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The robustness of probabilistic parsing generally comes at the expense of grammaticality judgement –
the grammaticality of the most probable output parse remaining unknown. Parsers, such as the Stanford
or the Reranking ones, can not discriminate between grammatical and ungrammatical probable parses,
whether their surface realisations are themselves grammatical or not. In this paper we show that a Model-
Theoretic representation of Syntax alleviates the grammaticality judgement on a parse tree. In order to
demonstrate the practicality and usefulness of an alliance between stochastic parsing and knowledge-
based representation, we introduce an exact method for putting a binary grammatical judgement on a
probable phrase structure. We experiment with parse trees generated by a probabilistic parser. We show
experimental evidence on parse trees generated by a probabilistic parser to confirm our hypothesis.

1 Introduction

The current state-of-the-art parsers1 generally rely on methods of probabilistic approximation, which
make them very robust — in the usual sense in parsing, which refers to the ability of generating a parse
for any input sentence, regardless of whether this sentence is well-formed or not. However, that ability
comes along with the inability to judge the binary grammaticality of the input sentence. The reason
for that is that an optimal parse, even though grammatical, is never assigned maximum probability,
which prevents any exact binary judgement based on likelihood. Yet that lack of judgement may be an
impediment to various applications. A body of works stress that impediment, for instance, in Natural
Language Generation (Wan et al., 2005), Statistical Machine Translation (Zwarts and Dras, 2008), or
proof-reading (Bender et al., 2004; Tetreault and Chodorow, 2008). Various techniques are, thus, put
together, which aim to combine robust parsing with grammaticality judgement. Some are knowledge-
based, while others rely on probabilistic approximation.

First, we quickly review the related literature, and introduce the existing methods, whether exact
or stochastic, with respect to grammaticality judgement. Second, we give a quick reminder on Model-
Theoretic Syntax, and show how it may be combined with a probabilistic parser in order to solve the issue
of judging the grammaticality of a likely structure. Third, we detail the model checking process whereby
a structure is judged with respect to a model-theoretic grammar. In a fourth section we experiment our
work hypothesis with the Stanford Parser and the binary classification of its output. We conclude in the
last section, and discuss further works regarding potential improvements of probabilistic parsers.

2 Grammaticality judgement in the literature

Judgement by likelihood approximation A solution commonly investigated relies on machine learn-
ing, and the statistical classification of likely parses. Foster et al. (2008; Wagner (2012) in a context of
grammar error correction (focused on specific error types), or Wong and Dras (2011) in a more general
context, train classifiers on several combinations of probabilistic grammars2, and test them on various

1According to the ACL wiki, http://aclweb.org/aclwiki/index.php?title=Parsing_(State_of_
the_art) (as of 7 March 2014). Last updated on 28 October 2013.
Place licence statement here for the camera-ready version, see Section ?? of the instructions for preparing a manuscript.

2The combinations under investigation are generally among three types of grammars: a grammatical one, extracted from a
reference corpus (British National Corpus or Penn Treebank); an erroneous one, extracted from an artificially distorted corpus;
and a hybrid one, coming from the merge of both the standard corpus and its ill-formed version.

http://aclweb.org/aclwiki/index.php?title=Parsing_(State_of_the_art)
http://aclweb.org/aclwiki/index.php?title=Parsing_(State_of_the_art)


grammatical and erroneous corpora. The result is used for the extraction of learning features for training
the grammaticality classifier. The binary judgement occurs around a probability threshold, which is de-
termined experimentally. Ferraro et al. (2012) also achieve relatively good results with the introduction
of knowledge-based counts as training features. All those works justify their approach by the fact that
they are confronted to the “excessive robustness” (dixit Wong and Dras (2011)) of the parsers in use3,
since nearly all4 input sentences get parsed by these parsers in their standard setting.

The underlying hypothesis shared by these works is that the grammaticality of a parse correlates with
its likelihood of occurrence. Charniak and Johnson (2005) somehow make the same when relying on
a MaxEnt classifier in order to re-rank the n-best parses generated by the Charniak’s PCFG5 parser,
according to new probabilities.

