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Gwenn Boedec, Julien Deschamps∗
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France

Abstract

We study the deflection by gravity of a circular elastic disk deposited

on a rigid support. The axisymmetric deflection induces a compres-

sive orthoradial stresses which leads to a wrinkling instability above

a critical threshold of the dimensionless gravity force. We study this

instability by a combination of experiments, numerical simulations

and analytical tools, with a particular focus on the role of geome-

try. We show that aspect ratio is a crucial parameter that controls

both the threshold of instability and the most unstable mode. The

influence of this parameter on the threshold can be catched by in-

troducing a new nondimensionalization of the transverse load.
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equation

∗Corresponding author
Email address: julien.deschamps@univ-amu.fr
Phone/Fax: (+33) 6 34 55 20 04/(+33 4 91 41 96 20
Address: IRPHE, 49, rue F. Joliot-Curie, 13384, Marseille, France

Preprint submitted to Elsevier July 11, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0020768321003048
Manuscript_0170a49e9b2ca237c0f3f91929d5367f

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0020768321003048
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0020768321003048


1. Introduction

Depositing a circular napkin on a circular table with a smaller

radius, one may observe that the outer boundary undulates, with a

wavelength depending on the ratio of the napkin radius and the table

radius. This is a manifestation of an elastic instability called wrin-5

kling, where the system releases some stretching energy by develop-

ing out-of-plane undulations. Many different systems may develop

wrinkles, like stretched [1] or sheared [2] rectangular elastic plates,

tensed circular elastic films under indentation [3, 4, 5], or deposited

on a droplet [6]. One prototypical situation to study wrinkling is the10

Lamé setup, where an annulus of elastic material is submitted to ra-

dial tension on its edges [7]. Depending on the differential tension,

a zone of compressive hoop stress may develop, which leads ulti-

mately to the formation of wrinkles. Role of geometry is intricate

: theoretical analysis [8] shows that aspect ratio has an importance15

on the wavenumber selection, and that pockets of instability over-

lap, which may lead to multistable systems. While the Lamé setup

is well-defined theoretically, its experimental realization is trickier

since it requires to induce a differential stresses at the edges while

still keeping the sheet planar (before wrinkling) : this has been re-20
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cently realized by using surface tension variations with surfactants

[9].

In other situations, the sheet is generally deformed out of plane,

and this deformation might also generate compressive hoop stress

: in a setup such as the napkin on the table, the gravity-induced25

deflection of the sheet is in fact the driving mechanism for the de-

velopment of a region under compression. A similar situation may

be encountered in the context of lightweight deployable space struc-

tures, like solar sails or solar power satellites [10, 11]. In this case,

the weight is replaced by the load of the solar light so that main-30

taining an (almost) flat shape is important for efficiency, and may

be attained by using centrifugal forces.

In this paper, we study gravity-induced wrinkling of the over-

hang part of an elastic disk deposited on a rigid circular support of

a smaller size. A theoretical study by [12] has shown that in the limit35

of a punctual support, there is a bifurcation between a one-folded

shape similar to a d-cone, and a two-folded shape. This study was

mostly concerned with asymptotic behavior in the fully non-linear

regime (large deflection). On the other hand, [13] study theoretically

(numerically) the deformation under gravity of a circular plate sup-40

ported by an inner ring, in the small to moderate deflection regime.
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They show that first an axisymmetric solution exists (no wrinkles),

and that, for further loading, this solution destabilizes, with a criti-

cal mode number and a critical load depending on the aspect ratio.

