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Exact Grammaticality Judgement of Likely Parse Tree

The robustness of probabilistic parsing generally comes at the expense of grammaticality judgementthe grammaticality of the most probable output parse remaining unknown. Parsers, such as the Stanford or the Reranking ones, can not discriminate between grammatical and ungrammatical probable parses, whether their surface realisations are themselves grammatical or not. In this paper we show that a Model-Theoretic representation of Syntax alleviates the grammaticality judgement on a parse tree. In order to demonstrate the practicality and usefulness of an alliance between stochastic parsing and knowledgebased representation, we introduce an exact method for putting a binary grammatical judgement on a probable phrase structure. We experiment with parse trees generated by a probabilistic parser. We show experimental evidence on parse trees generated by a probabilistic parser to confirm our hypothesis.

1 According to the ACL wiki, http://aclweb.org/aclwiki/index.php?title=Parsing_(State_of_ the_art) (as of 7 March 2014). Last updated on 28 October 2013. Place

Introduction

The current state-of-the-art parsers 1 generally rely on methods of probabilistic approximation, which make them very robust -in the usual sense in parsing, which refers to the ability of generating a parse for any input sentence, regardless of whether this sentence is well-formed or not. However, that ability comes along with the inability to judge the binary grammaticality of the input sentence. The reason for that is that an optimal parse, even though grammatical, is never assigned maximum probability, which prevents any exact binary judgement based on likelihood. Yet that lack of judgement may be an impediment to various applications. A body of works stress that impediment, for instance, in Natural Language Generation [START_REF][END_REF], Statistical Machine Translation [START_REF] Zwarts | Choosing the right translation: A syntactically informed classification approach[END_REF], or proof-reading [START_REF] Bender | [END_REF][START_REF] Chodorow | The ups and downs of preposition error detection in esl writing[END_REF]. Various techniques are, thus, put together, which aim to combine robust parsing with grammaticality judgement. Some are knowledgebased, while others rely on probabilistic approximation.

First, we quickly review the related literature, and introduce the existing methods, whether exact or stochastic, with respect to grammaticality judgement. Second, we give a quick reminder on Model-Theoretic Syntax, and show how it may be combined with a probabilistic parser in order to solve the issue of judging the grammaticality of a likely structure. Third, we detail the model checking process whereby a structure is judged with respect to a model-theoretic grammar. In a fourth section we experiment our work hypothesis with the Stanford Parser and the binary classification of its output. We conclude in the last section, and discuss further works regarding potential improvements of probabilistic parsers.

Grammaticality judgement in the literature

Judgement by likelihood approximation A solution commonly investigated relies on machine learning, and the statistical classification of likely parses. Foster et al. (2008;[START_REF] Wagner | Detecting Grammatical Errors with Treebank-Induced, Probabilistic Parsers[END_REF] in a context of grammar error correction (focused on specific error types), or [START_REF] Wong | Exploiting Parse Structures for Native Language Identification[END_REF] in a more general context, train classifiers on several combinations of probabilistic grammars 2 , and test them on various grammatical and erroneous corpora. The result is used for the extraction of learning features for training the grammaticality classifier. The binary judgement occurs around a probability threshold, which is determined experimentally. [START_REF] Ferraro | [END_REF] also achieve relatively good results with the introduction of knowledge-based counts as training features. All those works justify their approach by the fact that they are confronted to the "excessive robustness" (dixit [START_REF] Wong | Exploiting Parse Structures for Native Language Identification[END_REF]) of the parsers in use3 , since nearly all4 input sentences get parsed by these parsers in their standard setting.

The underlying hypothesis shared by these works is that the grammaticality of a parse correlates with its likelihood of occurrence. [START_REF] Charniak | Coarse-to-Fine n-Best Parsing and Max-Ent Discriminative Reranking[END_REF] somehow make the same when relying on a MaxEnt classifier in order to re-rank the n-best parses generated by the Charniak's PCFG5 parser, according to new probabilities.

