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Neuronal firing pattern, which includes both the frequency and the timing of action
potentials, is a key component of information processing in the brain. Although
the relationship between neuronal output (the firing pattern) and function (during a
task/behavior) is not fully understood, there is now considerable evidence that a given
neuron can show very different firing patterns according to brain state. Thus, such neurons
assembled into neuronal networks generate different rhythms (e.g., theta, gamma and
sharp wave ripples), which sign specific brain states (e.g., learning, sleep). This implies
that a given neuronal network, defined by its hard-wired physical connectivity, can
support different brain state-dependent activities through the modulation of its functional
connectivity. Here, we review data demonstrating that not only the firing pattern, but also
the functional connections between neurons, can change dynamically. We then explore
the possible mechanisms of such versatility, focusing on the intrinsic properties of neurons
and the properties of the synapses they establish, and how they can be modified by
neuromodulators, i.e., the different ways that neurons can use to switch from one mode
of communication to the other.
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Observations obtained during specific behavioral tasks or cogni-
tive functions provide most of our knowledge about information
processing in the brain. Electrophysiological recordings during
different contexts are characterized by the presence of oscilla-
tions in specific frequency bands; and a change in the firing
pattern of neurons (Buzsaki, 2006). Both phenomena are inti-
mately linked since oscillations are generated/controlled by the
firing of neurons, and neuronal firing pattern is itself directly
influenced by the ongoing network oscillation (Buzsaki, 2006).
Different brain states are associated with different rhythms, and
different brain rhythms are associated with different firing pat-
terns of neurons (Buzsaki, 2006). For example, processing of spa-
tial information is associated with oscillations in the theta band
(4–12 Hz), while storage of spatial memory occurs during sharp
wave ripples (>100 Hz). During these activities, neurons display
different firing patterns (Klausberger et al., 2003; Klausberger
and Somogyi, 2008). Understanding neuronal computation as
a function of brain state thus requires knowing how neuronal
networks can switch from one mode of oscillation to another
as well as how neurons can switch from one firing pattern to
another. Both questions are part of the same problem and cannot
be dissociated.

Brain oscillations are emerging properties of neuronal net-
works; they depend upon connections and time-delays (Deco
et al., 2011). Connections must be understood as everything
that covers the way a given source neuron transmits informa-
tion to its targets. This includes not only the wiring diagram,
but also the intrinsic properties of the source neuron as well
as the presynaptic and postsynaptic properties. Hence, connec-
tion means here functional connectivity. As a working hypothesis,

we propose that changes in functional connectivity contribute
to brain state-dependent changes in oscillatory modes and firing
patterns. This hypothesis is difficult to test because of the diversity
of cell types in the brain. Most cortical regions contain a major-
ity of principal glutamatergic cells (80–90%) and GABA neurons
(10–20%). Although principal cells appear rather homogeneous,
GABA neurons are heterogeneous (Klausberger and Somogyi,
2008). Neurons are connected to each other in a source- and
target-dependent manner, some GABA neurons displaying highly
specialized and precise connectivity patterns (Klausberger and
Somogyi, 2008). Hence, it can be proposed that subsets of neuron
types may be engaged in a brain state-dependent manner.

OSCILLATIONS ARE GENERATED BY NEURONS, AND,
IN TURN, OSCILLATIONS INFLUENCE THEIR FIRING
Place cells are exemplifying this concept. The hippocampus is
central for encoding spatial information. The activity of CA1
pyramidal cells (both the rate and the timing, or phase, of action
potentials relative to the oscillation cycle) is finely modulated by
theta rhythm, which is observed during exploration. A given CA1
pyramidal cell can encode for a specific place in the environment.
Its firing rate increases as the animal gets closer to the center of
the place field, but as interestingly, the spikes of the place cell shift
backward relative to the phase of the ongoing theta oscillations
(O’Keefe and Recce, 1993). Such phase-precession represents a
temporal code, for it causally relates the timing of the principal
cells’ spikes to the behavior of the animal, hence the oscillatory
state.

