (pulsein(t)) (5)

Knowing that the operator min (max) is equivalent to the and
(or) logic and the output pulse corresponds to one of the in-
put pulses, we use these operators in order to compare input
pulses (in form of polynomial functions) between them and
to compute output ones. For the boolean function not, we
need only to invert the received pulse by considering the limit
voltages (high and low).

Let us recall that in this study, input and output pulses are
piecewise polynomial functions of second degree in order to
define generalized discrete events of second order, i.e, any
pulse is described with a list of three real values (a, b, c) as
follows:

pulse(t) = at2 + bt+ c|a, b, c ∈ R and t ∈ R+ (6)

Moreover, for seek of simplicity we consider the logic gates
and and or with only two input ports and one output port.
Consequently, the GDEVS atomic models and and or hold :

• two input ports and one output port.

• the set of state variables {a1, b1, c1, a2, b2, c2} to save the
coefficients of each input pulse and the set {an, bn, cn} to
save the coefficients of the pulse to send out at crossing
time tn. Note that at crossing time the two input pulses
input1() and input2() are equal.

• the functions δext() and δint() that compute the next state
for each pulse that occurs.

• the function λ() that computes the output to send out.

• the function lifetime() that computes the remaining time for
the next output pulse and that considers the specified delay.

Note that the resolution of the equation input1(t) =
input2(t) allows computing exactly at which times the input
pulses will cross.

Example
Let us consider an ideal logic gate and with two inputs, one
output, without delay (0 t.u) and without amplifier. The two
inputs follows these trajectories :

input1(t) =

{
t2/10− t+ 3 if t ∈ [0, 10[
t2/9− t− 7 if t ∈ [10,∞[

(7)

input2(t) =

 0 if t ∈ [0, 2[
t2 − 22t+ 50 if t ∈ [2, 20[
t2 + t+ 1 if t ∈ [20,∞[

(8)

At initialization (time = 0), the output of this gate corre-
sponds to the input2(t = 0) = 0 because it is smaller
than the input1(t = 0) = 3. Then, when a new event
occurs at input2 at time = 2, the new output corresponds
to input1 (input1(t = 2) < input2(t = 2)). At first
crossing time tn1 = 2, 49 (after having solved the equa-
tion input1(t) = input2(t) on the time interval [2,∞[, i.e,
t2/10 − t + 3 = t2 − 22t + 50), the output corresponds
again to input1 because at this time and after, input1(t) in-
creases more lately than input2(t). This affirmation is based
on the derivative function of each trajectory (the trajectory
with the smallest derivative value will have the smallest volt-
age at crossing time until a new event occurs).

Note that this reasoning is applied each time a new input is
received on a given port.

SIUMULATION

Core Simulation
Any classic DEVS simulator, designed in object oriented
paradigm, may simulate a given electronic circuit described
in GDEVS. It should allows defining logic gates in hierar-
chical way in order to use existing ones and more important
creating GDEVS events and managing them correctly.

fwkDEVS [4] is a Java c© general and extensible framework
for the simulation of DEVS and GDEVS models. It allows
designing both atomic and coupled models through the class
DEVSModel. The specialization of class DEVSCoupled allows
the instantiation of submodels and the implementation of the
method select() that accepts one input argument the dif-
ferent conflicting models and identifies which one must be
processed first.

For our study of electronic circuits, it is easy to specialize
the class DEVSModel to design any logic gate. Algorithm 1
is imported into the class GateCoupled through the method
select(). Consequently, the designer focuses on defining the
instances of reused gates and implementing the coupling over
them using the methods addIC(), addEIC() and addEOC()

that correspond to the internal, external input and external
output couplings respectively.

At the end, the designer should couple the circuit with gener-
ators (instances of the class Generator) to input signals and
with transducers (instances of the class Transducer) to fol-
low gate outputs. Then, the simulation may start after having
edited the input file of each generator; consequently transduc-
ers will output files storing each signal sent out by an excited
gate.

Conflicting Gates
In a given circuit, a conflict occurs when there are a lot of
subgates candidate to send out a signal. This fact amplifies
when the delay gate is null (0 t.u). According to how immi-
nent subgates are processed by the simulator, they may or not
send out signals which leads to errors.

Let us consider two gates and0 and and1 in series with a null
delay. Suppose at time t the two gates are imminent, i.e.
ready to fire an internal transition. By looking at the struc-
ture of the composite gate, if we handle the gate and1 then
the gate and0, the gate and1 will send out two signals at the
same time t. However, the second scheduling which handles
the gates and0 then and1 allows the correct processing and
produces for each gate only one signal at time t.

In classic DEVS and GDEVS, the function select() handles
conflicting events. It allows the designer to define in how
manner the imminent submodels should be proceed. How-
ever, it is necessary for the designer to expect the scenarios of
conflicting events and to define which of the imminent model
should be selected. In simple models with less submodels
and light coupling between them, the designer may expect the
conflicting scenarios and may describe the useful statements
to handle imminent models. However, in complex model,
where there are a lot of submodels and interlaced coupling,
the designer is not able to enumerate conflicting scenarios. A

realistic solution consists of designing an algorithm able to
handle imminent models, according to the application nature.