[14] then extended the theoretical study to include the effect of ro-45

tation and conducted some experiments showing the coexistence of

cos 2θ and cos 3θ deformations. Recently, [10] conducted a detailed

analysis of spinning transversely loaded membranes, coupling exper-

iments and numerical analysis with a buckling analysis of Föppl-von

Karman equations to study the effect of rotation on the wrinkling50

patterns. In the same manner, [11] considered the impact of the

spin-up of the disk on the buckled modes. Despite the strong effect

of the aspect ratio on the critical load and on the observed wavenum-

ber, both [14] and [10] conducted experiments with a unique fixed

aspect ratio (0.1 for [10] and 0.3 for [14]), focusing mostly on the55

importance of rotation : No systematic experimental diagram study

was conducted. As a first step the present study is concerned with

the influence of aspect ratio for a non-rotating disk, deflected only by

gravity. We systematically vary the relevant parameters to obtain

an experimental phase diagram of the system, and show that the60

two dimensionless parameters can be collapsed in a single one con-

trolling the transition between wrinkled and unwrinkled state. We
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rationalize this finding by developing an original asymptotic analy-

sis which predicts analytically the instability criteria. These results

are systematically validated by comparison with a buckling analysis65

close to the threshold and full numerical simulations of thin-shell

equations for the nonlinear regime.

2. System description

We consider a disk of radius b made of an elastic material. The70

thickness of the disk h is such that h/b� 1, thus the disk may ap-

propriately be described as a thin plate whose non-deformed shape

is planar. This disk is deposited on a circular rigid support of radius

a < b and we let it hang freely under the action of gravity. Our sys-

tem is thus equivalent to an annulus of elastic material, whose inner75

edge is clamped and whose outer edge is free (see figure 1 a). While

this clamped boundary condition is not strictly enforced experimen-

tally we checked that no detachment of the inner part occurs in the

data reported in this paper.

Due to gravity the annulus deflects downwards. For very small

deflections, the shape remains axisymmetric as the annulus adopts

a conical shape, but as the deflection, i.e. the effect of gravity,
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a b

Figure 1: a. Definition of the system. b. Mechanism of wrinkling

instability : considering an angular sector of the disk (blue lines),

the vertical deflection implies a diminution of the length at the outer

edge. The induced compressive strain can be released by allowing

undulations.

increases, the outer edge starts to undulate orthoradially as a wrin-

kling instability develops on the annulus (see figure 1 b). This

instability can be simply understood as it is not possible for the

outer edge to be deflected without stretching, either radially or or-

thoradially, the sheet. A part of the resulting stretching energy

due to compressive hoop stress can be relaxed by developing out-of-

planes undulations at the expense of some bending energy that is

energetically favorable since the sheet thickness is small. Following

[13, 14, 10], two dimensionless parameters control this instability.

First, a dimensionless measure of gravity G is defined as :

G =
12(1− ν2)ρgb4

Eh3
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where ρ is the volume mass of the disk, g is the acceleration due to

gravity, E, ν are the Young modulus and Poisson coefficient of the

material. Second, a geometrical parameter is involved : the aspect

ratio of the annulus :

α =
a

b

3. Methods80

3.1. Experiments

We use disks cut into elastic sheets made of four different mate-

rials : PDMS, Silicone, Latex and Mylar. Latex disks are cut from

commercial dental dam and Mylar disks are obtained from standard

stencil sheets. PDMS and Silicone sheets are formed via the same85

process : we mix two liquid components, the polymer base and the

curing agent. (Silgard 184 purchased from Merck for PDMS and

RTV 181 from Esprit Composite for Silicone). We put the mix-

ture into a vacuum chamber to remove air bubbles and then mold

the mixture between two planar parallel plates made of aluminium90

with a controlled spacing. We then let the mixture cure for 24h-

72h at room temperature. The elastic sheet is then gently detached

from the mold. Whatever the material, the thickness of the disk is

measured in different locations with a Palmer micrometer and av-
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eraged. The Young modulus is measured with a homemade tensile95

test machine. For PDMS, different proportion of the mixture allows

to change the Young modulus by an order of magnitude. For each

material, diameters, thicknesses and Young moduli ranges are re-

ported in table 1.

Once the disk is characterized, it is gently deposited on cylindrical100

support of radius a.