Knowledge-based judgement Most of the works, which rely on knowledge-based approaches implement ad hoc strategies, in order to handle classes of errors (more or less) commonly observed [START_REF] Gamon | [END_REF][START_REF] Chodorow | The ups and downs of preposition error detection in esl writing[END_REF]. The use of error grammars, or failure recovering techniques during the parsing process are techniques among the most frequently encountered [START_REF] Bender | [END_REF][START_REF] Foster | [END_REF]. These usually present the advantage of being considerably more efficient than their stochastic counterparts, but on a limited set of specific grammar problems. The approach does not generalise very well, and any change of usage context, or target language, often requires the revision of a significant amount of material. So, for instance, we may wonder whether a system, which is efficient on human productions, would remain as efficient if used in the context of statistical natural language generation, such as summarisation. Their integration seems difficult in systems, where grammaticality judgement is required as a processing step, and not only at the end of a process. [START_REF] Mutton | [END_REF], for instance, in a context of summarisation, hypothesise that the fluency of a sentence may be measured through its grammaticality.

The constraint-based methods Robust parsing may also be achieved through constraint-based processing. Those are much less explored than the stochastic approaches, mostly on the ground of a hardto-handle combinatorial explosion of the search space. In order to be robust, such a parsing process is required, in the worst-case scenario, to explore the entire tree domain under consideration. In case of an ill-formed input utterance in particular, this requirement quickly makes the constraint solving process intractable. Yet, it is important to stress that what makes constraint-based approaches intractable is the constraint solving process, rather than the constraints themselves. Constraints as such remain a very powerful representation tool, as we will see in section 3. We will use them connected in network, in a descriptive way-that is, that they will not be involved in any kind of constraint solving problem. In our case, the purpose of the constraint network will be to contribute to checking the grammar for a given parse. The parse being given, there is no need anymore to look for an assignment for the constraints variables -the parse, somehow, is the assignment.

Hence, we hypothesise that the combination made up of a parse structure and its grammar constraint network is a suitable representation for judging the parse's grammaticality, no matter how that parse structure was generated. As far as we are concerned in this paper, we experiment with the generation -hence the exploration of the search space -by a probabilistic parser. The grammaticality judgement implements a model checking process, where the parse structure is the model to be checked against the grammar. Furthermore, we also argue that such knowledge representation, inclusive of a constraint network, may alleviate the exact resolution of a variety of computational problems.

Model-Theoretic Syntax

The formal frameworks based on Model Theory already proved their better suitability than formal languages to representing natural language irregularities, infelicities and other oddities, for reasons which we quickly overview. We, then, show how it suits our purpose.

Model-Theoretic Knowledge Representation As far as grammaticality is concerned, a convenient feature that the frameworks for Model-Theoretic Syntax (MTS) show is that the logical description of the linguistic properties of an observed utterance is disconnected from its well-formedness. The objects of study, in the sense of the model theory, are models of theories expressed in a formal (meta-)language, where a theory is a set of statements specified in a formal language, and a model of a theory is a structure, which satisfies all the statements of that theory6 . Hence, the modelling of natural language through the Model Theory relies on the semantics of a formal language in order to describe grammar relationships among elements of the syntax structure of an utterance. Those relationships may either hold or fail.

Natural Syntax7 and Model Theory When the domain of structures concerns natural syntax, we get the following interpretation:

• a theory is a set grammar statements, specified as a conjunction Φ = i φ i , where every atom φ i is a logical formula, which puts elements of the structure in a relationship;

• a structure is a linguistic structure (e.g. phrase structure, dependency structure, . . . ).

A grammar thus comes down to a (generic) conjunctive formula parameterised by the structure, and a theory is an instance of the grammar for a given structure. For a phrase structure domain, for instance, every φ i holds on constituents (e.g. In a Noun Phrase in French, the Determiner is precedes the Noun.).

Under such an interpretation, the linguistic structure plays the role of a semantic object, which makes a theory true (in which case the structure is deemed a model of the theory), or not. That is, the parse structure is the object, which makes the grammar (as a conjunction of statements) true, or not. We use the Property Grammar frameworks (PG), introduced by Blache ( 2001), for which Duchier et al. ( 2009) formulated a Model-Theoretic semantics. PG essentially defines eight relations, called properties, on a domain of phrase structure trees :

• Obligation (for heads),

• Constituency (for categories of constituents, which may belong to the same phrase),

• Uniqueness (for categories, which may only occur once within a phrase),

• Linearity (for Linear Precedence, in the sense of ID/LP8 ),

• Requirement (for required co-occurrences),

• Exclusion (for mutual exclusion of co-occurrence between constituents of the same phrase),

• Dependency, and • Agreement.