In logic gates, in order to have the correct sequence of output
signals, the selected imminent gate should not be influenced
by no other imminent one. Thus, we propose Algorithm 1
to handle any simulation where there are imminent gates to
handle.

Algorithm 1 Selection of imminent gates
Require: l: list of imminent gates l’: additional list

copy l to l’
for each gate g ∈ l do

if influencer of g ∈ l then
withdraw g from l’

end if
end for
return l’

Algorithm 1 computes and identifies imminent gates without
imminent influencers 1. At the end, we obtain the set of im-
minent gates to handle by the simulator.

While the circuit is defined with a null delay, we should gen-
eralize the definition of influencers of a subgate to include
each subgate connected upstream.

GDEVSLogic: A SOFTWARE FOR M&S LOGIC GATE
GDEVSLogic is a software developed to end-users. It allows
designing, checking, simulating and visualizing outputs of
logic gates. We organized its architecture around four layers
independent and superposed as shown in Figure 6.

Gate Graphics

Gate XML

Gate Object

fwkDEVS

M
od

el
in

g
Si

m
la

tio
n

Figure 6. The four layers of GDEVSLogic.

The choice of this architecture consists on the well-known
architecture in software engineering : the n-layered architec-
ture [6]. Such an architecture provides for designers a clear
and modular architecture, easy maintainability in order to fix
errors and extensibility to add packages of new functionali-
ties. Thus, each layer from our architecture assumes a limited
functionalities and communicates only with the higher layer
in order to to have a less coupling.
1In a given DEVS/GDEVS network, a model may influences an-
other by transmitting it output via coupling. So for any model there
are two coupling functions that define the sets of model- influencers
and influencees.

Gate Graphics
This layer provides a user-graphical interface to design logic
gates. We used the JavaFX technology which is a set of
graphic software and media of Java SE 8 c© and which al-
lows the developers to conceive (design), to create, to test, to
debug and to deploy customer applications rich which work
in a uniform way in various platforms. The JavaFX applica-
tions may use Java API (Application Programming Interface)
libraries to reach capacities of the native system and connect
to the middle-ware applications.

After launching the tool will display a graphical interface (see
Figure 7), where at left the user will find libraries of basic and
defined gates that may reuse. Before beginning the modeling
of the new compound, the user must specify the name and
number of inports and outports of the model to create by go-
ing to File → New → Gate. Then after confirmation, a box
appears with at left the inports and at right the outports.

Figure 7. A screen copy from GDEVSLogic interface.

From this interface, the end-user may drag and drop existing
logic gates from the library, in order to reuse them. Then, he
couples dragged logic gates with connectors in drag and drop
mode.

Moreover, the user-interface allows the end-user to save the
circuit for further reuses. This is the role of the XML layer
which ensures the functionalities of check and storage.

Gate XML
The modeled circuit is saved as an XML file (eXtensible
Markup Language) that is somehow enhanced HTML (Hy-
pertext Markup Language) to define new tags. It is indeed
a language to format documents using tags (markup). In fact
XML tags describe the content rather than the presentation. In
our architecture, the XML file contains the name of the elec-
tronic circuit and the number of inports and outports, the list
of reused subgates and the three different couplings (internal,
external input and external output couplings). For example
the tag <Internal Coupling> contains the name of the two
subgate ports that connects:

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
. . .

< I n t e r n a l c o u p l i n g> b e g i n n i n g t a g
<From>
<Name>name of t h e f i r s t g a t e< / Name>
<P o r t>t y p e o f p o r t , i n p o r t o r
o u t p o r t< / P o r t>
< / From>
<To>
<Name>name of t h e second g a t e< / Name>
<P o r t>t y p e o f p o r t , i n p o r t o r
o u t p o r t< / P o r t>
< / To>

< / I n t e r n a l c o u p l i n g> end t a g

The layer Gate XML consists on the JDOM (Java Document
Object Model) API that allows parsing trees of objects into
XML documents. This parser allows as well the manipulation
of XML documents to add, delete, and update the elements
(nodes) of documents. The main advantage is that JDOM
object was specialized in our architecture to keep the structure
of a given gate and then check the designed tree according to
the GDEVS coupled definition in order to detect errors to fix.
For that purpose, we construct a base of errors that end-users
may make while they design the circuit. Figure 8 illustrates
some frequent and infrequent errors that occur for composite
and basic logic gates.

(a) Forbidden feed back cou-
pling for atomic gate.

(b) Forbidden coupling be-
tween inports and outports.

(c) Missing coupling between
subgates

(d) Forbidden coupling be-
tween inports to/from out-
ports

Figure 8. Some errors occurring in designing circuit.

Note that in DEVS and GDEVS, connections between ports
are unidirectional. Whereas at the layer Gate Graphics, con-
nectors have no direction, that means an input port of a given
subgate may be linked to an output port of another gate, in
graphics. Obviously, this fact saves the end-users from addi-
tional errors but the simulation should take care and should
invert such connectors.