Material E (MPa) h (µm) b (mm)

PDMS 0.2 (±0.02)-2.3 (±0.1) 220 (±8)-1800 (±60) 15-120 (±1)

Silicone 0.5-1 (± 0.1) 150 (±6)-3200 (±50) 25-135 (±1)

Latex 2.6 (±0.1) 150-230 (±20) 15-70 (±1)

Mylar 4000 (±200) 125 (±20) 55-110 (±1)

Table 1: Range of parameters for each material. Typical uncertainties

are indicated in parenthesis

3.2. Numerics

We simulate our setup using an in-house code which solves thin

plate equations based on an isogeometric framework. The code is

built upon a method using subdivision elements [15, 16], with the105

improvement of [17] for dealing with boundary conditions: we use a

clamped boundary for the inner edge and a free boundary condition

for the outer edge. The plate kinematics are based on Kirchoff-Love
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theory, assuming that in the deformed configuration, the plate di-

rector remains normal to the mid surface. Within this framework,110

plate deformation is completely given in terms of membrane strains

and bending strains defined on the mid surface. Note that we do

not restrict the description to linearized kinematics and resolve the

non-linear problem with a modified Newton-Raphson solver. For

the material behavior, a generalized Hooke law is chosen, meaning115

that we have a linear elastic material behavior, but with all geomet-

rical nonlinearities. The plate is discretized using Catmull-Clark

elements.

3.3. Stability analysis

We use the method of [10] to compute the critical load. We120

briefly summarize the main ideas here, and refer to their work for

a complete description of the method. The principle is as follows :

complete Föppl-von Karman equations 1-2 are solved via a boundary

value problem solver (e.g. the solve bvp function in Python) to first

obtain a stationary axisymmetric solution for a given couple (G,α):125
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(
1

r
∂rφ+

1

r2
∂θθφ
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1
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)(
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[(
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∂rθz −
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r2
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)2
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(

1

r
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1

r2
∂θθz

)]
(2)

where z(r, θ) is the vertical deflection of the deformed disk (figure

1 a) and φ(r, θ) is the Airy function related to the stress components:

σrr =
1

h

(
1

r
∂rφ+

1

r2
∂θθφ

)
σθθ =

1

h
∂rrφ σrθ = −1

h
∂r

(
1

r
∂θφ

)
The solution satisfies clamped boundary conditions (no displace-

ment, no rotation) at the inner edge and free boundary (no stresses,

no moments) at the outer edge. Then, the stability of this axisym-

metric solution with respect to buckling is computed by introducing

a perturbation with an assumed form z(r, θ) = Z(r) exp(inθ). After130

linearization of the Föppl-von Karman axisymmetric equations, the

resulting eigenvalue problem is solved, using again a boundary value

solver. Depending on the sign of the eigenvalue, a small perturba-

tion would either be damped (stable) or amplified (unstable). By

coupling this with a root-finding algorithm, one can find for a given135

α and mode number n the critical load G?
crit for which the eigenvalue

sign changes.
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3.4. Scaling of instability

To gain some insight in the behavior of the system, we develop

a simplified theoretical analysis based on different scalings of the140

energies.

We assume the position of a point initially at (r, θ, 0) on the

flat disk can be described as (r + ur, θ, z(r, θ)) (figure 1 a) with

ur the radial displacement and z(r, θ) = w(r)(1 + A cos(nθ)) the

deflection. With this assumption, and keeping the leading non-145

linearities due to geometry (only quadratic terms in the deflection,

not in displacement), we have to dominant order to express strains

and curvatures:

εrr ∼ ∂rur +
1

2
(∂rz)2

εθθ ∼
ur
r

+
1

2r2
(∂θz)2

κrr ∼ ∂rrz

κθθ ∼
∂rz

r
+
∂θθz

r2

There are three energies densities involved in the problem :

• stretching energy

Es ∼ Eh

(1− ν2)

∫
S

[
ε2rr + ε2θθ + 2νεrrεθθ

]
dS
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• bending energy

Eb ∼ Eh3

12(1− ν2)