An interpretation of the semantics of six of those relations9 is provided in Table 3.

Model checking and grammaticality judgement

Let us first introduce a few definitions, in order to fix the notation in use in the following.

Let S be a set of words in the target language, and E a set of labels, which denote morpho-syntactic categories; a lexicon is then a subset V ⊂ E × S (which implicitly assumes that the terminals are POStagged words). Let P E be the set of all the possible properties on E; a PG grammar Φ is specified by a pair (P G , V G ), with P G ⊆ P E .

Let τ : s be a (phrase structure) tree decorated with labels in E, and whose surface realisation is the string of words s; let Φ s be an instantiation of Φ for τ : s; τ : s is a model for Φ s iff τ : s makes Φ s true. Since Φ s = i φ s i , Definition 1 means that every instance of property φ s i of Φ s for the sentence s must be satisfied for s to be deemed grammatical with respect to the grammar Φ.

The model checking process involves:

• instantiating the grammar Φ for the parse tree τ : s,

• building up the corresponding constraint network Φ s , and

• checking the truth of every atom φ s i .

Processing-wise, the existence of a linguistic structure is required prior to checking it against a grammar -which involves constructing the constraint network. Figure 3 

(NC moitié)))) (PUNC ,) (VN (V ont)) (NP (DET un) (NC financement) (Srel (NP (PROREL qui)) (VN (ADV n') (V est) (AdP (ADV toujours) (ADV pas)) (VPP assuré)))) (COORD (CC et) (Sint (NP (NC dont) (DET le) (NC calendrier)) (VN (ADV n') (V est) (ADV pas_encore) (VPP arrêté)))) (PUNC .)))
Figure 1: Example of parse deemed ungrammatical through model checking Generation of candidate-model structures Since a Model-Theoretic representation is independent from any processing aspects concerning the generation of candidate structures, the generation strategy may be designed separately from model checking. Although an inference process may be designed in order to construct structures on the sole basis of the constraint grammar [START_REF] Maruyama | Structural Disambiguation with Constraint Propagation[END_REF]Balfourier et al., 2002;[START_REF] Prost | Modelling Syntactic Gradience with Loose Constraint-based Parsing[END_REF]Duchier et al., 2010, among others), nothing makes it compulsory. It is, therefore, possible, for instance, to check the likely structures generated by a probabilistic parser against the MT grammar. Note, as well, that the type of linguistic structure concerned by a Model-Theoretic representation may take different forms, depending on the formal framework in use. The seminal work of [START_REF] Maruyama | Structural Disambiguation with Constraint Propagation[END_REF], for instance, is concerned with dependency structure, while Optimality Theory [START_REF] Prince | [END_REF] is more used for describing phonological structures. As for PG, the framework is essentially used with phrase structures, though a few works rely on it for multimodal annotation, or biological sequences analysis.

Model checking and grammaticality

As we saw, grammaticality judgement is achieved through model checking. The process requires two resources: a PG grammar, and a parse tree to serve as a candidate-model. The grammar is then instantiated with the input parse in order to construct the constraint network. The grammar we use for experimenting derives from an implicit CFG corpus grammar. What follows describes the derivation process. We do not detail here the instantiation of the grammar for a given parse, since it is only a matter of unifying the constituent categories specified in properties with the labelled nodes in the parse tree. In the literature, the instantiation is usually part of the characterisation process, along with the grammar checking of instances. By extension, the term characterisation is also used for denoting the resulting constraint network.

Rule-base derivation of a GP grammar

Given an implicit CFG corpus grammar, a GP grammar may be derived through the application of rules, specific to the semantics of each property type. Most of the rules which we describe next were introduced by [START_REF] Blache | Enrichissement du ftb: un treebank hybride constituants/propriétés[END_REF].

