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Abstract

We analyze the far-infrared (FIR) properties of ∼5000 star-forming galaxies at z< 4.5, drawn from the deepest,
super-deblended catalogs in the GOODS-N and COSMOS fields. We develop a novel panchromatic spectral
energy distribution fitting algorithm, Stardust, that models the emission from stars, active galactic nuclei
(AGNs), and infrared dust emission, without relying on energy balance assumptions. Our code provides robust
estimates of the UV−optical and FIR physical parameters, such as the stellar mass (M*), dust mass (Mdust), infrared
luminosities (LIR) arising from AGN and star formation activity, and the average intensity of the interstellar
radiation field (〈U〉). Through a set of simulations we quantify the completeness of our data in terms of Mdust, LIR,
and 〈U〉 and subsequently characterize the distribution and evolution of these parameters with redshift. We focus
on the dust-to-stellar mass ratio ( fdust), which we parameterize as a function of cosmic age, stellar mass, and
specific star formation rate. The fdust is found to increase by a factor of 10 from z= 0 to z= 2 and appears to remain
flat at higher z, mirroring the evolution of the gas fraction. We also find a growing fraction of warm to cold dust
with increasing distance from the main sequence, indicative of more intense interstellar radiation fields, higher star
formation efficiencies, and more compact star-forming regions for starburst galaxies. Finally, we construct the dust
mass functions (DMFs) of star-forming galaxies up to z= 1 by transforming the stellar mass function to DMF
through the scaling relations derived here. The evolution of fdust and the recovered DMFs are in good agreement
with the theoretical predictions of the Horizon-AGN and IllustrisTNG simulations.

Unified Astronomy Thesaurus concepts: High-redshift galaxies (734); Submillimeter astronomy (1647); Infrared
astronomy (786); Astronomy software (1855); Galaxies (573); Active galaxies (17); Starburst galaxies (1570)

Supporting material: machine-readable table

1. Introduction

One of the main mechanisms driving galaxy evolution is the
interaction between the interstellar medium (ISM), primarily
consisting of gas and dust, and the radiation field induced by
stellar activity. In this context, dust poses challenges in the
detection of the UV/optical emission of galaxies and in the
interpretation of these observations in terms of physical
properties (e.g., star formation rate (SFR), stellar mass M*,
etc.), but it also is an important tracer of star formation and ISM
in the far-IR (FIR) observations. At the same time, dust shields
cold molecular hydrogen from ionizing photons and facilitates
the collapse of molecular gas and subsequent star formation
(Goldsmith 2001; Krumholz et al. 2011; Narayanan et al.
2011, 2012; Narayanan & Davé 2012). As such, dust plays a
critical role in the life cycle of galaxies and offers observational
signatures regarding their past evolutionary stages.

The impressive variety of infrared and millimeter facilities
commissioned in the past few decades has propelled the

extragalactic ISM studies at an ever-increasing number,
redshift, and detail. Indeed, the enormous observational efforts
manifested by the large FIR/millimeter imaging and spectro-
scopic surveys such as PEP (Lutz et al. 2011), GOODS-
Herschel (Elbaz et al. 2011), PHIBBS (Tacconi et al. 2013),
S2CLS (Geach et al. 2017), and many others (e.g., Oliver et al.
2012; Magnelli et al. 2013; Walter et al. 2016; Dunlop et al.
2017; Saintonge et al. 2017; Maddox et al. 2018; Béthermin
et al. 2020; Franco et al. 2020; Reiter et al. 2020; Valentino
et al. 2020, for a review see Carilli & Walter 2013; Hodge & da
Cunha 2020) have yielded a wealth of multiwavelength data
sets and have advanced our understanding of galaxy evolution
through scaling relations that have been used to guide
simulations and theoretical models (e.g., Dekel et al. 2009;
Popping et al. 2014; Lagos et al. 2015, 2020; Narayanan et al.
2015; Davé et al. 2017, 2020; Popping et al. 2017).
In the evolutionary picture that is emerging from the analysis

of the FIR/millimeter surveys, the majority of star-forming
galaxies (SFGs) follow a tight relation—the main sequence
(MS)—between the SFR and M* with an increasing normal-
ization factor (specific SFR, sSFR= SFR/M*) at least up to
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z∼ 4 (Brinchmann et al. 2004; Daddi et al. 2007; Elbaz et al.
2007, 2010, 2011; Noeske et al. 2007; Salim et al. 2007; Chen
et al. 2009; Pannella et al. 2009; Santini et al. 2009; Daddi et al.
2010; Magdis et al. 2010; Oliver et al. 2010; Karim et al.
2011; Rodighiero et al. 2011; Shim et al. 2011; Lee et al. 2012;
Reddy et al. 2012; Salmi et al. 2012; Whitaker et al. 2012;
Zahid et al. 2012; Kashino et al. 2013; Moustakas et al. 2013;
Rodighiero et al. 2014; Sargent et al. 2014; Sobral et al. 2014;
Speagle et al. 2014; Steinhardt et al. 2014; Whitaker et al.
2014; Lee et al. 2015; Schreiber et al. 2015; Shivaei et al. 2015;
Tasca et al. 2015; Whitaker et al. 2015; Erfanianfar et al. 2016;
Kurczynski et al. 2016; Santini et al. 2017; Pearson et al. 2018;
Leslie et al. 2020). This elevation of sSFR with look-back time,
which broadly mirrors the overall increase of the SFR density
of the universe from z= 0 to z= 2− 3, is also followed by a
similar rise in the gas fraction ( fgas=Mgas/M*) of SFGs (e.g.,
Daddi et al. 2010; Geach et al. 2011; Magdis et al. 2012a,
2012b; Tacconi et al. 2013; Liu et al. 2019a, 2019b).
Nevertheless, for fixed M*, the increase in star formation
efficiencies (SFE= SFR/Mgas) surpasses that in Mgas, resulting
in higher SFR, an activity that, coupled with the observed
M*–size evolution (e.g., van der Wel et al. 2014), instills
warmer luminosity-weighted dust temperatures of the ISM as a
function of redshift (e.g., Magdis et al. 2012a, 2017; Magnelli
et al. 2014; Béthermin et al. 2015; Casey et al. 2018; Schreiber
et al. 2018; Liang et al. 2019; Cortzen et al. 2020).

Although the purity of the MS as a measure of the
evolutionary stage of a galaxy has recently been challenged
(e.g., Elbaz et al. 2018; Puglisi et al. 2019; Valentino et al.
2020), it appears that the majority of SFGs grow along the MS
by secularly converting (and hence depleting) their gas mass
reservoirs into stars (e.g., Daddi et al. 2010; Davé et al. 2012;
Lilly et al. 2013; Tacchella et al. 2016), with a high degree of
uniformity in the properties of their ISM (at fixed redshift). On
the other hand, galaxies above the MS (starbursts (SBs)) are
primarily characterized by elevated sSFR, SFE, and dust
temperature (Td) with respect to the average star-forming
population at their corresponding redshift (e.g., Daddi et al.
2010; Magdis et al. 2012a; Magnelli et al. 2014; Scoville et al.
2017; Silverman et al. 2018; Tacconi et al. 2018). Galaxies
below the MS are mainly post-SBs or quenched systems with
low levels of star formation activity, low gas fractions, and cold
Td (e.g., Williams et al. 2021; Magdis et al. 2021).

At the core of the aforementioned results is the robustness of
the derived FIR properties, namely, the total infrared luminosity
(LIR), the dust mass (Mdust), the mean intensity of the radiation
field (〈U〉∝ LIR/Mdust), and Td. These quantities and their
emerging evolution with redshift rely on the availability of FIR/
millimeter data and on selection effects. In this regard, while the
ongoing ALMA observations are quickly filling the gap in
resolution and sensitivity between the available UV/optical/
near-IR (NIR) (subarcsecond) data and the coarse resolution of
the confusion-limited SCUBA-2 and SPIRE/Herschel surveys,
the vast majority of the SFG samples with available FIR
photometry are still restricted to the latter. Thus, FIR studies are
still largely focusing on the FIR luminous and most massive
SFGs, on limited and possibly nonhomogeneous or biased
ALMA samples, or on stacking techniques.

Moreover, the derived measurements of Mdust and Td heavily
rely on the adopted models and fitting techniques (e.g., Dale
et al. 2014; Berta et al. 2016). Indeed, without a coherent and
homogeneous treatment of the data sets it is impossible to

overcome systematic effects that could distort the observed
trends. On top of that, recent high-resolution observations with
ALMA indicate that the UV/optical and millimeter emissions
of some high-z SFGs are spatially distinct (e.g., Hodge et al.
2016), posing challenges to the widely adopted energy balance
assumption that is inherent in most multiwavelength fitting
codes. Similarly, there is an ever-increasing number of IR-
bright yet optically faint/dark sources (e.g., Wang et al. 2016;
Casey et al. 2019; Jin et al. 2019; Franco et al. 2020) that an
energy balance approach would have technical difficulties
accommodating.
Finally, while many studies have focused on fgas, the

evolution of the dust fraction ( fdust=Mdust/M*) and the dust
mass function (DMF) with redshift has not been scrutinized to
the same extent (Dunne et al. 2011; Magdis et al. 2012a;
Santini et al. 2014; Tan et al. 2014; Béthermin et al. 2015;
Driver et al. 2018; Donevski et al. 2020; Magnelli et al. 2020).
Given that the use ofMdust as a proxy ofMgas either through the
metallicity-dependent dust-to-gas mass ratio technique (e.g.,
Leroy et al. 2011; Magdis et al. 2011, 2012a; Eales et al. 2012;
Berta et al. 2016; Tacconi et al. 2018) or (indirectly) through
the monochromatic flux densities in the Rayleigh–Jeans (R-J)
tail of the spectral energy distribution (SED; e.g., Groves et al.
2015; Scoville et al. 2017) has gained momentum, a proper
investigation of the evolution of fdust and DMF with redshift is
necessary and remains to be done. More importantly, the fdust,
the DMFs, and in general the life cycle of dust are key in our
understanding of metal enrichment processes and dust produc-
tion mechanisms. These derived properties are also critical
parameters of semianalytical and analytical models that couple
the evolution of stars, metals, and gas (Lacey et al. 2016;
Popping et al. 2017; Imara et al. 2018; Cousin et al. 2019;
Lagos et al. 2019; Pantoni et al. 2019; Vijayan et al. 2019), as
well as of cosmological simulations that also trace the dark
matter component (Hayward et al. 2013; Narayanan et al. 2015;
McKinnon et al. 2017; Aoyama et al. 2019; Davé et al. 2019).
These considerations provide motivation for a coherent and

homogeneous analysis of the full population of IR galaxies that
are detected in the recently constructed, state-of-the-art “super-
deblended” FIR catalogs in two of the most extensively studied
cosmological fields, the Great Observatories Origins Deep
Survey North (GOODS-N; Dickinson et al. 2003) and the
Cosmic Evolution Survey (COSMOS; Scoville et al. 2007).
These catalogs are built using the “super-deblending” techni-
que (Jin et al. 2018; Liu et al. 2018) that allows prior-based
source extraction from highly confused Herschel and SCUBA
+AzTEC maps, yielding robust UV to radio photometry for
thousands of individually detected galaxies. To model the
observed SEDs, we built and make publicly available a novel,
time-efficient, and panchromatic SED fitting algorithm that we
use to infer and explore the evolution and the variations of IR
properties of SFGs (Mdust, Td, 〈U〉, fdust, fgas, DMF) out to z∼ 4
and compare those to recent theoretical predictions. The
catalogs with the derived FIR parameters for the full sample
are also publicly released.
The paper is organized as follows. In Section 2 we describe

the data sets used in this work, while Section 3 introduces our
SED fitting algorithm. In Section 4 we perform various
simulations to determine the robustness of our sample, as well
as the limiting Mdust. Section 5 presents our physical estimates
for each galaxy in the sample and their evolution with z. In
Section 6 we analyze the evolution of fdust and calculate the
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DMF through the conversion of the stellar mass function
(SMF). In Section 7 we constrain the evolution of fgas and
compare it to the literature results. We discuss the implications
that our findings have in Section 8, and we present our main
conclusions and summary in Section 9.

Throughout this paper we assume a flat ΛCDM cosmology
with Ωm,0= 0.3, ΩΛ,0= 0.7, and H0= 70 km s−1 Mpc−1 and a
Chabrier (2003) initial mass function (IMF).