∫
S

[
κ2rr + κ2θθ + 2νκrrκθθ

]
dS

• gravity energy

Eg ∼
∫
S

hρgzdS

For a given set of parameter, the solution to the problem is given150

by a minimization of the total energy of the system, which results

in Föppl-von Karman equations. However, as these equations are

notoriously difficult to solve in a general case, we resort to scaling

analysis under simplifying assumptions to try to gain some insight

in the behavior of the system.155

Assume a planar ring of elastic material of inner radius a i.e. αb

and outer radius b. We denote the typical deflection at the outer

boundary by δ (= w(b)), the typical size of radial displacement by

U and the width of the annulus by l = b(1 − α). We neglect the

Poisson coefficient effect (ν = 0). With these variables, and using a

bar over dimensionless quantities, we estimate for instance:

εrr ∼
U

l
∂ru+

1

2

(
δ

l

)2

(∂rz)2

where the scaled quantities ∂ru or ∂rz are expected to be of order

one if the scaling is correctly chosen. For the sake of clarity of the
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presentation, we will omit the scaled terms in the following, and

keep only the scalings. Thus, the previous equation reads :

εrr ∼
U

l
+

1

2

(
δ

l

)2

Likewise, the orthoradial stretching is estimated as

εθθ ∼
U

b
+

1

2b2
δ2A2n2 sin(nθ)2

Note that there is a difference in scaling of ∂ru ∼ U
l
∂ru and u

r
∼ U

b
u
r

because for derivation the relevant length scale is the width of the

annulus and not its radius.

With these two scalings for the stretching we can estimate for

instance the unwrinkled (A = 0) stretching energy as

Es ∼ Eh

∫
S

[ε2rr + ε2θθ]dS ∼ SEh

[(
U

l
+

1

2

δ2

l2

)2

+

(
U

b

)2
]

(3)

where S is the surface of the annulus. We proceed to analyse the

system in the two asymptotic limits of α → 0 (point like support)160

and α → 1 (quasi 2D system). Details of calculation are provided

in Appendix A and Appendix B.

4. Results

For small deflection of the outer edge, we observe experimentally

that the plate adopts an axisymmetric conical shape (figure 2 a).165
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For a given plate, the maximal deflection increases when the aspect

ratio decreases as shown in figure 2 b. For a fixed aspect ratio,

increasing the dimensionless gravity G also increases the maximal

deflection. We observe that when the deflection reaches a critical

value, the outer edge develops an undulated shape, revealing a wrin-170

kling instability.

We plot in figure 3 all experimental points classified in three

categories: self contact, axisymmetric and wrinkled. We focus par-

ticularly on the last two and observe that there is a well-defined

boundary between these two regions. This frontier appears even175

clearer as we plot in figure 4 the whole set of experimental data as

G?(α) where G? = G(1 − α)4. The key idea behind this scaling

is that compressive stress is induced by the deflection of the outer

edge, and this deflection is controlled by bending of the width of the

plate, not by the bending of the whole plate : this new insight leads180

to consider the characteristic length scale appearing in the dimen-

sionless parameter to be (b− a) = (1− α)b instead of b. Using this

new dimensionless parameter to determine the stability boundary

shows that the criteria G? = cst is relevant over the whole range of

aspect ratio α. In figure 4 the frontier can be fitted as G? ≈ 20.185

We compare experimental results with predictions coming from
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a

b

Figure 2: Comparison of experimental and numerical shapes of

deformed disk under gravity. a. Axisymmetric mode (α=0.21,

G = 65) and mode 2 (α=0.02, G = 65) for silicone disk. Scale

bar is 20 mm b. Comparison of the evolution of wrinkling pattern

with a decreasing aspect ratio in experiments (upper row) and

in numerical simulations (lower row). From left to right (mode

number is indicated in parenthesis) : α = 0.95(stable); 0.88(n =

16); 0.75(13); 0.66(11); 0.58(9); 0.50(7); 0.33(6); 0.25(5); 0.17; 0.008.