Let C be the label of a non-terminal node; we denote by R C the set of context-free rules of left-hand side C, and we define RHS to map every C to the set RHS(R C ) of its right-hand side unique lists of labels. We also define label to map a node x to its label. Rule 0 (Obligation -not implemented yet). The semantics of Obligation is meant to capture head phrases. Thus theoretically, the Obligation property C : H C is specified by the set H C of disjunctions ψ = e of distinct labels e, such that an e occurs in every rule RHS(R C ). Its implementation requires to address a problem of maximum set cover, which is proven NP-hard.

Further works will implement a greedy algorithm of approximation. Another option could be to heuristically gather heads (), or possibly to combine the two (heuristics and greedy algorithm). Rule 1 (Constituency). The Constituency property C : E C ? is specified for C by the set E C of distinct labels e, such that there exists r ∈ RHS(R C ) with e ∈ r. Rule 4 (Requirement). First, let us remind that the semantics of the Requirement property C : x ⇒ y differs from the semantics of implication, in that unlike implication (C : x ⇒ y) ≡ (¬x ∨ y). Therefore, the set Z C of Requirement properties is specified by the set of co-occurrences within the same phrase, minus the co-occurrences for which the left element may also occur without the right element. Thus, among the set of co-occurrences (a, b) for C, we remove those for which there exists a production rule r ∈ RHS(R C ) such that a ∈ r and b / ∈ r.

E C ≡ {e, ∃x∃r(r ∈ RHS(R C )) ∧ (x ∈ r) ∧ label(x) = e}
L C ≡ (a, b), ∀x∀y∀r∃x ∃y ¬∃r r ∈ RHS(R C ) ∧ (x ∈ r) ∧ (y ∈ r) ∧ label(x) = a ∧ label(y) = b ∧ (i x < i y ) ∧r ∈ RHS(R C ) ∧ (x ∈ r ) ∧ (y ∈ r ) ∧ label(x ) = a ∧ label(y ) = b ∧(i y < i x ) Figure 4.1 exemplifies Linearity properties. VN: [[V, VPP], [VINF, AdP], [CLS, VPP], [V, PP], [CLS, ADV], [CLO, VS], [CLO, VINF], [PP, ADV], [CLO, VPP], [CLR, VPP], [VS, VINF], [VS, VPP], [CLS, VS], [PP, VPP], [V, COORD], [V, AdP], [VPR, VINF], [V, NP], [CLR, VS], [CLO, V], [VIMP, CLO], [VPR, VPP], [CLR, CLO], [CLO, VPR], [AdP, VPP], [CLO, AdP], [V, VINF], [CLR, VPR], [CLS, AdP], [NP, VPP]] COORD: [[CC, VN], [CC, PP], [ADV, Ssub], [VPpart, NP], [Sint, PP], [CC, VPpart], [AdP, NP], [CC, VPinf], [CC, AP], [CC, Sint], [VN, Ssub], [CC, Srel], [CC, Ssub], [CC, AdP], [VN, AP], [CC, ADV], [ADV, PP], [VN, VPinf], [CC, DET], [AP, VPinf], [ADV, VPinf], [AP, PP], [CC, NP], [NP, Sint], [VN, VPpart]]
Z C ≡ {(a, b), ∀x∀r∃y r ∈ RHS(R C ) ∧ (x ∈ r) ∧ (y ∈ r) ∧ (x = y) ∧ ((label(x) = a) → ((label(y) = b)))}
Rule 4 is only an approximation, since it does not capture any disjunctive y token, as allowed by the property's semantics. We discuss consequences of this limitation in section 5, and envisage possible improvements. Rule 5 (Exclusion). The set of Exclusion properties C : x ⇔ y is specified by the set X C of the pairs of labels (a, b), such that a and b never co-occur within the same right-hand side.