2. Panchromatic Catalogs and Sample Selection

2.1. GOODS-N “Super-deblended” Catalog

We first consider the “super-deblended” photometric catalog
(hereafter SDC1) constructed by Liu et al. (2018) using the FIR
and submillimeter images in GOODS-N. These images come
from the Herschel Space Observatory (PACS and SPIRE
instruments; see Elbaz et al. 2011; Magnelli et al. 2013) and the
ground-based facilities SCUBA-2 (850 μm; Geach et al. 2017)
and AzTEC+MAMBO (1.16 mm; Penner et al. 2011).

Several novelties introduced in SDC1 are particularly useful
for our analysis. First, detections from deep Spitzer IRAC and
Very Large Array 20 cm (Owen 2018) are used as a prior for
the positions of the blended FIR/submillimeter sources.
Second, the SED information from shorter-wavelength photo-
metry is also used as a prior for subtracting lower-redshift
sources. This substantially decreases blending degeneracies and
allows for a robust photometry extraction of sources at longer
wavelengths. Moreover, the authors estimated more realistic
photometry uncertainties for each photometric measurement
with extensive Monte Carlo simulations. These improvements
allow for deeper detection limits and statistically reliable
estimates (both measurements and uncertainties) in the FIR
+millimeter bands.

The SDC1 contains 3306 priors in total, including over 1000
FIR+millimeter detections. All sources have photometric
redshifts and stellar masses inferred by EAZY (Brammer
et al. 2008) and FAST (Kriek et al. 2009) respectively, based
on the 3D-HST UV-NIR (Skelton et al. 2014) and Pannella
et al. 2015 GOODS-N catalogs. Following Liu et al. (2018), we
extend the photometric coverage of the published SDC1
catalog to shorter wavelengths by cross-matching with the 3D-
HST UV-NIR (Skelton et al. 2014) and Pannella et al. (2015)
GOODS-N catalogs. Approximately half of the objects within
the catalog are spectroscopically confirmed. However, as
mentioned by the authors, the outer perimeter of the
GOODS-N area contains objects with high instrumental noise
in the 24 μm prior image that may impair the extraction
process. We therefore choose to limit our analysis to the central
134 arcmin2 with reliable photometry (flag goodArea=1 in
SDC1). This reduced our final sample to 2344 objects.

2.2. COSMOS “Super-deblended” Catalog

We supplement our study with the “super-deblended”
catalog (SDC2 hereafter) presented in Jin et al. (2018). The
catalog covers 1.7 deg2 in COSMOS, in the same bands as in
SDC1, plus additional MAMBO data at 1.2 mm (Bertoldi et al.
2007).

In practice, the deblending methodology remains identical to
that adopted in SDC1, with one primary difference: an
additional step selecting a highly complete sample of priors in
Ks band from the UltraVista catalogs (McCracken et al. 2012).
The resulting 24 μm detections are then combined with the

mass-limited sample of Ks sources in order to fit the remaining
bands in the catalog.
The final input data set contains 195,107 priors, with 13%

of them having spectroscopic confirmation. The authors high-
light that only 11,220 objects are in fact detected over the
100–1200 μm range. Similarly to GOODS-N, we impose
the goodArea=1 flag to only include sources that are present
in the UltraVista Data Release 4 area (McCracken et al. 2012).
We note that for their catalog Jin et al. (2018) used a
combination of Laigle et al. (2016) and Muzzin et al. (2013;
hereafter M13) catalogs. The M13 catalog has an advantage in
that it does not completely remove the sources around saturated
stars, which has a positive effect on the number counts; however,
the reduced quality of the photometry could lead to unreliable
estimates for photometric redshifts (zphot), as well as any
parameters extracted by fitting optical templates. To be on the
safe side, our analysis of SDC2 will only focus on the Laigle
et al. (2016) sources, which narrows down the number of objects
in the input catalog to 186,549 and the total area to 1.38 deg2.
The COSMOS 2015 catalog (Laigle et al. 2016) also comes with
a plethora of UV−optical photometry, spanning an additional
∼20 bands, as well as photometric redshifts and stellar mass
estimates by LePhare (Arnouts et al. 1999; Ilbert et al. 2006).
We exploit these data by cross-matching the same COSMOS
2015 UV−optical photometry that was used to derive M* and
redshift to SDC2, thus extending our photometric coverage. In
total, the merged catalogs consist of ∼40 bands.
For posterity, in Figure 1 we present the UltraVista Data

Release 2 map (Laigle et al. 2016; Davidzon et al. 2017) (L16
area), with the regions where the star subtraction took place
being clearly identified. In addition to that, on the west border
of the survey there exists a number of sources falling outside of
the L16 area. These only have UltraVista coverage and lack
additional Subaru photometry, which could affect the reliability
of the zphot.

Figure 1. COSMOS sky map. The blue regions and black points represent
sources from Muzzin et al. (2013) with goodArea = 1 and 0, respectively
(according to the quality flag in the Jin et al. 2018 catalog). The Laigle et al.
(2016) coverage is shown in green. Sources that we use for our analysis are
indicated in red.
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2.3. Sample Selection

The primary parameters that we can derive from observing the
rest-frame FIR emission are the total infrared luminosity (LIR),
the dust mass (Mdust), and Td or, equivalently, the intensity of
interstellar radiation field (〈U〉) in the Draine & Li (2007) dust
model. To obtain robust estimates for these parameters, an
adequate multiwavelength sampling of a galaxy’s SED is
required. As such, constraining the IR peak is necessary for a
robust LIR estimate, while detections in the long-wavelength
regime (R-J) are imperative to capture the emission from
cold dust.

With these considerations in mind, after the initial cleaning
of the catalogs described above, we perform our sample
selection based on the following requirements:

1. Detection at a signal-to-noise ratio (S/N)> 3 significance
in at least three FIR to submillimeter bands from 100 μm
to 1.2 mm.12

2. Available zphot (or zspec) andM* estimates inferred by UV
to NIR photometry.

After the quality cuts and the selection criteria, we are left
with 4331 objects in COSMOS and 585 sources in GOODS-N,
which constitute our sample. We have additionally identified
75 objects within SDC2 that fulfill our FIR detection criteria
but, despite having a well-sampled UV−optical photometry, do
not have either zphot or M* estimates. We subsequently fit these
sources with EAZY (Brammer et al. 2008), extract their zphot
and other UV−optical properties, and add them to our final
catalog. This brings the total amount of COSMOS sources to
4406. The zphot and zspec distributions of the final sample in the
two fields are presented in Figure 2 (right). As we will discuss
later, a third criterion requesting at least one detection at
λrest> 150 μm will be imposed in order to define a subsample
with robust Mdust estimates.

3. SED Fitting

3.1. The Inventory of Available SED Fitting Routines

Prior to providing the description of our methodology, we
believe that it is important to outline and present a brief
introduction of the available SED fitting codes that deal with a

three-component fitting approach, namely, combining the
optical, active galactic nucleus (AGN), and dust emissions.
These include the well-established and widely used energy
balance routines such as CIGALE (Burgarella et al. 2005; Noll
et al. 2009; Boquien et al. 2019), MAGPHYS (da Cunha et al.
2008; Battisti et al. 2019), and its AGN template extension
presented in Chang et al. (2017). These have inspired more
novel and sophisticated approaches that optimize the template
libraries to achieve significant improvements in computational
speeds (SED3FIT; Berta et al. 2013), or adopt Markov Chain
Monte Carlo methods when extracting best-fit parameters such
as AGNfitter (Calistro Rivera et al. 2016) and Prospec-
tor-α (Leja et al. 2018). These efforts are not just limited to
published software packages, with many authors implementing
their own routines for a panchromatic model analysis (see, e.g.,
Feltre et al. 2013; Symeonidis et al. 2013).

3.2. Basic Description of the Stardust Fitting Code

To model the extensive photometric coverage of the galaxies
in our sample, we develop a new, panchromatic SED fitting
tool: Stardust. The code performs a multicomponent fit that
linearly combines stellar libraries with AGN torus templates
and IR models of dust emission arising from star formation
(SF-IR). This approach, which is very similar to that presented
in Liu et al. (2021), has a number of key differences compared
to the currently existing SED fitting codes such as MAGPHYS,
CIGALE, and SED3FIT.
First, the three components (stellar, AGN, and SF-IR) are fit

simultaneously yet independently from each other, without
assuming an energy balance between the absorbed UV/optical
radiation and the IR emission. The energy balance approach relies
on the assumption that fitted stellar and dust emissions are
cospatial, i.e., the process of UV absorption and subsequent
reemission at IR wavelength happen in the same environment (da
Cunha et al. 2008; see, e.g., their Sections 2.1 and 2.2). However,
the detected stellar and dust distributions within a galaxy are not
always physically connected. Resolved observations of high-z
dusty SFGs (DSFGs; Simpson et al. 2015; Hodge et al. 2016;
Franco et al. 2018; Gómez-Guijarro et al. 2018; Hodge et al.
2019; Kaasinen et al. 2020) have revealed spatial offsets between
the extent of the dust and stellar emitting sizes of high-z
DSFGs, with the former being on average more compact (e.g.,
Chen et al. 2017; Tadaki et al. 2017; Calistro Rivera et al. 2018;

Figure 2. Redshift distributions of the sources considered in the present work. Both the photometric and spectroscopic redshifts were taken from the corresponding
SDCs. The left and right panels show the redshift distribution of the original, full catalog and of the final sample that meets the selection criteria described in
Section 2.3, respectively.

12 Three bands are also required to reduce fitting degeneracies.
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Cochrane et al. 2021). While energy balance is anticipated to
apply universally, the aperture and sensitivity limitations of our
observations cast a concern on how reliably we can bring these
components together in the same panchromatic fit. These
observations are also theoretically supported by radiative transfer
codes (e.g., SKIRT; Cochrane et al. 2019) and hydrodynamical
simulations (e.g., IllustrisTNG; Pillepich et al. 2019; Popping
et al. 2021).

Moreover, the detection of “HST-dark” galaxies, i.e., sources
that are undetected in the UV/optical bands and thus do not have
the photometry to constrain either dust absorption or stellar
emission but are bright in the IRAC and FIR/millimeter bands
(Wang et al. 2016; Franco et al. 2018), poses another technical
challenge to the correct application of the energy balance
approach. Finally, the manner in which dust and stellar emission
are connected, by assuming a single dust attenuation law and dust
composition, can have a significant impact on derived parameters,
as these recipes have been shown not to apply universally (Buat
et al. 2019). In summary, while the premise of the energy balance
routines is undoubtedly elegant and in most cases physically
motivated, we choose to use independent stellar, AGN, and dust
components to better focus on the dust properties themselves.

Furthering this complex picture, it is important to note the
presence of cold diffuse dust, which is being heated by an older
stellar population, rather than an ongoing star formation activity
(see Boquien et al. 2011; Bendo et al. 2012; Galametz et al. 2014;
Hayward et al. 2014). However, when dealing with nonresolved
observations, the diffuse dust and R-J tail emissions are highly
degenerate, and as such none of the aforementioned codes, nor
Stardust, utilize these templates.

The other advantage of Stardust is related to the χ2

minimization approach to select the best-fit models. Instead
of finding the solution from a vast library of precompiled
templates, we devise an optimization method to find the best
linear combination of a much smaller set of “basic” templates
(similar to eigenvectors in principal component analysis). This
is the same approach adopted in the photometric redshift fitting
code EAZY (Brammer et al. 2008). In our case, the basic
templates are divided into three classes and the linear
combination includes a sum of templates from these classes.
The models used to create these templates are the following:

1. Stellar library. We incorporate an updated version of
the stellar population synthesis (SPS) models described
in Brammer et al. (2008). Although UV and optical
photometry is not always available, the inclusion of the
stellar component in the code is important in the NIR
regime. In particular, it allows us to better constrain the
AGN contribution (see Figure 18 and Appendix A). This
stellar library represents an optimized basis set, where the
nonnegative linear combinations of models can be
considered to be the “principal components” of a much
larger parent template catalog (see Brammer et al. 2008;
Blanton & Roweis 2007).

2. AGN library. We adopt empirically derived templates
from Mullaney et al. (2011) describing AGN intrinsic
emission from 6 to 100 μm.13 We include both high- and
low-luminosity templates (total of 2). Since these can be

linearly combined, we do not include the median
luminosity AGN template.