G = 867000. Scale bar is 120 mm.

linear stability analysis and complete numerical simulations of thin

shell equations, as shown in figure 5. Linear stability analysis shows
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Figure 3: Experimental stability boundary : filled symbols are wrinkled

states, open symbols are axisymetric ones. Colors show the different

materials used. Dashed line is the limit of self contact mode. Solid

line is G∗ = cst.

that, for a given mode number n, the neutral curve (zero growth

rate) G?
crit(α) is weakly decreasing for small aspect ratios, reaches190

a minimum and then increases rapidly. Close to threshold, full nu-

merical simulations are in excellent agreement with linear stability

analysis, and also show that G? = cst is a relevant criteria for almost

all the range of aspect ratio. However both predict a slightly higher

threshold (G? ≈ 25). In the limit α → 1 we notice a weak increase195

of the threshold. This result is in good agreement with the scaling
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Figure 4: Experimental stability boundary : filled symbols are wrinkled

states, open symbols are axisymetric ones. Grey solid line is G∗ =

20±5. Dash-dotted line is the envelope of the linear stability analysis

determined in figure 5

analysis developed in Appendix B. In the limit α→ 0 the asymptotic

analysis presented in Appendix A shows that the wrinkling instabil-

ity develops when the outer edge deflection reaches a critical value.

In the bending regime, this deflection scales as G?, which gives the200

scaling G? ≈ cst. In the limit α → 1 it is shown that G? slightly

diverges as (1 − α)−1/2. While these results come from asymptotic

analysis and are strictly speaking only valid in their respective limit,

we notice that they hold beyond their region of derivation. Note also
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Figure 5: Stability boundaries of different modes computed by a lin-

earized buckling analysis shows an excellent agreement with full

numerical solutions of thin shell equations. The envelope of the

boundaries (Dash-dotted line is G? = 20.8 + 4.6(1 − α)−0.8) is

however, slightly higher than the experimental observation (Dot-

ted line as G? = 20.) The dashed line is the scaling limit α → 1 :

G? ∼ (1− α)−1/2 (Appendix B). the fit is performed over the linear

stability envelope for α > 0.8 and gives G? = 0.7 + 15.9(1− α)−1/2.

that the difference between the two scalings is weak: turning back to205

non-dimensionalization, the α → 0 limit indicates that one should

rescale the length with (1 − α)4 while the α → 1 limit indicates

that one should rescale the length with (1− α)4.5. This is an effect
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too much subtle to be of practical impact or even experimentally

accessible. Thus for simplicity we propose a criterion G? = cst over210

the full range of α to be the most adequate.

It is interesting to look at the evolution of the most unstable

mode as a function of α : we show in Appendix B that the optimal

wavenumber diverges as n ∼ (1− α)−1 in the limit α → 1. This is

clearly confirmed both by linear stability analysis and experiments215

in figure 6. The interpolation of the experimental data gives n =

1.67(1 − α)−0.98 in very good agreement with [11]. Note that this

scaling, derived from energy minimization, can also be interpreted

by a simple argument : the wavy pattern amplitude decreases from a

maximal amplitude at the outer boundary to zero amplitude at the220

inner boundary. Thus, the pattern can extend radially at most on a

length scale given by the width of the annulus. On the other hand,

it is known that persistence length L of a wavy pattern depends

on the wavelength λ and the amplitude A [18] : L/λ = (A/h)1/2.

Thus, assuming that the wavelength of the pattern is of the same225

size that the width of the annulus gives λ = 2πb
n
∼ (b − a), which

upon inversion yields n ∼ 1
1−α .

Finally, one can also notice that regions where axisymmetric state

is linearly unstable to only one mode are the exceptions rather than

19



Figure 6: Evolution of most unstable mode number as a function of

1−α. The symbols are computed using linear stability analysis and

determining the range of α for which a mode is linearly the most

unstable. A subset of experimental data is also shown where we

represent the range of observed modes at threshold. Errors bars in α

represent the uncertainty in the experimental aspect ratio. The solid

line is the interpolation of the experimental data n = 1.67(1−α)−0.98

in very good agreement with the scaling predicted in the α→ 1 limit

(Appendix B) and with [11].

the rule : for the most of the diagram, several modes can grow230

and interact nonlinearly. Thus, we analyze the modes selection ex-
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perimentally by perturbing by hand the outer edge. For small as-

pect ratios and weak gravity, mode 2 (figure 2 a) is the only mode

observed: even if other modes are linearly unstable, they always

destabilize to form a mode 2. For α → 0, increasing gravitational235

effects, a symmetric mode 2 can destabilize into an asymmetric one,

consistent with [12] predictions, but is often associated with self-

contact, a regime we do not explore in this paper (see figure 2 b).