Knowledge-based judgement Most of the works, which rely on knowledge-based approaches imple-
ment ad hoc strategies, in order to handle classes of errors (more or less) commonly observed (Gamon et
al., 2008; Tetreault and Chodorow, 2008). The use of error grammars, or failure recovering techniques
during the parsing process are techniques among the most frequently encountered (Bender et al., 2004;
Foster and Vogel, 2004). These usually present the advantage of being considerably more efficient than
their stochastic counterparts, but on a limited set of specific grammar problems. The approach does not
generalise very well, and any change of usage context, or target language, often requires the revision of
a significant amount of material. So, for instance, we may wonder whether a system, which is efficient
on human productions, would remain as efficient if used in the context of statistical natural language
generation, such as summarisation. Their integration seems difficult in systems, where grammaticality
judgement is required as a processing step, and not only at the end of a process. Mutton et al. (2007),
for instance, in a context of summarisation, hypothesise that the fluency of a sentence may be measured
through its grammaticality.

The constraint-based methods Robust parsing may also be achieved through constraint-based pro-
cessing. Those are much less explored than the stochastic approaches, mostly on the ground of a hard-
to-handle combinatorial explosion of the search space. In order to be robust, such a parsing process is
required, in the worst-case scenario, to explore the entire tree domain under consideration. In case of
an ill-formed input utterance in particular, this requirement quickly makes the constraint solving process
intractable. Yet, it is important to stress that what makes constraint-based approaches intractable is the
constraint solving process, rather than the constraints themselves. Constraints as such remain a very
powerful representation tool, as we will see in section 3. We will use them connected in network, in a
descriptive way— that is, that they will not be involved in any kind of constraint solving problem. In
our case, the purpose of the constraint network will be to contribute to checking the grammar for a given
parse. The parse being given, there is no need anymore to look for an assignment for the constraints
variables — the parse, somehow, is the assignment.

Hence, we hypothesise that the combination made up of a parse structure and its grammar constraint
network is a suitable representation for judging the parse’s grammaticality, no matter how that parse
structure was generated. As far as we are concerned in this paper, we experiment with the generation
— hence the exploration of the search space — by a probabilistic parser. The grammaticality judgement
implements a model checking process, where the parse structure is the model to be checked against
the grammar. Furthermore, we also argue that such knowledge representation, inclusive of a constraint
network, may alleviate the exact resolution of a variety of computational problems.

3 Model-Theoretic Syntax

The formal frameworks based on Model Theory already proved their better suitability than formal lan-
guages to representing natural language irregularities, infelicities and other oddities, for reasons which
we quickly overview. We, then, show how it suits our purpose.

3Actually the Stanford Parser and the Reranking Parser for the cited works.
4“close to epsilon.
5Probabilistic Context-Free Grammar.



Model-Theoretic Knowledge Representation As far as grammaticality is concerned, a convenient
feature that the frameworks for Model-Theoretic Syntax (MTS) show is that the logical description of
the linguistic properties of an observed utterance is disconnected from its well-formedness. The objects
of study, in the sense of the model theory, are models of theories expressed in a formal (meta-)language,
where a theory is a set of statements specified in a formal language, and a model of a theory is a structure,
which satisfies all the statements of that theory6. Hence, the modelling of natural language through the
Model Theory relies on the semantics of a formal language in order to describe grammar relationships
among elements of the syntax structure of an utterance. Those relationships may either hold or fail.

Natural Syntax7 and Model Theory When the domain of structures concerns natural syntax, we get
the following interpretation:

• a theory is a set grammar statements, specified as a conjunction Φ =
∧

i φi, where every atom φi is
a logical formula, which puts elements of the structure in a relationship;

• a structure is a linguistic structure (e.g. phrase structure, dependency structure, . . . ).

A grammar thus comes down to a (generic) conjunctive formula parameterised by the structure, and a
theory is an instance of the grammar for a given structure. For a phrase structure domain, for instance,
every φi holds on constituents (e.g. In a Noun Phrase in French, the Determiner is precedes the Noun.).
Under such an interpretation, the linguistic structure plays the role of a semantic object, which makes
a theory true (in which case the structure is deemed a model of the theory), or not. That is, the parse
structure is the object, which makes the grammar (as a conjunction of statements) true, or not.

We use the Property Grammar frameworks (PG), introduced by Blache (2001), for which Duchier et al.
(2009) formulated a Model-Theoretic semantics. PG essentially defines eight relations, called properties,
on a domain of phrase structure trees :

• Obligation (for heads),

• Constituency (for categories of constituents, which may belong to the same phrase),

• Uniqueness (for categories, which may only occur once within a phrase),

• Linearity (for Linear Precedence, in the sense of ID/LP8),

• Requirement (for required co-occurrences),

• Exclusion (for mutual exclusion of co-occurrence between constituents of the same phrase),

• Dependency, and

• Agreement.