3. Infrared library. It consists of 4862 Draine & Li (2007,
hereafter DL07) templates, with the additional updates
from Draine et al. (2014; see also Aniano et al. 2020).
These models describe the contribution from warm dust
and polycyclic aromatic hydrocarbon (PAH) features in
the photodissociation regions (PDRs), together with cold
dust in the diffuse part of the ISM. We consider14 a wide
array of values for the minimum radiation field (Umin) in
the 0.1 < Umin < 50 range, as well as the fraction of the
total dust mass locked in PAHs (qPAH) between 0% and
10%. We have fixed =U 10max

6 and α= 2, as described
in Magdis et al. (2012a). These templates are not linearly
combined within their class; the algorithm instead
chooses a single best-fit DL07 template.

4. Radio continuum. Data points in radio are not considered
by our fitting routine; however, they can be used
a posteriori to quantify possible radio excess and further
confirm the presence of an AGN, if needed. Our radio
model is based on the radio−FIR correlation, described in
Delvecchio et al. (2021), with a spectral index of −0.75.

More details on the characteristics of the templates and the
motivation for selecting them are provided in Appendix A. With
such a configuration, fitting a single object (including the
computation of the uncertainties) with Stardust takes less than
10 s,15 i.e., a factor of 8–10 faster than software like CIGALE
(see Appendix C), based on large precompiled template sets. If we
choose to precompile all of our templates, instead of linearly
combining them, the resulting model library would contain
millions of possible SEDs, with computation time increasing by
a significant amount. The code is also highly parallelized, which
allows it to run on multiple threads simultaneously, thus achieving
significant computation speeds on modern CPUs.

3.3. Configuration of the Code

For each object, the input consists of measured flux
densities, their corresponding uncertainties, and a redshift
estimate.16 The user must then choose the corresponding filter
curves from the precompiled set, or upload their own. The
individual template components can be switched off and on as
an additional user input. The algorithm then outputs the best-fit
FIR, as well as AGN properties of the source. If the photometry
is available, the UV−optical parameters are also produced.
These can be summarized as follows:

1. The total infrared luminosity integrated over the SF-IR
+AGN templates (LIR,total),

17 the total infrared luminosity
associated with star formation (LIR,DL07), and the relative
contribution of the PDR component ( fPDR) to LIR,DL07.

2. The bolometric IR luminosity of the AGN (LAGN) and its
fractional contribution ( fAGN) to the total IR energy budget.18

13 Note: these templates do not account for X-ray-selected QSOs. The flexible
nature of the code, however, allows these templates to be manually injected if
necessary.

14 The modular structure of the code allows the user to decide which DL07
templates to use.
15 Tested on a i9-8950HK CPU.
16 It is also possible to manually define a rectangular filter at a desired
wavelength, for cases where the filter transmission curve is not easily
obtainable, e.g., ALMA.
17 In this work we use terms LIR and LIR,total interchangeably.
18 The quality of the photometry in this work does not allow us to distinguish
bolometric AGN contributions below ∼0.5%, and thus the nonzero entries
below that threshold are treated here as zero.
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3. The total dust mass (Mdust), the warm dust mass
component heated by PDRs (Mdust

warm), the fraction of the
total dust mass heated by PDRs (γ), the cold dust mass
component (Mdust

cold) in the diffuse ISM, and the fraction of
the total dust mass locked in PAHs qPAH.

4. The intensity of the radiation field that the diffuse ISM is
exposed to (Umin), which is a proxy of the mass-weighted
Td of the ISM, and the mean radiation field intensity
(〈U〉), which is a proxy of the luminosity-weighted Td.

5. The stellar mass (M*), star formation history (SFH),
E(B− V ), and the unobscured SFR, if there is available
optical photometry.

Figure 3 presents an example fit to one of the COSMOS
galaxies, chosen for its prominent AGN contribution. The top

panel of the figure shows the data points and the best-fit model,
with different colors for the four components listed above; the
bottom panel displays the χ2 distributions of all relevant IR
quantities.

3.4. Derivation of Uncertainties

In order to estimate the errors associated with the derived
quantities during the fitting procedure of Stardust, we
consider two main sources of uncertainty: one concerning the
linear combination coefficients of the best-fit optimization, and
one linked to the broadband photometric data.
To quantify the linear combination uncertainty, we resample

the best solution coefficients. A covariance matrix is first
created by considering all of the templates that went into the

Figure 3. Top: example of an observed and best-fit SED, as obtained with the Stardust code for a zphot = 1.78 galaxy (ID641953) drawn from the SDC2 sample.
The squares and circles represent the S/N > 3 photometric detections, while 3σ upper limits are shown as downward-pointing arrows. Red symbols represent the
SDC2 photometry that was used in our fitting routine, while blue symbols show the radio measurements at 1.4 and 3 GHz that were not included in the fit. Instead, the
radio part of the model SED is based on the LIR–L1.4 GHz relation of Delvecchio et al. (2021). The shaded red, green, and blue regions correspond to the dust, AGN,
and stellar components, respectively. A linear combination of all three is given by a solid black line. Bottom: the χ2 distributions for the main derived parameters. The
shaded red areas enclose solutions for which cD =n 12 .
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best-fit solution. We draw the coefficients from a multivariate
normal distribution whose median is given by the coefficient of
the best solution vector and the standard deviation is computed
from the diagonalized covariance matrix. This is done 104

times to provide a good balance between robustness of the error
estimates and computational speed. We recompute all the
relevant FIR properties for each realization of our routine.
From resultant distributions we then define our lower and upper
uncertainty as the 16th and 84th percentile confidence interval,
respectively. However, given the fact that only a single solution
with a single coefficient is considered in the IR, the final
uncertainty on the FIR properties is underestimated.

We therefore also consider the observational uncertainty,
which is primarily driven by the quality of the photometric
data. We compute it by considering all possible solutions from
our template library that fall within the 68% confidence interval
range of the best-fit. This would correspond to a region where
the solutions fall within cD =n 12 , where c c cD = -n n ni

2
,

2
,best

2 ,
since the nondiagonal terms of the template covariance matrix
are not zero.19 We show these as red shaded areas on the
bottom panel of Figure 3. The observational uncertainty is then
derived as simply the width of the shaded region.

The final errors are computed as a quadrature sum of the linear
combination uncertainty and the observational uncertainty.

3.5. The Effect of Photometric Redshift Uncertainty

To explore and quantify how the uncertainty in zphot propagates
into the estimates of LIR and Mdust, we built mock IR SEDs of
1200 galaxies utilizing a suite of < <U0.1 50min DL07 models
and place them uniformly in the 0.03< ztrue< 5 redshift range.
Thus, each mock SED is characterized by a set of predefined
LIR,in, Mdust,in, and ztrue values. We then infer synthetic broadband
photometry in all IR bands available in SDC2 (24–1100μm) for
each simulated galaxy. Since we are interested in the effect of the
zphot uncertainty on the derived FIR properties, to minimize any
other possible sources of error (e.g., photometric uncertainty, poor
photometric sampling of the SED), we adopt S/N= 5 in all bands
and add to our photometric data set the monochromatic flux

density of the template at 2.2 mm. We then fit the synthetic
photometry of each galaxy by fixing the redshift first to
z−= ztrue−Δz and then to z+= ztrue+Δz, where Δz = ò(1 +
ztrue). For our purposes, and based on the zphot accuracy of the
COSMOS field (ò= 0.005–0.03 as quantified in L16), we first
adopt ò= 0.02 and then repeat the analysis for an even more
conservative case with ò= 0.05. The comparison between the
extracted LIR,out and Mdust,out to the input values for each
simulation is presented in Figure 4.
Our analysis suggests that the effect Δz has in the derivation

of the FIR properties is not negligible, even for the idealized
case of detailed (24 μm–2.2 mm) and high-quality (S/N= 5)
photometric coverage. Indeed, we find that a typical value of
ò= 0.02 (ò= 0.05) introduces an extra scatter of ∼12% (25%)
and ∼17% (35%) in the derived LIR and Mdust, which remains
rather constant with redshift (at least out to z= 4). At the same
time, we also find that a symmetric Δz, such as the one adopted
in our simulations, does not inflict a noticeable systematic
offset in the extracted FIR quantities (<0.05 dex).
Based on these results, we update the uncertainties of the

inferred FIR properties of our zphot sample (ztype = 0; see
Appendix A) by adding in quadrature the extra error arising
from a symmetric Δz (assuming ò= 0.02 for all sources) to the
error budget inferred by the SED fitting procedure (photometry
+model). While our correction is based on an average value of
ò= 0.02, we note that for catastrophic zphot failures (ò∼ 0.15)
we find a systematic offset of� 30% between the input versus
output Mdust, while the LIR ratios remain uniformly scattered
around unity.

4. Completeness and Systematics

By construction, the photometric catalogs considered in this
work combine observations that span ∼4 orders of magnitude
in wavelength range, have different sensitivity limits, and are
differently affected by source blending and confusion. The fact
that we choose to draw our sample based on the criteria
described in Section 2, rather than selecting galaxies detected in
a single band (i.e., a flux-limited sample), necessitates a series
of simulations in order to quantify possible biases, systematic

Figure 4. Effect of the zphot uncertainty in the derivation ofMdust (left panel) and LIR (right panel) assuming ò = 0.02 (top) and ò = 0.05 (bottom). Red circles represent
the ratio of the output to input quantities from our simulations, as inferred by shifting the fitted redshift by ± Δz. The shaded regions cover the 68% confidence
interval, and the solid black line indicates a ratio equal to unity.

19 See Sections 15.1 and 15.6 of Press et al. (1986) and Avni (1976). Note that
cD =n 12 only applies when marginalized over all other parameters.
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effects, and the completeness of our sample in terms of Mdust

and LIR.

4.1. The Effect of λlast Cutoff

It has been well established that for a robust modeling of the
Mdust at least one photometric data point longward of the FIR
peak, i.e., into the R-J tail of the SED, is necessary (e.g., Draine
et al. 2007; Magdis et al. 2012a; Berta et al. 2016; Scoville
et al. 2017). Here we attempt to quantify how the accuracy of
the derived Mdust estimates varies as a function of the rest-
frame wavelength of the last available detection in conjunction
with the selection criteria of our sample (i.e., at least three
detections at 24 μm< λ� 1200 μm). For this, we perform the
following simulations.

We start by building mock IR SEDs of fixed Mdust and LIR,
with 0.1 < U 50min , 0� γ� 0.5, and qPAH= 2.8%, using
the DL07 library and place them at 0.01� z� 4.5 with a step
of Δz = 0.05. After all of the models are created, synthetic
photometry is performed by convolving each mock redshifted
SED with a filter transmission curve. We consider all filters
redder than MIPS 24 μm available in SDC2, for a total of nine
bands, and set all recovered fluxes to an S/N= 3 significance
level. At each redshift the algorithm calculates the rest-frame
wavelength for each available band, producing a grid of
possible rest-frame wavelengths of the last detection (λlast) after
accounting for our selection criterion that requests the
availability (and the detection) in at least two bluer bands.
For each λlast it then randomly selects two additional bands
blueward of λlast, producing a final set of three photometric
data points. We then fit each set, as well as 50 permutations by
varying the original fluxes by 10%, with our code to extract
Mdust and LIR estimates. This procedure is then repeated for all
mock SEDs and all acceptable values of λlast in each redshift.