Increasing the aspect ratio, modes higher than 2 can be observed.

We construct the experimental zone of existence of different modes,240

from n = 2 to n = 6, as shown in figure 7. A given mode number

can be observed at threshold (close to G? = cst) over a finite range

of aspect ratio. As n increases, this range is both narrower and

higher. Increasing G? further from threshold, the range of α where

a mode can be observed shifts toward lower values, until it hits the245

self-contact zone. Clearly, the zone of existence of different modes

overlap, which means that the system is multi-stable as illustrated

for the point (G? = 2000, α = 0.44) where modes 3, 4 and 5 can be

observed.

21



a b

c d

Figure 7: Experimental diagram of the zone of existence of different

modes (from n = 2 to n = 6). Pictures of experiments are also shown

in inset, with the corresponding point highlighted in the diagram.

Grey areas indicate the boundaries. a. mode n = 3. b. mode n = 4.

c. mode n = 5. d. mode n = 2 (squares) and mode n = 6 (circles).

One can notice that zones of stability of modes overlap with each

other, leading to multi-stability, as it is the case for the pictures of

modes 3, 4 and 5 which are all obtained at G? = 2000 and α = 0.44.

The picture of mode 6 is obtained at G? = 2000 and α = 0.61. Scale

bar is 20 mm.
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5. Discussion and perspectives250

The deflection of a circular annulus by gravity leads to a wrin-

kling instability of the outer edge, where geometry plays a crucial

role to determine both the threshold and the optimal wavenum-

ber. We have shown that this influence can be caught in a modified

dimensionless parameter G? which express the ratio between nor-255

mal load and bending forces. Using this parameter, the instability

threshold is well described over the whole range of aspect ratio by

a simple criterion G? ≈ 20. To interpret this criteria, we develop

a scaling analysis showing that wrinkling is associated with a crit-

ical deflection of the outer edge (which generates circumferential260

stresses). This deflection is governed by bending both in the α→ 0

limit (where deflection are small enough for stretching effects to be

negligible) and in the α → 1 limit (where radial displacement can-

cels the stretching energy to leading order in (1− α), meaning that

δ/h ∼ G? over the whole range of α as shown in Appendix A and265

Appendix B.

One possible attractive extension of this study would be to in-

clude other external forces, like centrifugal ones, as these forces

are relevant in the deployment and stability of spacecraft struc-

23



Figure 8: Critical curves G,Ω of [10] rescaled using the parameters

G?,Ω? defined in the text. (Inset) original data of [10]

tures [10]. These forces introduce another dimensionless parameter270

[14, 10] Ω =
√

12(1−ν2)ρh
Eh3

b2ω. Introducing as in 3.4 the distinction

between radial length scale b and width of the annulus b(1− α) for

derivation, one is led to the following modifications: Ω? = Ω(1−α)3/2

in the α → 0 limit and Ω? = Ω(1 − α)2 in the α → 1 limit. We

test the former scaling by using the results of [10] where the critical275

curves G(Ω) obtained by theoretical analysis were reported for four

different values of α : extracting the data from figure 12a of [10]

and replotting it (figure 8) in terms of G? and Ω? indicates that the

scaling collapses the data onto a single curve. Even if it is mathe-
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matically valid only in the α→ 0 limit, it seems to hold for values of280

α as high as 0.7. It would be interesting to test this scaling for more

values of α and test it experimentally , especially close to α ≈ 1

to see whether or not there is an universal critical curve valid for

all aspect ratio, a fact that might be useful for the design of such

structures.285

From a more fundamental point of view, the analysis developed

here may also extend to the classical Lamé setup, where a similar

blowup of eigenvalues as a function of aspect ratio is observed [8].