Although GABA neurons do not show much phase pre-
cession (Maurer et al., 2006; Ego-Stengel and Wilson, 2007;
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Geisler et al., 2007), their firing is strongly shaped by the
ongoing oscillatory activity, i.e., the brain-state. The work of
T. Klausberger and collaborators emphasizes how the output
of different hippocampal CA1 GABA neurons is constrained
by the ongoing theta, gamma oscillations, and ripples oscil-
lations (Klausberger et al., 2003, 2004, 2005; Klausberger and
Somogyi, 2008; Klausberger, 2009). Different types of GABA
neurons display different firing patterns during a given oscilla-
tion (e.g. parvalbumin-containing basket cells and axo-axonic
cells fire out of phase compared to pyramidal neurons dur-
ing theta) and a given cell type displays different firing pat-
terns during different oscillations (for example, O-LM cells
fire during theta, but stop firing during ripple oscillations)
(Figure 1A). This mosaic of oscillation-dependent firing profiles
endows the brain with a true arsenal to organize the activ-
ity of different cells assemblies according to the output func-
tion/behavior, enabling different coding/computation modes: for
instance encoding of space by place cells during exploration
(theta oscillations) and consolidation of such information dur-
ing slow-wave sleep (sharp-wave ripples complexes) (Moser et al.,
2008; Girardeau and Zugaro, 2011). The different firing pat-
terns of GABA neurons during different brain states suggest that
neurons may perform different types of computation accord-
ing to the context. Although we do not fully understand the
functional meaning of these different firing patterns, there is evi-
dence that a given neuron can encode different features of the
environment.

ONE NEURON, DIFFERENT CODES
The firing activity of a given neuron may contain information
based on different coding schemes: the “temporal code,” based
on the precise timing of the spikes and the “rate code,” when
the information is represented by a modulation of the firing rate
(Gerstner et al., 1997). Here also, the example of place cells is
also striking. Although one neuron can exhibit a spatially local-
ized firing to describe a place field, the place cell representation
can suddenly change its activity from one pattern to another
in response to changes in the environment. This phenomenon,
known as remapping, is a well-known example of one neuron
coding for different information (Muller and Kubie, 1987; Colgin
et al., 2008; Jeffery, 2011). When some aspects of the environment
are changed, like the shape of the testing enclosure, a proportion
of neurons show unrelated place fields in the other environment
(Muller and Kubie, 1987). Other factors, like light, color, or sen-
sory changes also produce remapping (Quirk et al., 1990; Bostock
et al., 1991; Markus et al., 1995; Moita et al., 2004; Colgin et al.,
2008).

There are different patterns of remapping: the remapping of
place cell activity can include a substantial change of its firing
rate (i.e., “rate remapping”) or a global, even complete change
of both firing field and rate (i.e., “global remapping”). Rate
remapping and global remapping have been proposed to rep-
resent distinct hippocampal encoding systems (Leutgeb et al.,
2005). In rate remapping, the population of active cells and
the location of the place fields remain unchanged, suggesting
that the change in rate represents non-spatial aspects of an
experience on top of a stable place code. Global remapping,

however, is an all-or-none mechanism, and would code for a
more substantial degree of difference in the environment. Such
a phenomenon would allow different memories to be separated
and stored.

Single cell recordings performed in the human brain (in
the context of epilepsy neurosurgery) also revealed multi-
information processing. A given neuron can display a sparse
but consistent response to different pictures (Bahai Temple,
Sydney Opera, and Jeniffer Aniston together with Brad Pitt,
but not of snakes) shown to the patient (Quiroga et al.,
2005, 2008). These results show that a given neuron can
code for very different information. Hence, hippocampal
neurons possess a multi-representational nature, which is
essential for a structure involved in high-capacity memory
storage.

Nevertheless, the sole coding of individual neurons does not
appear sufficient to represent detailed descriptions of relevant
features of the environment. It is now generally accepted that
unambiguous representations are based on population codes. The
activity of neuronal populations (or networks) depends upon the
way neurons are connected to each other. Interestingly, the con-
nectivity diagram also shows remarkable versatility and dynamic
remodeling.