The accuracy with which we can recover Mdust estimates for
each λlast is then quantified by the scatter of the ratio of output
to input Mdust presented in Figure 5. As expected, we find a
decreasing scatter in Mdust,out/Mdust,in at longer λlast, which

drops from a factor of ∼2 (for 68% of the simulated galaxies) at
λlast= 100 μm to a factor of ∼1.1 at λlast= 400 μm.
Based on these results, we choose to define the subsample of

“Mdust–robust” galaxies, for which at least one detection at
λlast� 150 μm is available. This threshold was chosen as an
optimal compromise between the number of the rejected
sources and the precision of the derived Mdust, which for
λlast� 150 μm is �70%. Indeed, while λlast� 150 μm is
evidently not deep into the R-J, it seems that the addition of
the two extra data points blueward of λrest= 150 μm is
adequate to anchor the general shape, and eventually the
Mdust, of the templates.
As a sanity check for the effectiveness of our criterion, we

cross-match the “Mdust–robust” sample with the A3COSMOS
ALMA photometric catalog presented in Liu et al. (2019a) and
refit the 233 galaxies that we find in common, adding this time the
extra ALMA data point to the input photometry. The comparison
of the inferred Mdust,A3 to our Mdust estimates yields a very
good agreement between the two estimates with a median
log(Mdust,A3/Mdust)≈−0.04± 0.06, further supporting our ana-
lysis. Nevertheless, we do identify a handful of sources for which
the addition of the ALMA data point results in lower Mdust

estimates by a factor of�3. An inspection of the SEDs of these
extreme outliers reveals that the discrepancy originates either from
possible catastrophic blending of the SPIRE 500 μm photometry
or alternatively from overresolved ALMA photometry.20

The emerging “Mdust–robust” sample consists of 3312
sources drawn from the same M* and redshift distributions as
the 4991 originally selected galaxies. Finally, we note that our
simulations operate under the assumption that the DL07 models
are a good representation for the FIR emission of the real
galaxies. Variations in dust composition, dust emissivity, and
dust absorption coefficients that could result in systematic
offsets in the inferred Mdust (e.g., Dale et al. 2012; Magdis et al.
2012a; Berta et al. 2016; Scoville et al. 2017) cannot be
modeled with our approach. As is the case for any other Mdust

analysis, the relative rather than the face-value estimates bare
more physical significance.

4.2. Limiting Mdust and LIR

We now attempt to compute the completeness threshold of
our sample in terms of Mdust and LIR as a function of redshift.
Again, we build a grid of mock IR SED in the z= 0−5 range
using the same approach as described above. However, instead
of considering the full range of possible 〈U〉 ∝ LIR/Mdust

values of the DL07 models, the constructed templates this time
follow the 〈U〉–z relation of MS galaxies presented in
Béthermin et al. (2015). At each redshift we then create a grid
of templates normalized to log(Mdust/Me) = 6−10 in steps
of 0.1.
As before, the templates are used to produce synthetic

photometry for each template in all bands available in the
SDC2 catalog. For each band we then adopt an rms based on
the depth of the corresponding survey at each wavelength in the
COSMOS field (Jin et al. 2018) and impose the same selection
criteria on the mock photometry as those applied to the real
catalogs. Following Section 4.1, we also request that the
simulated sources have λlast� 150 μm. If a galaxy of given
Mdust fulfills these criteria at a given redshift, the algorithm

Figure 5. Accuracy of the inferred Mdust estimates as a function of (rest-frame)
λlast, parameterized by the ratio of the output to input Mdust in our simulations.
The color-coding illustrates the density of the data points. The dashed black
line and the shaded gray area denote the median and the 16th and 84th
percentile confidence intervals, respectively. The dashed maroon lines
represent the value where the Mdust ratio is 0.5 and 2. The vertical blue line
at 150 μm denotes the λlast onward where for �68% of the simulated galaxies
the accuracy of the recovered Mdust is �70%. The quantization along the x-axis
is a consequence of the step size in redshift, along with the available observed
bands.

20 The SEDs of the most extreme outliers can be retrieved at https://github.
com/VasilyKokorev/sdc_ir_properties/.
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moves to a lower Mdust until the object is rejected by our
selection. By following these steps at different redshifts, we thus
obtain a limiting Mdust as a function of z, which we coin
lim(Mdust)(z). In the process we also consider the scatter of the
〈U〉–z relation of Béthermin et al. (2015), in order to account for
the variation of 〈U〉 among MS galaxies at a given redshift. The
derived lim(Mdust)(z) can then be converted to lim(LIR)(z), via

á ñ =U
L

M125
, 1IR,DL07

dust
( )

as described in Draine & Li (2007).
We also repeat our simulation for SBs, by fixing 〈U〉= 40

(e.g., Magdis et al. 2012a; Tan et al. 2014; Béthermin et al.
2015). We note, however, that the 〈U〉 of SBs can vary
substantially to lower or higher values (e.g., Magdis et al.
2012a, 2017; Schreiber et al. 2018; Jin et al. 2019; Cortzen et al.
2020). Therefore, the chosen 〈U〉 = 40 is only representative,
but not necessarily unique. Nevertheless, 〈U〉< 40 templates are
represented in the simulation of the MS galaxies, while galaxies
with 〈U〉> 40 are rather rare.

The results of our simulations are presented in Figure 6, where
we show the derivedMdust and LIR as a function of z for the whole
sample, along with the evolution of lim(Mdust) and lim(LIR). We
see that the limiting Mdust increases toward high z, peaking at
z∼ 2, and remains flat afterward, signifying that the balance
between cosmological dimming and negative K-correction is

achieved beyond that point. Following the black line, we could
infer theMdust threshold above which our sample should be 100%
complete, assuming an MS-like population of galaxies. However,
since our sample is not limited to MS galaxies, we naturally also
find sources that fall below our limiting Mdust track. As we will
discuss later, these are predominately starbursting galaxies that
exhibit elevated 〈U〉 with respect to the MS. Our secondary
lim(Mdust) trend for an SB-like population displays that with the
SDC2 detection limits it is possible to detect a low-Mdust object
only if it is also an SB.
We also find a similar trend for MS galaxies when considering

the evolution of lim(LIR). In this case, however, we do not
observe a flattening at z∼ 2, and the trend continues to rise into
the early universe. The balance between cosmological dimming
and the negative K-correction is not being achieved here, since
the wavelengths that are required to reliably constrain the LIR are
positioned to the left of the FIR peak.
Admittedly, depths of FIR surveys are not the only limiting

factors of sample selection. A requirement to have a photometric
redshift and M* would mean that the optical photometry has to be
sufficiently sampled, to allow such an analysis. Moreover, the
deblending procedure itself goes through various selection stages,
including both brightness and mass cuts. Various IR studies (Wang
et al. 2016; Franco et al. 2018) have revealed substantial
populations of optically dark sources at 2< z< 4, which are
otherwise bright in IRAC and FIR bands, which would be
unintentionally excluded from our analysis. Moreover, even at low
z, objects that are faint in the K band would also be missed. Indeed,
a combination of these factors creates significant obstacles in our
completeness analysis; we address this in more detail in Section 6.2.

5. Far-infrared Properties of GOODS-N and COSMOS
Galaxies

Using our newly developed code presented in Section 3, we
extract the FIR and UV−optical properties for all 4991 galaxies
from the SDC1 and SDC2 that meet our selection criteria as
listed in Section 2. Moreover, since both input catalogs contain
M* estimates provided by LePhare, EAZY, or FAST, we are
able to carry out a comparison of these M* to the ones derived
by Stardust. We find that the stellar masses are consistent
with one another and direct the reader to Appendix B for a
more detailed comparison between the two methods, as well as
to EAZY-derived M*. Despite the similarities between the
available and derived M*, in our subsequent analysis, we will
utilize the M* from the parent catalog, unless it is specified
otherwise. This is done to preserve the original mass cuts
described in Liu et al. (2018) and Jin et al. (2018) and therefore
the mass completeness and homogeneity of the catalog.
In total, out of 4991 sources, we find 21 that we consider to

be catastrophic fits (c >n 1002 ); these only make up 0.4% of the
entire output catalog and are subsequently removed. The
average χ2 per degree of freedom of the entire data set was
computed to be equal to 0.98. The distribution of the FIR
properties of the whole sample, their medians, and associated
uncertainties are presented in Figure 7 and summarized in
Table 1. The catalog containing the extracted FIR properties is
described in Appendix A and is publicly available along with
the best-fit SED for each object.
We also calculate the position of the galaxies in our sample

with respect to the MS, by converting the AGN-free LIR,DL07
estimates to SFR (Kennicutt 1998) and using the functional form
of the MS as presented in Schreiber et al. (2015), accounting for

Figure 6. Simulated evolution of the lim(Mdust)(z) (top) and lim(LIR)(z)
(bottom), as described in Section 4.2. The black line represents the derived
trend for MS galaxies, and the dashed–dotted line shows the same relations for
SBs (〈U〉 ∼ 40). The shaded regions define the 16th and 84th percentile
confidence intervals, based on the scatter of the 〈U〉–z relation from Béthermin
et al. (2015). The hexagonal bins contain the inferred parameters of the “Mdust–

robust” sample (i.e., at least one detection at λ � 150 μm), color-coded by
mean radiation field intensity 〈U〉.
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the fact that they use a Salpeter (1955) IMF. The distribution of
ΔMS= SFR/SFRMS as a function of redshift and stellar mass is
presented in Figure 8. We define the boundary between the star-
forming and quiescent galaxies at logΔMS=−0.5 dex and
between MS and SBs at logΔMS= 0.5 dex, which in linear
space corresponds to ×3 below/above the MS. Quite naturally,
for decreasing M* and increasing redshift, our sample is
progressively restricted to galaxies that lie above the MS. This
is shown by the tracks in Figure 8 that indicate the limitingΔMS
for fixed M* as a function of redshift that is reached by our data,
after converting the inferred lim(LIR) to lim(SFR). Nevertheless,
we find that the majority of our sources are classified as MS
galaxies (69%), with the remaining objects either considered to
be undergoing a phase of “bursty” star formation (26%) or being
passive galaxies (5%).

As a final sanity check, we additionally fit the same sources
with CIGALE, by utilizing DL07 models and similar sets of
optical and AGN templates. We find that the output parameters
as derived from the two codes are in good agreement and defer
the reader to Appendix C for a more detailed comparison.

5.1. The “Mdust−robust” Sample

We now focus on the FIR properties of the “Mdust–robust”
galaxies described in Section 4.1, which should represent the

Figure 7. Distribution of the inferred IR properties of the COSMOS and GOODS-N samples. With the exception of z and M*, these properties are the output of our
SED fitting code (see Section 3). The black solid and dashed lines represent the median and the 68% confidence interval, respectively. The hatched red region on the
fAGN histogram highlights the range where estimates are not reliable (i.e., fAGN < 0.005).

Table 1
Properties of the Galaxy Sample Selected in Section 2

No. z LIR,total
a LIR,DL07

b SFRc Mdust M* fAGN 〈U〉
Galaxies (1012 Le) (1012 Le) (Me yr−1) (108 Me) (1010 Me) (%)

COSMOS 4406 -
+0.88 0.57

1.09
-
+0.45 0.40

2.17
-
+0.44 0.39

2.10
-
+43.96 38.88

209.93
-
+2.73 2.08

16.66
-
+4.17 2.89

5.83
-
+0.86 0.60

2.44
-
+10.12 7.72

29.55

GOODS-N 585 -
+1.01 0.53

1.02
-
+0.35 0.28

1.60
-
+0.34 0.27

1.53
-
+33.84 27.02

152.74
-
+2.60 1.76

10.34
-
+3.56 2.32

6.03
-
+2.60 2.14

4.74
-
+9.38 6.95

29.82

All 4991 -
+0.90 0.58

1.08
-
+0.44 0.38

2.09
-
+0.42 0.37

2.04
-
+42.30 37.06

203.88
-
+2.71 2.04

15.71
-
+4.07 2.72

5.93
-
+0.93 0.67

3.06
-
+10.00 7.58

29.68

Notes. With the exception of redshift and M*, the other quantities are derived via SED fitting. Values are presented as the median and a double-sided 68% confidence
interval.
a Computed over a linear combination of AGN+DL07 best-fit templates.
b Only considering the best-fit DL07 template.
c Computed from LIR,DL07.

Figure 8. Position of our sources with respect to the MS as a function of
cosmic age and redshift. Points are color-coded according to the M*. The
dashed black and gray lines denote the MS and its 0.5 dex scatter. The solid
colored lines correspond to the ΔMS detection limit as computed based on the
inferred Llim IR( ) (see Section 4.2) and assuming M* = 1010, 5 × 1010, and
1011 Me.

10

The Astrophysical Journal, 921:40 (27pp), 2021 November 1 Kokorev et al.



most reliable sample for the exploration of the dependency of
the LIR, Mdust, and 〈U〉 on redshift, cosmic age, and ΔMS. The
emerging results are presented in Figure 9, where for
completeness and to facilitate comparisons we also include
the inferred properties of the full sample.

