Colocalization analysis to understand Yttrium uptake in Saxifraga paniculata using complementary imaging technics - Aix-Marseille Université Accéder directement au contenu
Communication Dans Un Congrès Année : 2021

Colocalization analysis to understand Yttrium uptake in Saxifraga paniculata using complementary imaging technics

Andrea Somogyi
Cédric Dentant

Résumé

Over the last decades, yttrium (Y) has gained importance inhigh tech applications. Due to its chemical similarities with thelanthanides, Y is often considered a rare earth element (REE).Despite their increased usage, the environmental behaviour ofREEs remains poorly understood. Especially regarding theirinteractions with plants many uncertainties exist as both, positiveand negative effects on plant development have been observed[1]. In order to understand these phenomena a precise knowledgeis necessary about how Y is absorbed by the plant and how it ishandled once inside the organism. Contradictory studies exist,stating that due to similar ionic radius, Y and the other REEsmight be absorbed through Ca2+-channels while others suspect ashared pathway with Al3+ [2].In this study, we used laser ablation coupled ICP-MS andsynchrotron-based micro-X-ray fluorescence spectroscopy(μXRF, beamline Nanoscopium, SOLEIL, France) to localise Ywithin the plant tissue and identify colocalized elements. Theplant used in this study is Saxifraga paniculata, a rugged alpineplant that has shown an affinity for Y in a previous study (inprep.). The results show that after growing on a Y-doped soil(500mg/kg), Y is mainly concentrated in the roots of Saxifragapaniculata and only a small amount is translocated to the aerialparts.μXRF analysis indicates that within the roots the majority of Yremains in the outer cortex and epidermis and hardly penetratesthe stele. Laser ablation coupled ICP-MS confirms this findingand shows a colocalization between Y, Fe and Al and to a lesserextent Ca. In the stem and the leaves Ca disappears from thisgroup of correlated elements while especially in Y-hotspots, Feand Al remain strongly associated. Accordingly, a relationbetween Ca and Y during root uptake remains possible whereasthe correlation to Fe and Al appears to be dominant in the aerialparts, indicating the formation of complexes or a shared pathwayduring translocation.
Fichier non déposé

Dates et versions

hal-03564017 , version 1 (26-01-2023)

Identifiants

Citer

Till Fehlauer, Blanche Collin, Bernard Angeletti, Andrea Somogyi, Claire Lallemand, et al.. Colocalization analysis to understand Yttrium uptake in Saxifraga paniculata using complementary imaging technics. Goldschmidt2021, Jul 2021, Virtual, France. ⟨10.7185/gold2021.5857⟩. ⟨hal-03564017⟩
41 Consultations
1 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More