An interpretation of the semantics of six of those relations9is provided in Table 3.

Model checking and grammaticality judgement Let us first introduce a few definitions, in order to
fix the notation in use in the following.

Let S be a set of words in the target language, and E a set of labels, which denote morpho-syntactic
categories; a lexicon is then a subset V ⊂ E × S (which implicitly assumes that the terminals are POS-
tagged words). Let PE be the set of all the possible properties on E ; a PG grammar Φ is specified by a
pair (PG, VG), with PG ⊆ PE .

Let τ : s be a (phrase structure) tree decorated with labels in E , and whose surface realisation is the
string of words s; let Φs be an instantiation of Φ for τ : s; τ : s is a model for Φs iff τ : s makes Φs true.

6Inspired from the Wikipedia article on Model Theory, as of March 2014.
7Natural Syntax: shortcut for “natural language syntax”.
8ID/LP : Immediate Dominance / Linear Precedence.
9We intentionally omit Dependency and Agreement, which requires the introduction of typed feature structures, out of scope

in this paper.



Obligation A : 4B at least one daughter of A is of category B
Constituency A : S? the category of every daughter of A must be in S
Uniqueness A : B! at most one daughter of A is of category B
Linearity A : B ≺ C a daughter of category B precedes a daughter of category C
Requirement A : B ⇒ C a daughter of category B requires a daughter of category C
Exclusion A : B 6⇔ C daughters of categories B and C may not co-occur within the same phrase

Table 1: Interpretation of usual property types in PG

We denote by τ : s |= Φs the satisfaction of Φs by τ :s. The instantiation Φs is also called the constraint
network associated with τ :s for the grammar Φ.

Definition 1. τ :s is grammatical with respect to the grammar Φ iff τ : s |= Φs

Since Φs =
∧

i φ
s
i , Definition 1 means that every instance of property φsi of Φs for the sentence s must

be satisfied for s to be deemed grammatical with respect to the grammar Φ.
The model checking process involves:

• instantiating the grammar Φ for the parse tree τ :s,

• building up the corresponding constraint network Φs, and

• checking the truth of every atom φsi .

Processing-wise, the existence of a linguistic structure is required prior to checking it against a grammar
— which involves constructing the constraint network. Figure 3 exemplifies a phrase structure deemed
ungrammatical through model checking.

419: En_effet, sept projets sur quatorze, soit la moitié, ont un financement qui
n’ est toujours pas assuré et dont le calendrier n’ est pas_encore arrêté.

( (SENT (ADV En_effet) (PUNC ,)
(NP (DET sept)

(NC projets)
(PP (P sur)

(NP (NC quatorze)))
(PUNC ,)
(COORD (CC soit)

(NP (DET la) (NC moitié)))) (PUNC ,)
(VN (V ont))
(NP (DET un)

(NC financement)
(Srel

(NP (PROREL qui))
(VN (ADV n’)

(V est)
(AdP (ADV toujours) (ADV pas))
(VPP assuré))))

(COORD (CC et)
(Sint

(NP (NC dont) (DET le) (NC calendrier))
(VN (ADV n’) (V est) (ADV pas_encore) (VPP arrêté)))) (PUNC .)))

Figure 1: Example of parse deemed ungrammatical through model checking

Generation of candidate-model structures Since a Model-Theoretic representation is independent
from any processing aspects concerning the generation of candidate structures, the generation strategy
may be designed separately from model checking. Although an inference process may be designed in
order to construct structures on the sole basis of the constraint grammar (Maruyama, 1990; Balfourier et
al., 2002; Prost, 2008; Duchier et al., 2010, among others), nothing makes it compulsory. It is, therefore,



possible, for instance, to check the likely structures generated by a probabilistic parser against the MT
grammar.

Note, as well, that the type of linguistic structure concerned by a Model-Theoretic representation may
take different forms, depending on the formal framework in use. The seminal work of Maruyama (1990),
for instance, is concerned with dependency structure, while Optimality Theory (Prince and Smolensky,
1993) is more used for describing phonological structures. As for PG, the framework is essentially used
with phrase structures, though a few works rely on it for multimodal annotation, or biological sequences
analysis.