Both LIR andMdust are found to increase smoothly as a function
of ΔMS. At the same time, we also find that for MS galaxies 〈U〉
evolves as  ´ + z3.2 1.3 1 1.2 0.3( ) ( ) , which is in excellent
agreement with the stacking analysis of Béthermin et al. (2015).
The fact that our individually detected galaxies appear to follow
the same 〈U〉–z relation as the much deeper stacked ensembles
reinforces the notion that the adopted “Mdust–robust” subsample
does not introduce a significant bias toward colder objects.

Since 〈U〉 is proportional to LIR,DL07/Mdust, and also a proxy
for Td, our analysis provides further evidence that dust in MS
galaxies becomes warmer toward higher redshifts, a trend that has
already been recovered in previous studies (most of them based on
stacking analysis; see, e.g., Magnelli et al. 2014; Schreiber et al.
2015; Davidzon et al. 2018). Similarly, our data also confirm a

progressive increase of 〈U〉 (or Tdust) with an increasing elevation
above the MS (e.g., Magdis et al. 2017; Jin et al. 2019).
It is worth noticing that the full sample follows the same

general trends albeit with a considerably larger scatter (∼×2) in
Mdust and 〈U〉. The reduced scatter for the “Mdust–robust”
subsample is driven by the imposed λlast� 150 μm selection
criterion that primarily removes the locus of sources with very
cold fitting solutions (〈U〉 1). We highlight that the rejection of
these objects should not introduce a bias in our sample since such
low 〈U〉 values are more indicative of poor photometric
coverage/quality (lack of available data point in the R-J) rather
than of realistic, extremely cold ISM conditions. However, we
note that not all of the extremely cold solutions have been
removed from the “Mdust–robust” sample by our selection, as
∼200 objects with 〈U〉< 1 meet our λlast> 150 μm criterion.
These can be easily identified in the 〈U〉 − z plot and as the
outliers populating the secondary blue cloud of points in the
Mdust−ΔMS plot in Figure 9. As we will discuss later, these
could be sources with unreliable zphot estimates, failures of the

Figure 9. Evolution of general FIR properties, as computed with Stardust, as a function of z, cosmic age, and ΔMS. The hexagonal bins are normalized by the
number count and contain the “Mdust–robust” sample in blue and the objects that were removed after the quality cut in red. For the “Mdust–robust” we show the binned
median points, with their y-uncertainty corresponding to the 16th and 84th percentile intervals and x-uncertainty corresponding to the bin width. The dashed red lines
and shaded regions correspond to the 〈U〉–z relation for MS galaxies from Béthermin et al. (2015).
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deblending in the SPIRE bands, or, more interestingly, gas giants
or very compact galaxies with optically thick FIR emission.

5.2. Cold versus Warm Dust

The SED decomposition introduced in Section 3 can also
provide constraints on the relative contribution of the warm
(PDR, L IR

warm, Mdust
warm) and cold (diffuse, L IR

cold, Mdust
cold) ISM

components to the total LIR output and the total Mdust budget of
the galaxies in our sample. In particular, it is worth
investigating if and how the relative contribution of the
components varies as a function of ΔMS. Indeed, if SBs are
experiencing elevated star formation activity per surface area
(Elbaz et al. 2011, 2018; Valentino et al. 2020), then one would
expect to see an increased fraction of LIR (and Mdust)
originating (and being heated) from the “PDR” component,
where the radiation intensity ranges from Umin to Umax (Draine
& Li 2007).

In Figure 10 we plot the inferred properties of the warm and
cold ISM components as a function of ΔMS. We find that for a
fixed LIR (or equally SFR), SBs tend to have lower amounts of
Mdust

cold, with Mdust
cold/LIR showing a tight anticorrelation with

ΔMS. The same, however, does not apply to Mdust
warm/LIR,

which exhibits a significantly larger scatter and only a very
weak dependence on ΔMS. This is a consequence of an
increasing fraction of warm to cold Mdust and LIR between MS
and SB galaxies (Figure 10).

The observed trends suggest that, compared to MS galaxies,
SBs have a larger fraction of their total Mdust exposed to the
intense stellar radiation fields of the PDRs, in agreement with
expectations discussed above. Our result could indeed reflect
an increase in the compactness of the star formation activity for
increasing distance from the MS as suggested in recent high-
resolution studies. Finally, under the assumption that Mdust

cold is
proportional to Mgas and LIR is proportional to SFR, our results
point to enhanced star formation efficiencies and shorter gas
depletion timescales for sources residing above the MS, as
already reported in the literature (e.g., Daddi et al. 2010;
Tacconi et al. 2010, 2020; Magdis et al. 2012a, 2017; Sargent
et al. 2014; Silverman et al. 2018).

6. Dust−Stellar Mass Relation and Dust Mass Functions

As discussed in Section 1, constraints on the evolution of
fdust and the DMF are key toward a better understanding of dust
production and destruction mechanisms at different epochs.
Within this context, we explore how the current data set traces
the evolution of fdust and use it to characterize the DMFs at
various redshifts.

6.1. The Evolution of the Dust Mass Fraction

To infer the evolution of fdust, we adopted the formula
described in Liu et al. (2019b), which parametrizes fdust in
terms of z, M*, and ΔMS. Compared to more simple log-space
linear fitting models (e.g., Scoville et al. 2017), this formulation
recovers trends that are more physically meaningful and also
explores how these parameters are covariant and degenerate
with each other in a multidimensional fitting space. As an
initial check, we performed a Spearman correlation test and
found Mdust to be mildly correlated with logΔMS (ρ= 0.40)
and strongly correlated with M* and tage (ρ= 0.63 and −0.80,
respectively). We consider the following functional form:

= + D

+
+ +
+

f a a M M

b M M

c c M M t z

d

log log 10 log MS

log 10

log 10
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where tage is the cosmic age at a given redshift in Gyr andM* is
the stellar mass in Me. For fitting we use the Python package
scipy.optimize.curve_fit, which finds the solution
based on the least-squares method. We also consider how the
extreme outliers can affect our results and thus only fit the
medians in a given redshift bin. The best-fit values are as
follows:

= - =
= - = -
= = -

a a
b c
c d

0.90 1.31
0.98 0.23

0.11 0.64,

0 1

0

1

with the uncertainties being computed from the covariance
matrix. We then used the functional form given by Equation (2)
to renormalize all galaxies to lie on the MS (ΔMS = 1) and
M* = 5× 1010Me, in order to directly compare with our best-
fit function in two dimensions.
The normalized data and the best-fit relation presented in

Figure 11 are in very good agreement with the collection of
similar trends drawn from the literature (e.g., Scoville et al.
2017; Tacconi et al. 2018; Liu et al. 2019b; Magnelli et al.
2020). We note that any apparent discrepancies between the
slope and the normalization of our recovered relation to that of
Scoville et al. (2017) and Magnelli et al. (2020) are driven by
the model parameterization, as for the latter the multivariable
functional forms do not consider the covariance between the
fitted values.
In Figure 12 we also show how the one-dimensional relation

betweenMdust andM* compares to the multidimensional fit within
six redshift bins. Since our analysis can be affected by the

Figure 10. Comparison of the properties of the warm (PDR) and cold (diffuse) dust components of the ISM as a function of ΔMS. From left to right the panels show
the warm and cold dust mass components weighted by the total LIR, the fraction of warm to cold Mdust, and the fraction of “PDR” to diffuse ISM IR output. The bins
are colored based on number density of the data points. We show a typical uncertainty on the plotted parameters in the upper left corner of each panel.
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completeness of our sample in terms of M* and Mdust, we also
consider the underlying selection effects based on our lim(Mdust)(z)
derivation and assuming that our catalog is complete at M*> 1010

Me. We find that for a fixed redshift range the inferred Mdust–M*
relation shadows the multiparameter fit up to z∼ 1.1, in moderate
agreement with the trends reported in Liu et al. (2019b) and
Magnelli et al. (2020). However, the increasing incompleteness
and the low number statistics do not allow us to extend our
analysis at higher redshifts.

Based on these results, we will limit the subsequent DMF
analysis to the 0.2< z< 1.1 range.

6.2. Dust Mass Functions

After obtaining the functional form for fdust(tage, M*, ΔMS),
we are now in a position to examine the shape and the
evolution of the DMF with redshift. For this we will restrict our
analysis to the COSMOS sample (SDC2), as we do not have
enough statistics or coverage of the GOODS-N field to reliably
constrain the DMF.

The “super-deblending” procedure that went into producing
the SDC2 catalog creates a significant obstacle when attempting
to consider all of the incompleteness effects of the sample. The
objects that end up in our sample go through several selection
stages, both before and after the deblending procedure. These
include both the brightness and mass cuts of the parent catalog
(Laigle et al. 2016), the availability of infrared coverage (Jin
et al. 2018), and the selection criteria imposed in our study. As
such, it is not possible to robustly assess the properties and the
number of objects that end up being “lost.” Therefore, we select
an alternative approach in computing the DMF for our objects,
namely, utilizing the derived fdust parameterization along with
the available SMFs in the literature. Later in this section, we also
attempt to account for the incompleteness effects and compare
the SMF-derived DMF to the observed number density of
galaxies per Mdust bin.

6.2.1. DMF from SMF

For our analysis we adopt the SMF computed by Davidzon
et al. (2017), which covers the entire COSMOS field and the
z= 0.2−4 range. Their mass function already accounts for the
Eddington bias, so we do not need to consider any additional
corrections. Since the vast majority of galaxies in our sample
are star-forming, we adopt the derived parameters for the
“active” SMF only.
The galaxy mass function is normally expressed as a

Schechter function (Schechter 1976), which in logarithmic
form can be written as

F = -
´ F - a+

M d M M M

M M d M

log log ln 10 exp

log , 31

*

* * *

( ) ( ) ( ) ( )
( ) ( ) ( )( )

where α is the slope of the faint end, Φ
*

is the normalization,
and M

*

is the characteristic mass, indicating the position of the
“knee” of the Schechter function. To convert the SMF to DMF,
we first postulate that the number of galaxies in a given redshift
bin is the same, regardless of whether we integrate over M* or
Mdust, namely,

ò òF = F
¥ ¥

M d M M d Mlog log log log ,
0 0

dust dust* *( ) ( ) ( ) ( )

and the integrands can be rearranged to obtain

F = FM M d M d Mlog log log log .dust dust* *( ) ( ) ( ) ( )

We then differentiate Equation (2), to obtain d Mlog *( )
= + ´ + -d M b c tlog 1dust 1 age

1( ) ( ) . In order to perform the
final conversion, we also transform all the M* bins into Mdust

bins, by inverting our formulation of fdust, taken at ΔMS= 1.

6.2.2. Accounting for the Eddington Bias

Before comparing to the real data, it is important to note that,
while calculating the SMF-derived DMF, the Eddington bias,
induced by the fdust scatter, should be taken into account. Since
we are directly employing the Davidzon et al. SMF, where the
Eddington bias has already been corrected, using the best-fit
fdust relation to convert SMF to DMF will only reproduce the
median trend and will not properly account for the full dynamic
range of observed Mdust. To alleviate this, we rely on the work
by Loveday et al. (1992), which showed that the Eddington
bias manifests itself as a Gaussian, whose width is equal to the
scatter of the variable of interest, convolved to the mass
function. We have thus utilized an approach similar to that used
in Davidzon et al. (2017) for the SMF and in Beeston et al.
(2018) for the DMF, where they successfully deconvolve their
observed mass functions by using the scatter of the observed
variable. As such, within each redshift bin we consider the
standard deviation of the fdust in a logarithmic space. We then
use this scatter to create a simple Gaussian that is centered at
zero, and then we convolve it with our SMF-derived DMF.
This allows us to better take into account the scatter of our data
and thus produce a more realistic mass function. In conclusion,
we have indirectly produced two versions of SMF-derived
DMFs, with and without the scatter.

6.2.3. Comparison to the Observed Number Density

Now we would like to compare the SMF-derived DMF to the
observed number density of galaxies in the “Mdust–robust”
sample. To this end, we first apply the widely used nonparametric

Figure 11. Derived relations for fdust as a function of z/tage. The dashed purple
line shows the fit to our data, while solid colored lines display literature results.
The shaded purple region denotes the 16th and 84th percentile confidence
intervals of our fit. Starred labels denote literature calculations where a direct
comparison was not available and a δGDR = 100 was assumed. The gray
hexbins contain the data from the “Mdust–robust” sample and are normalized by
the number count. Both the data and the derived relations have been rescaled to
ΔMS = 1 and M* = 5 × 1010 Me. White diamonds show median positions of
the Horizon-AGN (HAGN) SFGs at that redshift, normalized in the same way
as our data.
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1/Vmax method to correct for the Malmquist bias of our sample
(Schmidt 1968). This method relies on assigning theVmax to each
redshift bin, based on the detection limits of the survey.
Effectively, this correction accounts for the fact that in a given
volume a brightness-limited survey is more likely to pick up the
bright sources, while missing faint galaxies, which would
populate the low-Mdust end. We explicitly highlight that the
Vmax correction only accounts for the FIR flux rms cuts and not
the selection criteria outlined in Section 2.3.