X C ≡ (a, b), ∃x∃y∃r∃r r ∈ RHS(R C ) ∧ (x ∈ r) ∧ label(x) = a r ∈ RHS(R C ) ∧ (y ∈ r ) ∧ label(y) = b X C ≡ {(a, b), ∃x∃y∃r r ∈ RHS(R C ) ∧ (x ∈ r) ∧ (y ∈ r) ∧ (x = y) ∧ label(x) = a ∧ label(y) = b} X C ≡X C \X C
Rule 5 might be excessively restrictive, as it enumerates the exhaustive list of forbidden cooccurrences. Yet, at this stage, we can not think of a better way of handling the derivation of this property.

Experiments: grammaticalisation of candidate-parses

We experimented with the Stanford Parser (STP) (Green et al., 2011) and the French Sequoia treebank [START_REF] Candito | Le corpus Sequoia : annotation syntaxique et exploitation pour l'adaptation d'analyseur par pont lexical[END_REF]Seddah, 2012, hereafter CS2012), in order to determine the impact of grammaticality judgement by model checking on parsing. In Experiment 1 we judge the grammaticality of the parses generated by the STP. In Experiment 2 we judge the grammaticality of the n-best candidate-parses generated by the STP for every input sentence, then we re-rank the candidates according to their grammaticality (the grammatical ones come first). In both experiments the parser's train set is the same as in CS2012, which is also used for deriving the PG grammar.

PG grammar derivation

The PG grammar, which we used in all our experiments derives from the same train set as in CS2012. Experiment 1 (Grammar Checking). First, we run the STP on the Sequoia's test set (the PARSEVAL measures 10 are reported in Table 5), then we check the grammar for every parse (characterisation process) in order to judge its grammaticality. Some of the negative characterisations, hence ungrammatical phrases/sentences, are reported in Table 5. 4.3% of the incomplete matches. This figure ought to be put in perspective with respect to different elements. First is the syntactic ambiguity inherent to natural language, which may explain that a parse may be grammatical even though it does not exactly match the gold standard. Second is the rather incomplete nature of the PG grammar used for the experiment. It is incomplete for several reasons: (a) the derivation of the Obligation property, which is meant to identify the head constituents, is not implemented yet; (b) the derivation of the Requirement property is not implemented in a sufficiently satisfactory manner, since it does not capture yet the genuine semantics; (c) other properties, such as We also observe -though we have not measured the phenomena -that various patterns show up, which inform on the way solution parses are preferred by the parser. The corpus annotation scheme, for instance, seems to influence the derivation of the model-theoretic grammar, in that some labels are over-specified. The discrimination of Nouns, for example, between Common Nouns (NC) and Proper Nouns (NP) is an impediment to the derivation of a Requirement property meant to specify that within a Noun Phrase a Determiner requires a Noun. We hypothesise that the problem could be addressed with the introduction of feature structures in the grammar, and their extraction from the corpus. But even though, the annotation scheme, this time, will probably show under-specified.

Another quite recurrent pattern is seemingly the choice made by the parser to go perhaps "too easily" for a sub-optimal POS-tagging of the input. Given that the state-of-the-art POS-taggers perform with about 97% accuracy, we speculate that a more sophisticated re-ranking strategy (than the naive one we expose next) could grant a high priority to the candidates based on the initial POS-tagging.

Experiment 2 (Grammaticalisation). This experiment aims to "grammaticalise" the STP's output. We proceed as follows:

1. (n-best parsing) the n-best candidate-parses are generated with the STP for the sentences deemed ungrammatical in Experiment 1;

2. (characterisation) every candidate-parse is characterised, and its grammaticality inferred;

3. (re-ranking) the candidates are re-ranked, in order to place the grammatical ones in the first positions;

4. (evaluation) the new grammaticalised corpus is evaluated. 