FUNCTIONAL CONNECTIONS ARE AS VERSATILE AS
NEURONAL FIRING
In the neocortex, neurons are interconnected with each other
in a direct (monosynaptic connection) and indirect (polysy-
naptic interactions) fashion. They form hard-wired networks,
where the information can flow within and across layers via
the axons. Such pathways represent the anatomical connectiv-
ity, describing how local and larger networks are physically
distributed and linked. The information travels dynamically
through these networks, according to the fluctuation of the
ongoing activity. When a neuron emits an action potential,
neurotransmitter will be released at presynaptic sites, activat-
ing postsynaptic receptors, usually leading to depolarization
or hyperpolarization of the target cells. Hence, the functional
consequence of the firing of the presynaptic cell will be an
increased or decreased probability of firing for the postsynap-
tic cells. This mode of information transfer between two neu-
rons can be revealed in vivo by the cross-correlation function
(i.e., cross-correlograms, CCG) between their respective spike
trains, which quantifies how much the firing of a one neuron
is positively or negatively correlated with the firing of the other
neuron within a relatively small time window (Csicsvari et al.,
1998; Bartho et al., 2004; Fujisawa et al., 2008; Ostojic et al.,
2009; Quilichini et al., 2010; Adhikari et al., 2012) (Figure 1B).
CCGs can thus be used to identify putative direct synaptic con-
nections between neurons (Moore et al., 1970). There is now
evidence that synaptic connections can be dynamically modu-
lated in a brain state-dependent manner, for example when an
animal runs on the central arm of the maze in an alternat-
ing task, i.e., choice to turn left or right (Fujisawa et al., 2008)
(Figure 1C). Such dynamic modulation of connections between
neurons enables a reconfiguration of neuronal assemblies, which
output might reflect a neuronal representation of goals and
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FIGURE 1 | Brain state/oscillation dependent modulation of neuronal
activity and functional connectivity. (A) Oscillation-dependent firing
profiles. Distinct classes of hippocampal GABA neurons display different and
specific firing patterns (firing probability histograms) during theta and ripple
oscillations (their spike timing is coupled to field gamma oscillations to
differing degrees). Modified from (Klausberger and Somogyi, 2008).
(B) Identification of putative functional connectivity among neurons.
Autocorrelograms and average filtered waveforms of a putative principal cell
(blue) and an interneuron (purple) in the entorhinal cortex in layer 2 (top panel)
and layer 3 (bottom panel). Cross-correlogram (CCG, grey) reveals
short-latency monosynaptic excitation between neuron 1 and neuron 2 (top
panel) and short-latency suppression of spikes in the target principal neuron
(bottom panel). Modified from (Quilichini et al., 2010). (C) Behavior-dependent
changes in monosynaptic interactions. Short-term cross-correlograms
between a putative pyramidal cell (cell 1, mean waveform in black and single
spikes in blue) and interneuron (cell 2, mean waveform in black and single

spikes in grey) in the medial prefrontal cortex as a function of the rat’s
position on the central arm of a figure-eight-T-maze before a left turn. A
significant functional connection between the cell 1 and 2 is only revealed by
the CCGs around the center of the arm. Top right panel, cross-correlograms
session mean. Modified from (Fujisawa et al., 2008). (D) Modulation of
functional connectivity by brain state dependent oscillations. In the entorhinal
cortex superficial layers (2 and 3), a portion of pairs between putative
interneurons (1.6 presynaptic neuron; 1.10 postsynaptic neuron) displaying a
strong theta-phase modulation of their firing (top left panel, theta phase
distribution of spikes in black and theta cycle as yellow wave) show a brain
state dependent expression of post-inhibitory rebound (PIR) only during theta
oscillations (red bins in the CCGs). However, the expression of PIR did not
depend upon the oscillatory activity (theta vs. slow oscillations) in
theta-phase unmodulated pairs of putative interneurons (3.4 presynaptic
neuron; 3.5 postsynaptic neuron; bottom panel). Modified from (Adhikari
et al., 2012).

trajectory. This is the first demonstration of a variation of func-
tional connectivity as a function of the task in which the animal
is engaged.

In the entorhinal cortex, different brain state dependent oscil-
lations also modulate functional connectivity among neurons
(Adhikari et al., 2012). Inhibitory connections and the presence

of a post-inhibitory rebound action potential (PIR) between pairs
of putative GABA neurons display a brain state preference: their
expression being more prominent during theta oscillation as
compared to slow oscillations (Figure 1D). These data show how
a given network of neurons can functionally reorganize its func-
tional architecture thought different oscillatory states, hence in
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order to support different output. Such a mechanism might be
the result and/or serve to the emergence of oscillations and to
achieve global network synchronization and transition between
brain states.

Obviously, the ability to express different firing patterns and
functional connectivity increases the computational power of
neuronal networks. Such functional reconfiguration allows the
transient constitution of specific sub networks in a brain state-
dependent manner. Thus, neurons can be engaged in different
functions. We will now review the mechanisms that may underlie
the versatility of firing patterns and connections.