Including the aspect ratio into the control parameter may help to

delineate the respective influence of geometry and physics.290
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Appendix A. The α → 0 limit

Unwrinkled state295

In the limit of a point-like support, there is only one length scale

b = l. The radial displacement is determined by minimizing the

total energy with respect to U , which is equivalent to minimizing

the stretching energy with respect to U because at first order the

radial displacement U appears only in the stretching energy. Thus,

differentiating equation (3) gives :

U ∼ −δ
2

4b

The bending energy of an unwrinkled sheet can be estimated as

Eb ∼ 2SEh3
(
δ
b2

)2
. Thus, the typical vertical deflection solves the

minimization of the total (stretching + bending + gravitational)

energy, which reads

Ehδ3

2b4
+
Eδh3

3b4
− ρgh = 0

which gives two different regimes. For δ
h
� 1, bending is dominant

and δ
h
∼ G?, while for δ

h
� 1, stretching is dominant and δ

h
∼ G? 1

3

Wrinkling threshold

We now estimate the threshold for wrinkling by inserting a non

zero amplitude modulation : z(r, θ) = δ(1 + A cosnθ)300
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At dominant order, the modulation appears in εθθ ∼ U
b
+ δ2A2n2

2b2
sin(nθ)2

and in κθθ ∼ δ
b2
− δAn2

b2
cos(nθ). With this in mind, and recalling

that U ∼ − δ2

b
, we clearly see the physical mechanism responsible

for wrinkling : elastic energy due to the orthoradial stretching

Esθθ ∼ Eh

∫
S

ε2θθdS ∼ Eh

∫
S

(
−δ

2

b2
+
δ2A2n2

2b2
sin(nθ)2

)2

dS

can be diminished by allowing wrinkles to grow. However, this is

balanced by a cost in bending energy

Ebθθ ∼
Eh3

12

∫
S

(
δ

b2
− δAn2

b2
cos(nθ)

)2

dS

Expanding and then integrating over θ, simple algebra permits to

obtain the A-dependent terms of the energy as

EA ∼
[

3A4δ4n4

16b4
− A2δ4n2

4b4
+
h2

12

A2δ2n4

b4

]
EhS

Thus, amplitude can be found by minimization of the energy with

respect to A which leads to

A = 0 or A ∼

√
1

n2
− 1

3

(
h

δ

)2

(A.1)

Positivity of the square root requires that δ
h
> n√

3
, meaning that

there is a threshold value of the deflection below which axisymmetric

state (A = 0) is stable.
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Appendix B. The α → 1 limit

Unwrinkled state305

In the limit of an elastic disk slightly larger than its support, the

orthoradial stretching εθθ ∼ U
b

is subdominant compared to radial

stretching εrr ∼ U
(1−α)b + δ2

2(1−α)2b2 , which is the dominant term in the

stretching energy. Thus, radial displacement is found by minimiza-

tion of radial stretching

U ∼ − δ2

2(1− α)b
(B.1)

and cancels to leading order the stretching energy. Deflection under

gravity is then governed by bending only and leads to δ
h
∼ G?

Wrinkling threshold

Inserting the expression for radial displacement (B.1) in the stretch-

ing energy, one can compute the next order of the stretching energy

in powers of (1 − α). Minimizing the total energy with respect to

amplitude and mode number yields the following scalings :

n ∼ (1− α)−1

A ∼

√
3
√

2(1− α)−
(
h

δ

)2 (B.2)

Again, for a fixed aspect ratio, there is a critical deflection for

which wrinkling is energetically favorable. The most favorable mode310
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number is diverging as a function of 1−α, which is clearly confirmed

by figure 6 where we represent for each mode the range of α where

it is the most dangerous. There is a very good agreement between

this scaling and experimental data, as well as values coming from

the stability analysis (which keeps all the complexity of the Föppl-315

von Karman equations). Note that the scaling (B.2) predicts that

δ
h
∼ (1−α)−

1
2 , which means that the critical G? should be a weakly

diverging function of (1−α). This is consistent with what we observe

in linear stability analysis and full numerical simulations.
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