4 Model checking and grammaticality

As we saw, grammaticality judgement is achieved through model checking. The process requires two re-
sources: a PG grammar, and a parse tree to serve as a candidate-model. The grammar is then instantiated
with the input parse in order to construct the constraint network. The grammar we use for experimenting
derives from an implicit CFG corpus grammar. What follows describes the derivation process. We do
not detail here the instantiation of the grammar for a given parse, since it is only a matter of unifying
the constituent categories specified in properties with the labelled nodes in the parse tree. In the litera-
ture, the instantiation is usually part of the characterisation process, along with the grammar checking
of instances. By extension, the term characterisation is also used for denoting the resulting constraint
network.

4.1 Rule-base derivation of a GP grammar
Given an implicit CFG corpus grammar, a GP grammar may be derived through the application of rules,
specific to the semantics of each property type. Most of the rules which we describe next were introduced
by Blache and Rauzy (2012).

Let C be the label of a non-terminal node; we denote by RC the set of context-free rules of left-hand
side C, and we define RHS to map every C to the set RHS(RC) of its right-hand side unique lists of
labels. We also define label to map a node x to its label.

Rule 0 (Obligation – not implemented yet). The semantics of Obligation is meant to capture head
phrases. Thus theoretically, the Obligation property C : 4HC is specified by the set HC of disjunctions
ψ =

∨
e of distinct labels e, such that an e occurs in every rule RHS(RC). Its implementation requires

to address a problem of maximum set cover, which is proven NP-hard.

Further works will implement a greedy algorithm of approximation. Another option could be to heuris-
tically gather heads (), or possibly to combine the two (heuristics and greedy algorithm).

Rule 1 (Constituency). The Constituency property C : EC? is specified for C by the set EC of distinct
labels e, such that there exists r ∈ RHS(RC) with e ∈ r.

EC ≡ {e,∃x∃r(r ∈ RHS(RC)) ∧ (x ∈ r) ∧ label(x) = e}

Figure 4.1 exemplifies Constituency properties derived from the French Sequoia treebank (Candito
and Seddah, 2012). Each property meets PHRASE LABEL: list of constituents.

AdP: [DET, Srel, Ssub, NP, ADV, COORD, PP]
SENT: [NC, NP, ADV, VPpart, VN, VPinf, ADVWH, PP, AdP, I, Srel, Ssub, AP, Sint, NPP, COORD]

Figure 2: Sample PG Constituency properties derived from the Sequoia corpus

Rule 2 (Uniqueness). The Uniqueness property C : UC ! is specified for C by the set UC of all the
distinct labels, which never co-occur with themselves within the same right-hand side.

UC ≡{e,∀x∀y∀r
r ∈ RHS(RC) ∧ (x ∈ r) ∧ (y ∈ r) ∧ ((label(x) = label(y))→ (x = y))

∧ label(x) = e}



COORD: [DET, AdP, CC, Srel, Ssub, AP, Sint, VPpart, VPinf, VN]
VPinf: [VPpart, CLO, VPinf, AdP, VINF, Sint]
PP: [PROREL, NC, P, ADJ, VPpart, VPinf, PRO, AdP, P+D, AP, Sint, P+PRO]

Figure 3: Sample PG Uniqueness properties derived from the Sequoia corpus

Figure 4.1 exemplifies Uniqueness properties.
Rule 3 (Linearity). The set of Linearity properties C : a ≺ b for C is specified by the set LC of consis-
tent ordered pairs of labels (a, b), where (a, b) is consistent iff there exists a production rule r ∈ RC , such
that a and b co-occur in the right-hand side of r, and there exists no rule r′ ∈ RC such that (b, a) ∈ r′.
We denote by ix the index of node x in the rule’s right-hand side.

LC ≡
{

(a, b),∀x∀y∀r∃x′∃y′¬∃r′

r ∈ RHS(RC) ∧ (x ∈ r) ∧ (y ∈ r) ∧ label(x) = a ∧ label(y) = b ∧ (ix < iy)

∧r′ ∈ RHS(RC) ∧ (x′ ∈ r′) ∧ (y′ ∈ r′) ∧ label(x′) = a ∧ label(y′) = b

∧(iy′ < ix′)
}

Figure 4.1 exemplifies Linearity properties.