UNDERLYING MECHANISMS: CELLULAR
(INTRINSIC PROPERTIES)
The firing pattern of a neuron depends upon the way synaptic
inputs interact with ionic channels. The first step is reaching the
threshold for action potential initiation. Once an action potential
is generated, others can be triggered, via a combination of multi-
ple mechanisms. A cell can be a natural burster, i.e., once reaching
the threshold for action potential initiation; several spikes are
emitted because the cell remains depolarized, for example via
the activation of persistent sodium channels or calcium channels.
The burst pattern depends upon the biophysics of the different
ionic channels (for example, recovery from inactivation) and their
respective pattern of activation (for example, Ca2+-dependent
K+ channels strongly influence the firing pattern). Since differ-
ent Na+, Ca2+, and K+ channels can interact to shape neuronal
output, and since different types of neurons can express different
sets of channels, there are multiple ways to produce different fir-
ing patterns based on the sole intrinsic properties. Alternatively,
a cell may emit a single action potential despite receiving strong
depolarizing synaptic inputs, because of a stronger activation of
K+ channels, which will prevent the membrane potential to reach
the action potential threshold.

Resonance properties provide another important mechanism
that constrains the firing pattern of some neurons (Figure 2).
As mentioned above, many types of oscillations can be recorded
in neuronal circuits, from very slow (<0.1 Hz) to very fast
(100–200 Hz). The frequency of the synaptic inputs often reflects
the field frequency. However, neurons do not process each input
equally. First, the membrane capacitance makes the cell act as a
low pass filter. According to the value of capacitance, which varies
from one cell type to another, neurons will be more or less sen-
sitive to high frequency inputs (Figure 2A). Second, many cell
types possess ionic channels conferring high pass filtering proper-
ties (Hutcheon and Yarom, 2000; Izhikevich et al., 2003). Among
them, one can distinguish Ih, IM, and INaP. They act as an induc-
tance L. The combination of the capacitive and inductive effect
produces a pass band filter (Figure 2A). In CA1 pyramidal cells,
Ih provides strong resonance properties in the theta frequency
range (4–12 Hz), in particular in the dendrites (Narayanan and
Johnston, 2007; Marcelin et al., 2009). Such resonance properties
may be involved in the theta modulation of place cells.

Interestingly, different levels of Ih expression in the dorsal
and ventral hippocampus endow with different resonance prop-
erties (Marcelin et al., 2012a,b), which may be linked to the
different properties of place cells along the dorsal-ventral axis

(Kjelstrup et al., 2008). GABA neurons can also express resonance
properties, including O-LM cells and basket cells, in the theta
and gamma (40–80 Hz) frequency range, respectively (Pike et al.,
2000).

Intrinsic properties render cells more sensitive to specific
inputs according to their frequency content, which may con-
tribute to the expression of different firing patterns as a function
of the oscillatory context. Interestingly, the same concept applies
to synaptic transmission, which can display remarkable frequency
dependency.

UNDERLYING MECHANISMS: SYNAPTIC
(SHORT TERM PLASTICITY)
Numerous studies have shown that synaptic transmission is not
linear. The effects of an action potential on the postsynaptic neu-
ron vary from one spike to the other, according to the history
of the synapse, and its intrinsic presynaptic and postsynaptic
properties. For example, synaptic transmission can display short
term depression or facilitation in a frequency-dependent manner
(Izhikevich et al., 2003). The combination of depressing and facil-
itating synapses also produces a pass band filter (Figure 2B). Such
short term plasticity is influenced by the residual Ca2+ concen-
tration in the presynaptic terminals, the activation of presynaptic
metabotropic receptors, the desensitization of postsynaptic recep-
tors etc. For example, excitatory postsynaptic currents in princi-
pal cells and GABA neurons display strong frequency-dependent
depression via presynaptic mechanisms, whilst inhibitory post-
synaptic currents generated by basket cells show less depression
(Galarreta and Hestrin, 1998). Since excitatory and inhibitory
pathways show different frequency sensitivity, the ratio between
excitation and inhibition is also frequency-dependent (Varela
et al., 1999). This means that some “hard-wired” neuronal con-
nections will be functionally expressed according to the ongoing
activity, creating functional neuronal assemblies and transiently
linking local networks and networks of networks. One striking
example is provided by the projection from glutamatergic dentate
granule cells to CA3 pyramidal cells (Figure 2C). When acti-
vated at low frequency (10 Hz), dentate granule cells activate more
GABA neurons than pyramidal cells, resulting in a strong inhi-
bition of pyramidal cells. However, at higher frequency (40 Hz),
GABAergic neurotransmission switches from short term potenti-
ation to short term depression; the collapse of inhibition enabling
the firing of pyramidal cells (Mori et al., 2004). A similar mech-
anism is involved in the switch between somatic to dendritic
inhibition at 50 Hz (Pouille and Scanziani, 2004).