To calculate the Vmax, we use the prescription from Weigel
et al. (2016), which provides a volume correction for each
individual source. As a first step, and for a given redshift bin, we
split our sources into 0.4 dex bins in the log(Mdust/Me)= 6–11
interval. Given that the median uncertainty on the Mdust is
∼0.3 dex, the following bin spacing will ensure that there is very
little to no cross-contamination between mass bins. The V i,max ,
where i denotes an individual galaxy, can be then calculated as

= -V
A

d z d z
3

, 4c cmax max,i
3

min,i
3( ( ) ( ) ) ( )

where dc is the comoving distance and A is the area, which in
our case is equal to 1.38 deg2. Following Weigel et al. (2016),
the zmin,i is given simply by the lower boundary of the bin. The
zmax,i, on the other hand, can be calculated empirically, either
through detection limits of individual bands or by considering a
limiting mass of the survey. It, however, cannot exceed the
maximum redshift of the bin.

To obtain the zmax, we consider the best-fit SEDs for our
sources and the rms of the parent catalogs in order to redshift
the sources to the point where they no longer fulfill our
selection criteria as outlined in Section 2. Using this method,
we, however, found that, for an overwhelming majority of

sources, the computed zmax,i exceeds the upper boundary of the
bin they belong to. Therefore, the Vmax correction that we apply
becomes effectively bound between the lower and the upper
redshift of the bin. We find that this method works best in the
lowest (0.2< z< 0.5) redshift bin, with the á ñV Vmax test
returning a value of 0.47. The remaining two redshift bins are
significantly incomplete, with the ratio returning 0.83 and 1.38,
respectively.
Among the other sources of incompleteness, as discussed in

Section 6.2, here we can attempt to account for lost sources due
to the sensitivity limits of the survey and failures in the
deblending procedure. We therefore multiply our points by the
loss fraction in each redshift bin that is computed as the ratio
between sources in our catalog over the sources that have
SN-IR> 1 in the parent catalog.21 The SN-IR parameter,
described in greater detail in Liu et al. (2018) and Jin et al.
(2018) and references therein), considers a combination of FIR
bands starting with 100 μm. We thus expect that in this context
our SN-IR threshold can indicate whether a galaxy is
intrinsically dusty.
The comparison of the SMF-derived DMF with and without

the Eddington bias taken into account, along with the observed
volume-weighted number density of galaxies, derived as
described above, for three redshift bins, is presented in
Figure 13. We find that the DMF without the Eddington bias
is insufficient to reproduce the observed dynamic range of
Mdust, particularly in the higher-redshift bins, exactly as we
have predicted in Section 6.2.2. On the other hand, the SMF-
derived DMF with the artificially induced bias, through the fdust
scatter, is in good agreement with the data in the high-mass

Figure 12. Mdust as a function of M* in six redshift bins. The dashed–dotted purple line represents our best fit from Equation (2) that was collapsed to a single
dimension, with ΔMS = 1 and z = 〈zbin〉. The shaded purple regions denote the 16th and 84th percentile confidence intervals of our fit. The orange and blue lines
show the relations derived in Liu et al. (2019b) and Magnelli et al. (2020), respectively. The dashed black lines represent the detection limits of the original catalog, in
M* (vertical), and the lim(Mdust) that we compute in Section 4.2 (horizontal).

21 SN-IR2 =ål lS N 2( ) , with λ � 100 μm.
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end, further highlighting the necessity of accounting for the
observational biases when inferring relations (i.e., M*–Mdust in
our case) through the observed mass (or luminosity) functions.
Although our model underpredicts the high-mass end data in
the higher-redshift bin, both still agree within the error bars. At
the same time, though, in the low-mass regime our data
significantly underestimate the number density of galaxies
mirroring the incompleteness of our sample in this Mdust

regime. It is worth noticing, though, that the turnover of the
observed data perfectly coincides with the independent
estimates of lim(Mdust), offering an indirect validation of our
simulations presented in Section 4.2. For the analysis in the
next sections, we adopt the SMF-derived DMF, which has the
Eddington bias corrected out, as the final result against which
we will compare previous observationally driven DMFs and
theoretical predictions.22

7. Gas Content of Star-forming Galaxies

The inferred Mdust estimates can be used as an invaluable
proxy of the gas mass (Mgas). To this end, we adopt the
metallicity-dependent gas-to-dust mass ratio δGDR technique,
which takes advantage of the relatively tight anticorrelation
between the gas-phase metallicity and the δGDR of galaxies, both
in the local universe and at high z (see, e.g., Leroy et al. 2011;
Magdis et al. 2012a; Rémy-Ruyer et al. 2014; Genzel et al.
2015). For a source with known metallicity (Z) and Mdust, one
can estimate the amount of Mgas via the following relation:

d=M Z M , 5gas GDR dust( ) ( )

where Mgas corresponds to +M MH HI2 , i.e., the sum of the
atomic and molecular hydrogen.

Given the absence of direct metallicity measurements for our
sample, we adopt the fundamental metallicity relation (FMR)
of Mannucci et al. (2010). In particular, we use the M* and
SFR estimates as inputs to the FMR and obtain metallicities
calibrated for the Kewley & Dopita (2002; KD02) photo-
ionization models. These metallicities are subsequently con-
verted to the Pettini & Pagel (2004; PP04 N2) scale following
Kewley & Ellison (2008). We then estimate the δGDR of each
galaxy through the δGDR–Z relation of Magdis et al. (2012a),

given as

d = 
- + 

log 10.54 1.00

12 log O H , 6
GDR

0.99 0.12

( ) ( )
[ ( )] ( )( )

and subsequently derive Mgas through Equation (5), for all the
sources in SDC1 and SDC2 catalogs. We propagate the
uncertainties on Mgas by taking into account the uncertainty on
Mdust and combining it with the typical scatter of 0.2 dex on the
δGDR–Z relation (Magdis et al. 2012b). These inferred Mgas

estimates with associated uncertainties are included in the
released catalog.

7.1. Gas−Stellar Mass Relation

Similarly to fdust, we also explore the dependence of fgas on
cosmic age, ΔMS, and M*. We utilize the same multiparameter
fitting function as before (see Equation (2)) and focus on the
“Mdust–robust” sample. We calculate the Spearman rank
correlation between our variables and find Mgas to be mildly
correlated with logΔMS and M* (ρ= 0.47 and 0.53, respec-
tively) and strongly negatively correlated with tage (ρ=−0.82).
The fitting procedure yields the following best-fit parameters:

= - =
= - = -
= =

a a
b c
c d

0.73 1.16
1.02 0.20

0.09 1.39.

0 1

0

1

The best-fit fdust–tage (or redshift) relation and our data, both
normalized to ΔMS = 1 and M* = 5×1010Me, are presented
in Figure 14 (top). Similar to previous studies (Scoville et al.
2017; Tacconi et al. 2018; Liu et al. 2019b; Magnelli et al.
2020), we find a sharp increase in the gas fraction up to z= 2,
followed by a milder evolution at higher redshifts, a change that
is noticeable only in the fdust–z parameter space. We note,
however, that due to poor statistics and lack of spectroscopic
redshifts, our data cannot reliably constrain the high-z evolution
of fgas at z> 2. We also detect a population of sources that
display significantly elevated gas reservoirs for their redshift
(log( fgas)> 0.5). Some of those objects either have only a zphot
estimate available or appear to be blended in the SPIRE bands
and therefore could have an erroneously large Mdust and
subsequently Mgas estimate assigned to them. However, among
these, we do identify some sources with spectroscopic redshifts,
which are also “clean”/isolated in the IR maps. In particular, we

Figure 13. Derived DMFs in the 0.2 < z < 0.5, 0.5 < z < 0.8, and 0.8 < z < 1.1 ranges. The dashed black line represents the original SMF for active galaxies from
Davidzon et al. (2017). The purple and red lines are the DMFs obtained by converting the SMF, with and without the Eddington bias applied, respectively. The blue
points are the DMF calculated directly from our data. The shaded rectangular area highlights the theoretical prediction for lim(Mdust) in that redshift interval.

22 Tables containing the DMFs can be accessed at https://github.com/
VasilyKokorev/sdc_ir_properties.
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find ∼40 such sources with log( fgas)> 0.5) and six with
log( fgas)> 1 that, as we discuss later, we coin as “gas giants.”

7.2. Evolution of Depletion Time

Finally, we focus our attention on the depletion time τdepl=
Mgas/SFR= 1/SFE. We employ the same fitting technique as
before and explore the evolution of τdepl with cosmic age,
ΔMS, and M* in a multidimensional parameter space, for the
“Mdust–robust” sample. The τdepl correlates mildly with age
and ΔMS (Spearman ρ=−0.46 and −0.58, respectively) and
weakly with M* (ρ=−0.23). The best-fit parameters are as
follows:

= - =
= - = -
= =

a a
b c
c d

1.65 1.42
0.95 0.02

0.12 0.37.

0 1

0

1

We show the best-fit τdepl−tage relation and our data, both
normalized to ΔMS = 1 and M* = 5× 1010Me, in
Figure 14 (bottom). In line with the previous studies of

τdepl by Scoville et al. (2017), Tacconi et al. (2018), and Liu
et al. (2019b), we recover a relatively weak decrease of
depletion time (or increase in SFE) with redshift.

8. Discussion

8.1. On the Dust and Gas Scaling Relations

The recovered trends between Mdust, M*, and Mgas and their
evolution with redshift offer a test bed against which theoretical
and previous observationally driven studies can be compared
to. As shown in Figures 11 and 14, our analysis yields fdust and
fgas evolutionary tracks consistent with those presented in
Tacconi et al. (2018), Liu et al. (2019b), and to a smaller degree
those reported in Scoville et al. (2017) and Magnelli et al.
(2020). As discussed earlier, the mild tension between the latter
works and our results could be primarily attributed to the
choice of the fitting function.
The fdust and fgas in our sample of SFGs increase rapidly from

z= 0 to z= 1, peak around z∼ 2−3, and then remain roughly
constant. It is, however, a point of contention whether the latter
is driven by actual physical processes or is a consequence of
the scarcity of data at z> 2. It it also worth mentioning that our
analysis points toward a milder evolution of fdust (−0.8 dex)
compared to fgas (−1.3 dex) from z= 2 to z= 0, with the latter
dropping∼ 3× faster. This is aligned with the evolution of
ρdust and ρgas derived by the ALMA stacking analysis of
Magnelli et al. (2020) and could in fact reflect the evolution of
metallicity, and thus of δGDR, for fixed M* toward lower
redshifts.
At the same time, the decrease of Mdust with decreasing

redshift, for fixed M*, can be attributed to either the destruction
of dust grains by interstellar radiation fields or their incorpora-
tion into the stellar population. This is discussed in more detail
in Donevski et al. (2020), who also report a decreasing fdust
from earlier cosmic age to the present epoch. We note that the
observed trend could also mirror the overall decline in the SFR
density in the universe from z= 2 to the present day, which
points toward lower star formation activity and thus lower dust
production at later cosmic epochs. Finally, at a fixed redshift,
both fdust and fgas decrease as a function of M* (as indicated by
a negative value of the fitting parameter b; see Equation (2)), in
line with previous studies (e.g., Magdis et al. 2012a; Magnelli
et al. 2020 and references therein).
In addition to observational studies, we can also compare our

results to theoretical predictions. To this end, we consider the
HAGN hydrodynamical simulations in the COSMOS field
(Dubois et al. 2014; Laigle et al. 2019) and draw a sample of
SFGs (ΔMS > 0.3) in the z= 0.2–0.5 range, selected to meet
the M* completeness of the COSMOS 2015 survey, and which
fall within a simulation box of 143Mpc per side (Dubois et al.
2014). To measureΔMS for each galaxy, we considered the M*
and the 100Myr averaged SFR from the simulations. Also, since
Mdust is not an explicit parameter of HAGN galaxies, we used a
constant δGDR= 100 to convert the Mgas values, as derived from
the simulations, toMdust. We then use theMgas,M*, andMdust of
the simulated galaxies to infer fgas and fdust. The median values
and their scatter, renormalized to MS (ΔMS = 1) and M*=
5× 1010Me in four redshift bins, are presented and compared to
the real data in Figures 11 and 14. We find a good agreement
between the theoretical predictions and our observationally
driven trends (in the 0.2< z< 0.5 range at least), indicating that
the HAGN simulation can successfully reproduce the baryonic

Figure 14. Derived relations for fgas (top) and τdepl (bottom) as a function of z/
tage. The dashed purple line shows the fit to our data, while solid colored lines
display literature results. The shaded purple region denotes the 16th and 84th
percentile confidence intervals of our fit. The gray hexbins contain the data
from the “Mdust–robust” sample and are normalized by the number count. Both
the data and the derived relations have been rescaled to ΔMS = 1 and
M* = 5 × 1010 Me. White diamonds show median positions of the HAGN
SFGs at that redshift, normalized in the same way as our data.
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components of the galaxies and its evolution with redshift.
Conversely, the agreement of our results with both theoretical
and observational studies provides an extra indirect validation
for the performance of our new SED fitting code.