Conclusion

We have investigated with the alliance between probabilistic parsing and Model-Theoretic Syntax. We have shown that a parse tree may easily be combined with a constraint network through the use of a corpus-based model-theoretic grammar. A benefit of such a combination is that it provides a finergrained description of the linguistic properties of a sentence than its sole parse structure, and it alleviates the address of various language problems. In order to demonstrate that benefit we have experimented with the grammaticality judgement of probable parses through a process of model checking: a parse structure is deemed grammatical if and only if it satisfies all the grammar properties, i.e. iff it is a model of the conjunction of grammar properties. Our experiments have shown that 3.5% of the Stanford Parser's outcome on the Sequoia corpus of French are deemed ungrammatical. Meanwhile, they have also shown that a naive re-ranking of the n-best candidate-parses according to their grammaticality is not sufficient a strategy to improve the parser's performance. We have discussed a few avenues for further works, which touch both the improvement of the derivation of a model-theoretic grammar, and the sophistication of the re-ranking strategy by model-checking.
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 4 Figure 4.1 exemplifies Constituency properties derived from the French Sequoia treebank (Candito and Seddah, 2012). Each property meets PHRASE LABEL: list of constituents. AdP: [DET, Srel, Ssub, NP, ADV, COORD, PP] SENT: [NC, NP, ADV, VPpart, VN, VPinf, ADVWH, PP, AdP, I, Srel, Ssub, AP, Sint, NPP, COORD]
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 2 Figure 2: Sample PG Constituency properties derived from the Sequoia corpus
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 3 Figure 3: Sample PG Uniqueness properties derived from the Sequoia corpus
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 4 Figure 4: Sample PG Linearity properties derived from the Sequoia corpus

Obligation A :

 A B at least one daughter of A is of category B Constituency A : S? the category of every daughter of A must be in S Uniqueness A : B! at most one daughter of A is of category B Linearity A : B ≺ C a daughter of category B precedes a daughter of category C Requirement A : B ⇒ C a daughter of category B requires a daughter of category C Exclusion A : B ⇔ C daughters of categories B and C may not co-occur within the same phrase

Table 1 :

 1 Interpretation of usual property types in PGWe denote by τ : s |= Φ s the satisfaction of Φ s by τ : s. The instantiation Φ s is also called the constraint network associated with τ : s for the grammar Φ.Definition 1. τ : s is grammatical with respect to the grammar Φ iff τ : s |= Φ s

Table 2 :

 2 Table 5 reports different extraction figures for the implicit CFG grammar, as well as the numbers of PG properties derived by type. Derivation of a PG grammar from Sequoia (implicit CFG rules and derived properties)

		POS-tags Phrasal rules TOTAL	
		5817	1409	7226	
	Constituency Uniqueness Linearity Requirement Exclusion
	165	108	321	99	678

  10 Obtained with the programme evalb: http://nlp.cs.nyu.edu/evalb/, version of 2 November 2013.

	Sent.		Rewrite Rule	Property Violated instances
	5	VN → [ADV, V, AdP, VPP, VPP]	Exclusion P-= [[ADV, AdP]]
	331	Sint → [VPpart, NP, VN, PP, NP]	Linearity P-= [[PP, VPpart]]
		Sint →	[VN, PP, Sint, VPpart]	Requirement P-= [[Sint, NP], [VPpart, NP]]
		→		Exclusion P-= [[VPpart, Sint]]
	502	SENT→[NP, Sint, VN, VPinf, ADV, Srel]	Linearity P-= [[VPinf, Sint]]
		→		Exclusion P-= [[VPinf, Srel], [Srel, Sint]]
	1022 SENT→	[NP, VN, AP, NP, Srel]	Exclusion P-= [[Srel, AP]]

Table 4 :

 4 Sample characterisation: grammar check yielding (un)grammaticality judgements Dependency and Agreement are not implemented either, for they require the extraction of typed feature structures. We conjecture that further developments of the grammar derivation process might yield better results.

Table 5

 5 reports the number of parses being grammaticalised in terms of number n of candidates. Surprisingly, the bracketing scores remain unchanged : P = 68, R = 70, F = 69 regardless of n.

	n	10 20 30 40 50 60 70 80 100 150 300
	grammaticalised parses 13 18 19 22 23 24 24 24 25	26	28

Table 5 :

 5 Results of the re-ranking by grammaticalisation

Actually the Stanford Parser and the Reranking Parser for the cited works.

"close to epsilon.

Probabilistic Context-Free Grammar.

Inspired from the Wikipedia article on Model Theory, as of March 2014.

Natural Syntax: shortcut for "natural language syntax".

ID/LP : Immediate Dominance / Linear Precedence.

We intentionally omit Dependency and Agreement, which requires the introduction of typed feature structures, out of scope in this paper.