These examples show that the nature of the ongoing oscilla-
tions directly influences the functional connectivity, dynamically
shaping the organization of functional local and large-scale net-
works in a behavioral relevant fashion. Hence, according to the
oscillatory context, connections may be turned on or off, dynam-
ically, changing the output pattern of individual cells, hence of the
network.

The previous considerations show that firing patterns and
functional connectivity can change dynamically in different oscil-
latory contexts. Since oscillations are emergent properties of
networks, firing patterns, functional connectivity and oscillations
are part of the same process, i.e., they determine/influence each
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FIGURE 2 | Principles of resonance and short-term plasticity of
synapses. (A) Resonance in neurons. (Top panel) The capacitive
properties of the neuronal membrane act as a low pass filter, efficiently
dampening high frequency inputs. (Middle panel) The presence of ionic
channels, like Ih or IM, provide high pass properties. Bottom panel. The
combination of low and high pass filters makes a pass band filter, with a
resonant frequency, i.e., the frequency favored by the cell. (B) Resonance
at the synapse. (Top panel) Some synapses, when activated at a given
frequency, display short-term depression (i.e., the amplitude of the
postsynaptic response decreases), thus making a low pass filter. (Middle

panel) Other synapses facilitate (i.e., the amplitude increases), making a
high pass filter. The combination of both types of synapses also makes a
pass band filter, with an optimal resonance frequency. (C) Examples of
frequency-dependent short term plasticity. Different connections are
tested: dentate granule cell to CA3 pyramidal cell (top), dentate granule
cell to CA3 interneuron (middle), CA3 interneuron to pyramidal cell
(bottom). Note the switch from facilitation to depression at excitatory
synapses between 10 and 40 Hz, and strong depression at 40 Hz at
inhibitory connections. Adapted from Izhikevich et al. (2003) and Mori
et al. (2004).

other. How can then we explain the switch from one oscillatory
mode to another? One possibility would be the intervention of
external drivers that would change the functional state of circuits.
Neuromodulators can fulfill such function.

UNDERLYING MECHANISMS: NEUROMODULATORS
Numerous modulators can be released by specific types of neu-
rons. These neuromodulators include serotonin, acetylcholine,
dopamine, and noradrenaline (Sara, 2009). Serotoninergic neu-
rons of the Raphe control sleep-wake behavior (Monti, 2011).
Their stimulation directly activates hippocampal GABA neurons,
resulting in an inhibition of pyramidal cells (Varga et al., 2009).

Basal forebrain structures provide cholinergic inputs to
numerous structures. Basal forebrain neurons are active during
waking and quiescent during sleep. The release of acetylcholine
can directly change the intrinsic properties of neurons and func-
tional connectivity. Cholinergic activation increases membrane
potential oscillations (Chapman and Lacaille, 1999) and spike

reliability (Lawrence, 2008) during theta frequency oscillations,
and changes the firing pattern of neurons via the activation of
Ca2+-dependent K+ channels (Griguoli and Cherubini, 2012).
Functional connectivity can also be affected as activation of
presynaptic nicotinic receptors increases neurotransmitter release
(Griguoli and Cherubini, 2012). Finally, specific neuron types
can be turned on as acetylcholine depolarizes CCK−, but not
parvalbumin-containing, basket cells (Lawrence, 2008).

Locus coeruleus neurons are the sole source of noradenaline
in the brain. They play a key role in attention and memory pro-
cesses. Activation of these neurons decreases spike jitter and fine
tunes sensory responses. The release of noradenaline decreases
the activity of Ca2+-dependent K+ channels (thus the firing
pattern) and functional connectivity, increasing GABAergic inhi-
bition, and enhancing or decreasing glutamatergic transmission
in a behavior-dependent manner (Sara, 2009).

Hence, neuromodulators specifically released during different
brain states (sleep-wake cycle, attention etc.) have the potential
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to dynamically change the intrinsic properties and the functional
connectivity, hence information processing at the single cell and
network level.

In conclusion, as assessed by their firing patterns, neurons
perform brain-state dependent computation. The switch from
one mode to another can be explained, in part, by a dynamical
reconfiguration of their intrinsic properties and of the func-
tional connectivity matrix that links them to other neurons.
Neuromodulators can perform such reconfigurations. But other

mechanisms, linked for example to energy metabolism or circa-
dian rhythm (via epigenetic processes), are likely to be involved.
All these examples demonstrate the versatility of neuronal net-
works, which are able to reconfigure themselves dynamically in a
brain state-dependent manner, thus increasing the computational
power of the brain.
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