8.2. On the Evolution of Depletion Time

As with fdust and fgas, our recovered trends, which connect
τdepl to redshift, ΔMS, and M*, show similar behavior to the
ones presented in Scoville et al. (2017), and to a lesser extent
those in Tacconi et al. (2018) and Liu et al. (2019b). The
dependence of τdepl on M* is relatively weak across all studies;
however, similarly to Liu et al., we find that the depletion time
for high-mass galaxies increases from early cosmic ages toward
present times, while low-mass galaxies display an opposite
trend of decreasing τdepl with cosmic age. As discussed in Liu
et al. (2019b) and Hodge & da Cunha (2020), this could be a
signature of downsizing, meaning that more massive galaxies
evolve at earlier times.

During our analysis, we find t ~ + -z1depl
1.07( ) , which is

more reflective of the scaling relations derived in Scoville et al.
(2017) (t ~ + -z1depl

1.04( ) ), rather than weaker dependencies
(t ~ + -z1depl

0.62( ) and + -z1 0.58( ) ) found by Tacconi et al.
(2018) and Liu et al. (2019b), respectively. As expected, and in
line with the literature results, we also find that galaxies above
the MS (at a fixed M* and z) form stars with a much higher
efficiency (lower τdepl) than their MS counterparts, with
τdepl∼ΔMS−1.68. We would also like to caution the reader
and highlight the fact that Tacconi et al. and Scoville et al. use
functional forms that are different from ours, when fitting for
evolution of τdepl. For example, Tacconi et al. consider
additional dependence on the effective radius Re, which might
inadvertently carry some redshift dependence. As such, the
fitted exponents are not necessarily directly comparable. The
differences between evolutionary trends could also be attrib-
uted to the different samples used (see, e.g., Hodge & da
Cunha 2020).

Presumably, the existence of these outliers can be explained
by an increased SFE, which results from major-merger events
(see, e.g., Scoville et al. 2017; Cibinel et al. 2019). In fact,
galaxies that lie above the MS are also found to have increased
gas fractions (Dekel et al. 2009; Tacconi et al. 2020), which is
attributed to a more efficient gas accretion from the cosmic
web, but the enhanced gas reservoirs are still not large enough
to explain significantly enhanced sSFR. The debates regarding
the exact reason, which results in an onset of an SB-like mode
of star formation, are still ongoing; however, it seems very
likely that it is a combination of both increased gas fractions
and enhanced SFE. We find that our sample supports this
notion, with galaxies above the MS having both large gas
reservoirs with median log( fgas)= 0.15, meaning that gas mass
reservoirs take up ∼59% of the total baryonic matter, and
relatively short depletion times of ∼400Myr. Our Mgas values
were, however, derived with a general FMR, assuming solar-
like metallicities. This, however, might not be applicable for
SBs, which can display elevated metallicities owing to the
increased sSFR. In fact, it has been shown (see, e.g., Silverman
et al. 2015) that if SBs had supersolar metallicities, it would
drive down δGDR, together with fgas, and in turn result in
increased SFE, thus implying that only the SFE is responsible
for galaxies being elevated above the MS.

8.3. On the DMFs and the Theoretical Predictions

With the derived DMF in hand, we are also in position to
bring together our findings with those presented in previous
observationally driven studies and provide a direct comparison
to the theoretical predictions as inferred by recent simulations.
For our purposes, we focus on the 0.2< z< 0.5 redshift
interval that contains the majority of our objects and offers the
most robust statistical analysis. These results are shown in
Figure 15.
We first compare our DMF to that presented in Pozzi et al.

(2020), based on a PACS 160μm selected sample of SFGs. In
Figure 15, the two DMFs appear to be in tension in both the high-
and low-mass ends, with our compilation overpredicting the
number density of galaxies with high Mdust and underpredicting
that of less dusty sources. The discrepancy between the two
DMFs can be attributed to the choice of fitting methods/
templates, the adopted κν to inferMdust, and selection effects. For
example, the DL07 templates adopt a κ250 μm of 0.51 m2 kg−1,
while the analysis in Pozzi et al. uses κ250 μm= 0.4 m2 kg−1,
which would result in 0.1 dex smaller Mdust estimates. It is also
important to point out that Pozzi et al. compared their modified
blackbody (MBB) SED fitting to MAGPHYS, finding that their
MBB method recovers systematically lower Mdust. Indeed, the
choice of the fitting methodology can induce up to a factor of two
difference in derived Mdust (see, e.g., Magdis et al. 2013 and an
in-depth comparison in Berta et al. 2016). Moreover, for a flux-
limited survey, the mere selection at λobs = 160 μm could
introduce a bias toward warmer sources that for fixed LIR have
lower Mdust and that could explain the small number density of
sources with log(Mdust/Me) > 8. While it is not possible to
correct for the effects of selection and broader SED fitting
methodology, we have rescaled the Pozzi et al. DMF to have the
same κ250 μm as was adopted in our analysis.

Figure 15. A compilation of the theoretical and observationally derived DMFs
in the 0.2 < z < 0.5 range. The Davidzon et al. (2017) SMF, converted to
DMF, is shown as the solid red line, with the shaded area corresponding to the
1σ uncertainty. The dashed and dashed–dotted black lines correspond to the
DMFs of Pozzi et al. (2020) and Dunne et al. (2011), respectively, rescaled to
κ250 μm = 0.51 m2 kg−1. The white diamonds and the blue squares depict the
theoretical predictions of the HAGN and TNG simulations from Dubois et al.
(2014) and Millard et al. (2020), respectively. The gray shaded region
highlights the Mdust regime below the lim(Mdust) of our sample, as derived in
Figure 6. The hatched region denotes the Mdust regime where our sample
becomes severely limited, i.e., >1σ below lim(Mdust).
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We also compare our results to Dunne et al. (2011), who
computed a DMF based on a sample of 250 μm selected
galaxies. For our comparison, we have rescaled their DMF by
−0.24 dex, to account for the difference in κν. Contrary to
Pozzi et al. (2020), we now find that Dunne et al. (2011)
overpredict the number density of dusty galaxies at high dust
masses. This again can be understood in terms of selection
effects since the 250 μm selection could bias the sample toward
cold sources and thus to higher Mdust values (again, for a flux-
limited survey). While our criterion for at least one detection at
λrest> 150 μm could be perceived as similar to a 250 μm
selection at z∼ 0.3, we note that the requirement for two extra
detections at λrest< 150 μm and the super-deblended catalogs,
which allow for the detection of fainter than the nominal
confusion noise in the SPIRE bands, ease any bias toward
either intrinsically cold or warm objects. This is further
supported by the fact that our SMF-derived DMF, where the
Eddington bias has already been corrected, falls directly
between the calculations from Pozzi et al. and Dunne et al.
(Figure 15). In conjunction with the derivation of a 〈U〉–z
relation that is in excellent agreement with the stacking analysis
of Béthermin et al. (2015), this suggests that the careful
treatment of selection criteria and of the detection limits of our
parent sample has allowed us to gain a unique and unbiased
perspective on the evolution of dust properties of COSMOS
galaxies.

Finally, we compliment our analysis by comparing our DMF
to the theoretical predictions of the HAGN and IllustrisTNG
simulations (Millard et al. 2020). In order to produce an HAGN
DMF, we define a simulated sample following the procedure
described above, bin the galaxies in 0.4 dex intervals of Mdust,
and normalize by the volume of the simulation ( ´4 142 3( )
Mpc3). For the IllustrisTNG simulation, Millard et al. (2020)
consider multiple TNG100 snapshots in a box size of 106Mpc
per side, comparable to the HAGN simulated subset presented
earlier. The TNG-DMF is constructed through the Mdust values
of the simulated galaxies, derived in post-processing through a
fixed dust-to-metals ratio of 0.5.

Unlike real data, simulations do not suffer from observational
bias and as such should be compared to DMF derived from the
SMF, without adding the Eddington bias. As shown in
Figure 15, both HAGN and IllustrisTNG are in excellent
agreement with the high-mass end of our SMF-derived DMF.
Notably, the HAGN DMF is also consistent with our results at
the low-mass end down to Mdust∼ 107 Me. We recall that, for
simplicity, when convertingMgas toMdust for the HAGN sample,
we considered a universal δGDR= 100. However, for sources
with lower M* (< 108 Me) and thus with subsolar metallicities,
a larger δDGR (∼150) is probably more applicable (Rémy-Ruyer
et al. 2014). This would translate into a×1.5 downward
correction for the low-mass HAGN bins, bringing them into
exact agreement with our DMF down to Mdust≈ 107 Me. We
note that this Mdust, assuming an average Mgas/Mdust ≈ 100,
corresponds to the M* completeness limit of the simulation
(M*≈ 109 Me). Therefore, the observed decline of the number
density of the HAGN galaxies at Mdust� 107 Me is fully
consistent with the expectations.

In comparison to the TNG-DMF, though, we predict a factor
of 2.5 fewer objects at the low-mass end. This tension could
arise from the incompleteness of our sample at the low-mass
end, which leaves the slope of the Mdust−M* relation at
Mdust < 5×107 Me largely unconstrained. We are thus unable

to ascertain whether this discrepancy is caused by the
limitations of our sample, or whether the TNG simulations
overpredict the number density of the galaxies in the low-
mass end.
Put together, these comparisons indicate that, at least down to

Mdust ≈ 5×107 Me, our Mdust−M*−z relation and the resulting
DMFs are robust and fully consistent with the theoretical
expectations.

8.4. Population of Gas Giants

As briefly discussed in Section 7, during our analysis we
identified some extreme outliers from the average fdust and fgas
evolutionary trends (Figures 11 and 14), which typically have
log( fgas) > 0.5, i.e., their gas mass reservoir takes∼75% of their
baryonic matter. Since zphot could be a major source of
uncertainty in both M* and Mgas, before looking further into
this population of “gas giants,” we first narrow down our sample
to spectroscopically confirmed sources. We then examined the
individual SEDs and the cutout images of the remaining sources
in order to identify either poor coverage of the FIR peak or
blending issues that could result in erroneously large Mgas

estimates. With the above considerations, we are left with 41
objects whose extreme fgas can only be explained by gigantic
Mgas reservoirs. This population spans a wide range in redshift
(0.21< z< 4.05, 〈z〉 = 1.34), with < <M M9.0 log 11.3*( ) ,
á ñ =M Mlog 10.3*( ) and 0.11<ΔMS< 14.2, 〈ΔMS〉= 1.8.
The best-fit SEDs of two such objects are presented in Figure 16.
We also note that these two sources are otherwise unremarkable
and have what can be considered “typical” values for the
log(M*)∼ 10.7, and they also do not appear to be strong
SBs (ΔMS= 3.8 and 2.2, respectively, for 10041706 and
10100707). Furthermore, the cutouts presented in Figure 16
indicate that these sources do not appear to be blended;
therefore, the only unusual characteristic that they possess
seems to be an elevated Mgas.
A possible explanation for the very high Mdust and

subsequently Mgas estimates for these galaxies, other than an
extremely low δGDR, could be an optically thick FIR emission. In
this scenario, the attenuation of the emission in the Wien part of
the spectrum makes the galaxy appear cold, leading to an
overestimate of its true Mdust (e.g., Jin et al. 2019; Cortzen et al.
2020). Since the DL07 models assume that the galaxy is
optically thin at λrest> 1 μm, to test this scenario we employed
MBB models of general opacity, leaving the effective
wavelength (λeff) at which τ= 1 as a free parameter (see, e.g.,
Casey et al. 2012 for the functional form). We fixed the R-J
slope to β= 1.8 and only fit the available photometry of each
source at λrest> 40 μm. Due to the large number of free
parameters in this model, we further limit our sample to sources
with five or more IR detections. Out of the 41 “gas giants,” we
are thus able to constrain λeff for only 19. The distribution of the
inferred λeff values is presented in Figure 17.
We find that the vast majority of these objects have

λeff> 100 μm, which implies that these galaxies could be
optically thick in the FIR. The unusually high fdust and fgas can
therefore be incorrect simply as a result of the optical depth
effects. Indeed, a comparison between the inferred Mdust

estimates for an optically thin and optically thick case yields an
average ratio of∼×1.8 for our sample. However, while this
correction would reduce the average fgas of the “gas giants”
from á ñ =flog 0.72gas( ) to á ñ =flog 0.47gas( ) , this is still
substantially larger with respect to the average population of
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SFGs. Finally, the real fgas could in fact be lower if the M* of
the sources is underestimated, a scenario that is indeed in line
with a dusty, optically thick ISM.