VN: [[V, VPP], [VINF, AdP], [CLS, VPP], [V, PP], [CLS, ADV], [CLO, VS], [CLO, VINF], [PP, ADV],
[CLO, VPP], [CLR, VPP], [VS, VINF], [VS, VPP], [CLS, VS], [PP, VPP], [V, COORD], [V, AdP],
[VPR, VINF], [V, NP], [CLR, VS], [CLO, V], [VIMP, CLO], [VPR, VPP], [CLR, CLO], [CLO, VPR],
[AdP, VPP], [CLO, AdP], [V, VINF], [CLR, VPR], [CLS, AdP], [NP, VPP]]

COORD: [[CC, VN], [CC, PP], [ADV, Ssub], [VPpart, NP], [Sint, PP], [CC, VPpart], [AdP, NP],
[CC, VPinf], [CC, AP], [CC, Sint], [VN, Ssub], [CC, Srel], [CC, Ssub], [CC, AdP], [VN, AP],
[CC, ADV], [ADV, PP], [VN, VPinf], [CC, DET], [AP, VPinf], [ADV, VPinf], [AP, PP], [CC, NP],
[NP, Sint], [VN, VPpart]]

Figure 4: Sample PG Linearity properties derived from the Sequoia corpus

Rule 4 (Requirement). First, let us remind that the semantics of the Requirement property C : x⇒ y
differs from the semantics of implication, in that unlike implication (C : x⇒ y) 6≡ (¬x∨y). Therefore,
the set ZC of Requirement properties is specified by the set of co-occurrences within the same phrase,
minus the co-occurrences for which the left element may also occur without the right element. Thus,
among the set of co-occurrences (a, b) for C, we remove those for which there exists a production rule
r ∈ RHS(RC) such that a ∈ r and b /∈ r.

ZC ≡{(a, b),∀x∀r∃y
r ∈ RHS(RC) ∧ (x ∈ r) ∧ (y ∈ r) ∧ (x 6= y) ∧ ((label(x) = a)→ ((label(y) = b)))}

Rule 4 is only an approximation, since it does not capture any disjunctive y token, as allowed by the
property’s semantics. We discuss consequences of this limitation in section 5, and envisage possible
improvements.
Rule 5 (Exclusion). The set of Exclusion properties C : x 6⇔ y is specified by the set XC of the pairs of
labels (a, b), such that a and b never co-occur within the same right-hand side.

X
′′
C ≡

{
(a, b), ∃x∃y∃r∃r′

r ∈ RHS(RC) ∧ (x ∈ r) ∧ label(x) = a

r′ ∈ RHS(RC) ∧ (y ∈ r′) ∧ label(y) = b
}

X ′
C ≡{(a, b), ∃x∃y∃r

r ∈ RHS(RC) ∧ (x ∈ r) ∧ (y ∈ r) ∧ (x 6= y) ∧ label(x) = a ∧ label(y) = b}

XC ≡X
′′
C\X ′

C

Rule 5 might be excessively restrictive, as it enumerates the exhaustive list of forbidden co-
occurrences. Yet, at this stage, we can not think of a better way of handling the derivation of this
property.



5 Experiments: grammaticalisation of candidate-parses

We experimented with the Stanford Parser (STP) (Green et al., 2011) and the French Sequoia treebank
(Candito and Seddah, 2012, hereafter CS2012), in order to determine the impact of grammaticality judge-
ment by model checking on parsing. In Experiment 1 we judge the grammaticality of the parses generated
by the STP. In Experiment 2 we judge the grammaticality of the n-best candidate-parses generated by
the STP for every input sentence, then we re-rank the candidates according to their grammaticality (the
grammatical ones come first). In both experiments the parser’s train set is the same as in CS2012, which
is also used for deriving the PG grammar.

PG grammar derivation The PG grammar, which we used in all our experiments derives from the
same train set as in CS2012. Table 5 reports different extraction figures for the implicit CFG grammar,
as well as the numbers of PG properties derived by type.

POS-tags Phrasal rules TOTAL
5817 1409 7226

Constituency Uniqueness Linearity Requirement Exclusion
165 108 321 99 678

Table 2: Derivation of a PG grammar from Sequoia (implicit CFG rules and derived properties)

Experiment 1 (Grammar Checking). First, we run the STP on the Sequoia’s test set (the PARSEVAL
measures10 are reported in Table 5), then we check the grammar for every parse (characterisation pro-
cess) in order to judge its grammaticality. Some of the negative characterisations, hence ungrammatical
phrases/sentences, are reported in Table 5.