However, we decide that the layer Gate XML carries out the
fixture of such connections that are not mistakes but a useful
facility of design for end-users; even if they provoke simula-
tion errors. Thus, this layer should identify such connections
and inverts them. At the end, the XML file of the given gate
keeps a structure and a coupling valid of the graphical gate.

Gate Object

The layer Gate Object is the last layer of modeling and the
starting point of simulation. In fact, the simulation is based
on Java classes generated from the XML file that keeps the
structure of the gate to simulate. This layer holds a second
parser which transforms the Gate XML file into two Java
classes ready to be compiled and plugged to the simulator
fwkDEVS.

The first class keeps the structure of the designed gate; and
a second class that defines the network to simulate in which
each input port and each output port of the gate designed is
coupled to a generator and a transducer respectively. The gen-
erator classes load edited input files from the tool and trans-
ducers classes write output signals in readable files. Finally,
the end-user defines the simulation duration and may start it.

Note that the tool compiles the two generated classes thanks
to the Java compiler. Then the simulator loads output class
files in order to run the simulation and to print output files.

Moreover the layer Gate Object allows end-users with knowl-
edge on programming, designing large scale of logic gates
and so overcoming the limitation of the graphical design
which takes into account only small-scale and simple logic
gates. For that, the designer should extend the class
DEVSGate, then he should define the repetitive statements in
order to instantiate subgates and to make the coupling be-
tween them. Note that such a gate may be plugged in our
tool and be reused by end-users as a black box to define new
circuits.

Recall that the transformations of the circuit from the graph-
ics until the corresponding code are free from errors. The de-
signer may check at each step (Gates XML and Object) that
the obtained specifications correspond to the initial circuit,
by activating assertions and carrying out them in the back-
ground. For example, while the end-user reuses a set of gates
and couples them, the tool may check (at layers Gate XML
and Gate Object) that the reused gates are declared and the
made coupling is in respect with that shown at the layer Gate
Graphics.

CONCLUSION
In this paper, we extend our previous work to model and sim-
ulate electronic circuits based on GDEVS of first order, to
GDEVS of second order. This new approach allows repre-
senting more faithfully the trajectory of signals given to and
output from the electronic circuit. Note that the use of a sec-
ond degree equation solver allows the designers to compute
the right time at which input signals may cross. An impor-
tant feature that reinforce the mathematical feature of the ap-
proach.

In order to make the GDEVS modeling and simulation of
electronic circuits accessible to end-users, we developed a
software tool GDEVS Logic c©. It is based on a layered ar-
chitecture that consist on Graphics, XML and Object code
layers, each one holds a limited functionalities. The passage
from a layer to another generates a specification which is con-
form to the designed circuit. At the end, the simulation of
circuit is carried out and results may viewed under curves.

The current approach uses the transport delay in which only
output signals are delayed comparing to input ones. How-
ever, GDEVS allows us to customize the delay to inertial one
by designing the right functions and so ignore shorter input
signals.

One of the main future works that we aim is to supply the pro-
posed approach with a formal verification technique. Another
way to trust the simulation results.

REFERENCES
1. Chen, B., and Vangheluwe, H. Symbolic flattening of

DEVS models. In Proceedings of the 2010 Summer
Computer Simulation Conference. Society for Computer
Simulation International, Society for Computer
Simulation International (Orlando, USA, 2010), 209–218.

2. Giambiasi, N., and Carmona, J. Generalized discrete
event abstraction of continuous systems: GDEVS
formalism. Simulation Modelling Practice and Theory 14
(2006), 47–70.

3. Giambiasi, N., Escudé, B., and Ghosh, S. GDEVS: A
generalized discrete event specification for accurate
modeling of dynamic systems. Simulation: Transactions
of the Society for Modeling and Simulation International
17, 3 (2000), 120–134.

4. Hamri, M. fwkDEVS: A DEVS/GDEVS modeling and
simulation framework, 2016.
http://www.lsis.org/hamria/fwkdevs.html.

5. Hamri, M., Giambiasi, N., and Naamane, A. Generalized
discrete events for accurate modeling and simulation of
logic gates. Concepts and Methodologies for Modeling
and Simulation Part III (2015), 257–272.

6. Microsoft Patterns & Practices Team. Application
Architecture Guide, 2nd ed. 2009.

7. Wainer, G., Daicz, S., and Troccoli, A. Experiences in
modeling and simulation of computer architectures in
DEVS. Transactions 18, 4 (2001).

8. Zeigler, B. P., Praehofer, H., and Kim, T. G. Theory of
Modeling and Simulation. Academic Press, 2000.

APPENDIX

GDEVSLogic SCREEN COPIES

The User Interface of GDEVSLogic
See Figure 9.

Figure 9. An example of circuit using GDEVSLogic interface.

Simulation Results of GDEVSLogic
See Figure 10.

Figure 10. Simulation results using GDEVSLogic interface.