Precision Rappel FMeasure Exact matches Valid sentences / Total
68.51 70.46 69.47 205 (19.65%) 1043 / 1043

Table 3: PARSEVAL measures of the STP on Sequoia

Among 1043 parsed sentences, 36 are judged grammatical. They represent 3.45% of the total, and
36/838 ' 4.3% of the incomplete matches. This figure ought to be put in perspective with respect
to different elements. First is the syntactic ambiguity inherent to natural language, which may explain
that a parse may be grammatical even though it does not exactly match the gold standard. Second is
the rather incomplete nature of the PG grammar used for the experiment. It is incomplete for several
reasons: (a) the derivation of the Obligation property, which is meant to identify the head constituents, is
not implemented yet; (b) the derivation of the Requirement property is not implemented in a sufficiently
satisfactory manner, since it does not capture yet the genuine semantics; (c) other properties, such as

10Obtained with the programme evalb: http://nlp.cs.nyu.edu/evalb/, version of 2 November 2013.

Sent. Rewrite Rule Property Violated instances
5 VN → [ADV, V, AdP, VPP, VPP] Exclusion P- = [[ADV, AdP]]
331 Sint → [VPpart, NP, VN, PP, NP] Linearity P- = [[PP, VPpart]]

Sint → [VN, PP, Sint, VPpart] Requirement P- = [[Sint, NP], [VPpart, NP]]
→ Exclusion P- = [[VPpart, Sint]]

502 SENT→[NP, Sint, VN, VPinf, ADV, Srel] Linearity P- = [[VPinf, Sint]]
→ Exclusion P- = [[VPinf, Srel], [Srel, Sint]]

1022 SENT→ [NP, VN, AP, NP, Srel] Exclusion P- = [[Srel, AP]]

Table 4: Sample characterisation: grammar check yielding (un)grammaticality judgements

http://nlp.cs.nyu.edu/evalb/


Dependency and Agreement are not implemented either, for they require the extraction of typed feature
structures. We conjecture that further developments of the grammar derivation process might yield better
results.

We also observe — though we have not measured the phenomena — that various patterns show up,
which inform on the way solution parses are preferred by the parser. The corpus annotation scheme,
for instance, seems to influence the derivation of the model-theoretic grammar, in that some labels are
over-specified. The discrimination of Nouns, for example, between Common Nouns (NC) and Proper
Nouns (NP) is an impediment to the derivation of a Requirement property meant to specify that within
a Noun Phrase a Determiner requires a Noun. We hypothesise that the problem could be addressed with
the introduction of feature structures in the grammar, and their extraction from the corpus. But even
though, the annotation scheme, this time, will probably show under-specified.

Another quite recurrent pattern is seemingly the choice made by the parser to go perhaps “too easily”
for a sub-optimal POS-tagging of the input. Given that the state-of-the-art POS-taggers perform with
about 97% accuracy, we speculate that a more sophisticated re-ranking strategy (than the naive one we
expose next) could grant a high priority to the candidates based on the initial POS-tagging.

Experiment 2 (Grammaticalisation). This experiment aims to “grammaticalise” the STP’s output. We
proceed as follows:

1. (n-best parsing) the n-best candidate-parses are generated with the STP for the sentences deemed
ungrammatical in Experiment 1;

2. (characterisation) every candidate-parse is characterised, and its grammaticality inferred;

3. (re-ranking) the candidates are re-ranked, in order to place the grammatical ones in the first posi-
tions;

4. (evaluation) the new grammaticalised corpus is evaluated.

Table 5 reports the number of parses being grammaticalised in terms of number n of candidates. Sur-
prisingly, the bracketing scores remain unchanged : P = 68, R = 70, F = 69 regardless of n.

n 10 20 30 40 50 60 70 80 100 150 300
grammaticalised parses 13 18 19 22 23 24 24 24 25 26 28

Table 5: Results of the re-ranking by grammaticalisation

6 Conclusion

We have investigated with the alliance between probabilistic parsing and Model-Theoretic Syntax. We
have shown that a parse tree may easily be combined with a constraint network through the use of
a corpus-based model-theoretic grammar. A benefit of such a combination is that it provides a finer-
grained description of the linguistic properties of a sentence than its sole parse structure, and it alleviates
the address of various language problems. In order to demonstrate that benefit we have experimented
with the grammaticality judgement of probable parses through a process of model checking: a parse
structure is deemed grammatical if and only if it satisfies all the grammar properties, i.e. iff it is a model
of the conjunction of grammar properties. Our experiments have shown that 3.5% of the Stanford Parser’s
outcome on the Sequoia corpus of French are deemed ungrammatical. Meanwhile, they have also shown
that a naive re-ranking of the n-best candidate-parses according to their grammaticality is not sufficient a
strategy to improve the parser’s performance. We have discussed a few avenues for further works, which
touch both the improvement of the derivation of a model-theoretic grammar, and the sophistication of
the re-ranking strategy by model-checking.
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