To understand whether these objects do indeed host unusually
high gas mass reservoirs and shed light on their nature,
additional observations, with either ALMA or NOEMA, of
Mgas tracers (e.g., CO and CI) are necessary.

9. Summary

In this work we present an in-depth analysis of the evolution
of the FIR properties of SFGs by studying a large sample of
sources drawn from the publicly available infrared catalogs
in the GOODS-N and COSMOS fields (Jin et al. 2018;
Liu et al. 2018). Both catalogs are constructed based on a novel

“super-deblending” technique that allows prior-based photo-
metry in the highly confused Herschel and SCUBA
+AzTEC maps.
In the process, we developed a new panchromatic SED

fitting algorithm—Stardust—to fit a linear combination of
stellar, AGN, and infrared (star-forming) templates, in an
attempt to perform a coherent, systematic, and homogeneous
analysis in the two fields. Our fitting tool has two key
advantages. First, the best-fit model is a set of coefficients
rather than a single template; thus, it does not rely on iterating
through thousands of possible template combinations, speeding
up the fitting process by a factor of ∼10 compared to other
multiwavelength fitting available codes. Second, the fitting
process does not impose energy balance between absorption in
the UV/optical and emission in the IR, treating the stellar and
the dust emission components independently. As such, it is
very relevant for sources where the stellar emission and dust
emission are not cospatial. The code itself is also highly
modular, allows for user input templates, and is publicly
available.
A first product of this new software is a multiparameter

catalog that contains the FIR properties of ∼5000 IR-bright
galaxies in GOODS-N and COSMOS. The extracted para-
meters, their uncertainties, and the matched photometry from
the original “super-deblended” catalogs are released and are
also publicly available.23 The list of output best-fit parameters
and the structure of the released catalog can be found in
Appendix A.
We subsequently used the extracted parameters to explore

the evolution of the FIR properties of SFGs and recover scaling
relations, aided by a careful set of simulations that quantify the
underlying selection effects and biases of our sample in terms

Figure 16. Top: photometry and best-fit SEDs for two “gas giants” (log( fgas) > 0.5) at zspec = 1.05 and zspec = 1.35. Color-coding and symbols are the same as in
Figure 3, with the addition of a dashed purple line that shows the best-fit optically thick MBB. The λeff (in rest frame) at which the SED becomes optically thick
(τ = 1) is displayed in the panels. Bottom: NIR–FIR cutouts of these objects. The cutout sizes range from 20″ in the NIR–MIR range to 50″ in FIR.

Figure 17. Distribution of λeff, below which the emission of the “gas giants” in
our sample becomes optically thick (τ = 1), as inferred by MBB models of
general opacity.

23 Tables containing the DMFs can be accessed at https://github.com/
VasilyKokorev/sdc_ir_properties.
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of limiting Mdust, LIR, and 〈U〉. In particular, we parameterized
the fdust of galaxies as a function of their cosmic age, M*, and
ΔMS. The median fdust is found to increase by a factor of×10
from z= 0 to z= 2 with a mild, if any, evolution at higher z.
Through the metallicity-dependent δGDR technique, we also
derive the evolution of fgas and find it to be consistent with
previous observational studies, as well as with theoretical
predictions.

Furthermore, we constructed the DMF up to z= 1 by
converting the SMF of SFGs to a DMF, through the evolution
of fdust and its scatter, as parameterized in our study. A
comparison of the derived DMFs to the theoretical predictions
of the HAGN and TNG100 simulations in the 0< z< 0.5
range reveals an excellent agreement down to a limiting
Mdust∼ 5× 107 Me, where, due to poor statistics, we cannot
adequately constrain the Mdust–M* relation.

Finally, we identified a population of SFGs with extreme
log( fgas)> 0.5, which we coin as “gas giants.” The fgas excess
of these galaxies compared to the average SFG population
persists even when opacity effects in the FIR emission are
taken into account. Follow-up observations targeting alter-
native Mgas tracers are necessary to confirm the extreme nature
of these systems.

Some further remarks that we would like to emphasize:

1. The effect of the photo-z uncertainty in the derivation of
Mdust (and LIR) is not negligible and should be accounted
for. We find that a photo-z uncertainty of Δz/(1+zspec)
∼0.02, characteristic of fields like GOODS-N and
COSMOS, introduces an extra 20% of scatter in the
derivation of Mdust and LIR.

2. As already discussed in the literature, the uncertainty in
the derivation of Mdust increases substantially in the
absence of a data point in the R-J tail (λrest> 150 μm).
However, the presence of three data points in the mid-IR
(MIR) to FIR could securely constrain Mdust within a
factor of ∼0.3 dex, even if the last available data point is
at λrest≈ 150 μm.

3. When using the Mdust–M*–z scaling relations to convert
SMF to DMF (or similarly to gas mass functions), the
scatter of the relations used for the transformation should
be taken into account for a proper comparison to the data.
Similarly, any attempt to derive scaling relations between
two (or more) parameters through the comparison of mass
(or luminosity) functions inferred through the modeling
of the observed number densities should entail a proper
consideration of the scatter of the parameters in question.

4. Both the warm Mdust and the warm IR emission arising
from the PDRs are increasing with respect to the cold
Mdust and cold dust emission as we move above the MS,
indicative of more compact/active star-forming activity.
Subsequently, the clear and relatively tight trend of
decreasing Mdust

cold (for fixed LIR) with ΔMS is less
pronounced for Mdust

warm. This enforces the overall picture
where SBs are characterized by higher star formation
efficiencies and with a larger fraction of their Mdust being
exposed to more intense radiation fields.
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Appendix A
SED Fitting

A.1. Draine & Li (2007) Templates

In our fitting routine we utilize the dust models of Draine &
Li (2007), with the updated opacity from Draine et al. (2014).
These models aim for a robust and physically motivated
approach to SED fitting in both MIR and FIR, as well as allow
us to calculate the amount of luminous dust.
The description of the dust locked in the ISM is one of a

mixture of carbonaceous and amorphous silicate grains, with
their sizes and distributions following the extinction law in the
Milky Way, the Large Magellanic Cloud (LMC), and the bar
region of the Small Magellanic Cloud (SMC). The carbonac-
eous grains behave similarly to the PAH molecules, with their
properties given by the PAH index qPAH, which is defined as a
fraction of dust mass locked into the PAH grains.
The models provide a bimodal description of the environ-

ments containing the interstellar dust: the diffuse ISM and the
PDRs. The bulk of the dust mass is thought to be located in the
cold and diffuse part of the ISM, which is being heated by a
radiation field of a constant intensityUmin. A smaller proportion
of the mass budget described by the γ index is exposed to a
gradient of radiation intensities ranging fromUmin toUmax and is
supposedly located in the warmer PDRs. Although these warm
regions normally contain only a small fraction of the total dust
mass, they can make a substantial contribution to the
luminosity in the MIR SEDs. As described by DL07, the
infinitesimal proportion of dMdust exposed to radiation fields
between U and U+ dU can be modeled by a power-law
distribution and, in the case of the diffuse ISM where

=U Umin max, by a Kronecker δ-function. This leads to the
following description:

g d
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with U Umin max and α≠ 1. The parameter γ is the fraction of
dust mass locked into the high starlight intensity regions
described by the power law, α gives the distribution of
radiation intensities in the PDRs, and Mdust is the total
dust mass.
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The methods described in DL07 allow us to compute a
distribution of temperatures for all particles: ones that are small
so their size makes them susceptible to the effects of quantized
heating, and the larger ones where the steady-state temperatures
dictated by the stellar radiation and radiative cooling equilibrium
take hold. One can compute an averaged IR emission for a given
grain type by first considering their temperature distribution and
cross sections and then summing everything up to obtain the
specific mass-weighted power that is being radiated by the dust
exposed to starlight of intensity U. By integrating these
numerical recipes from Umin to Umax, one can obtain the power
per unit frequency per unit mass anp q U U, , ,PAH min max( ).

In line with DL07, one can then model the galaxy SED as a
linear combination of the diffuse ISM and the PDRs. This can
be written as follows:

g a= - +n n nj j U U j U U1 , , , , A2min max min max( ) [ ] [ ] ( )

where jν is the emissivity per hydrogen nucleon. If one now
considers a galaxy at some distance DL(z), the received flux
density can be written as

=n
nf
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H L
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Since jν is the quantity contained in the DL07 models, the
normalization extracted from the fitting represents the total
number of hydrogen nucleons and can be then converted to the
luminous dust mass.

The total luminosity contained in both dust components can
be written as

= á ñL U P M , A4dust 0 dust ( )

with 〈U〉 representing a mean intensity of the radiation field,
given by
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for α= 2 and P0 denoting the power absorbed per unit dust
mass in a radiation field of intensity U= 1.

In principle, one could think of these models as having six
effective free parameters—qPAH, Umin, Umax, α, γ, and
Mdust—acting as the normalization as described above. It has
been shown in Draine et al. (2007) that the parameter space is
insensitive to the adopted dust model (MW, LMC, and SMC)
and the values of α and Umax. It is thus possible to recover a
wide range of properties of various SEDs by fixing these
to α= 2 and =U 10max

6. The values of Umin below 0.7
correspond to temperatures below 15 K, and while it is
expected to find very few systems that exhibit this behavior, we
have decided not to limit the range ofUmin and allow it to vary
between 0.1 and 50, to capture even the most extreme cases. It
has been shown that, at least in the case of local galaxies in the
Spitzer Nearby Galaxy Survey (SINGS), the Umin can be
limited between  U0.7 25min , and an MW-like dust model
can be adopted to limit qPAH between 0.004 and 0.046.
Incorporating the use of the optimized set of parameters, which
has been done in similar studies (e.g., Magdis et al. 2012a;
Magnelli et al. 2012; Santini et al. 2014), might have a positive
effect on computational speeds; however, we need to consider
that this reduced parameter space has only been robustly
verified for nearby solar-like metallicity populations of galaxies

and might otherwise risk underestimating (overestimating) the
dust masses for extremely cold (warm) systems.
We can thus extract the following physical parameters from

the fit: γ, qPAH, Umin. The dust mass is simply computed from
the normalization, while the LIR is Lν integrated over the
8–1000 μm range. As an additional parameter, we can obtain
〈U〉 by utilizing Equation (A5), or alternatively, as prescribed
by Magdis et al. (2012a), we can use Equation (A4), where we
set Ldust= LIR and P0≈ 125.

A.2. Removing AGN Contamination

AGNs can have a significant impact on the ISM of galaxies
that host them. They possess an ability to halt star formation by
heating up the gas and dust or completely quenching the galaxy
by stripping away its fuel. Under the common assumption
(Antonucci 1993; Urry & Padovani 1995; Tristram et al. 2007),
AGNs are surrounded by dusty tori, which, similarly to the
ISM dust, can absorb the UV/optical light from the AGN and
reradiate it at redder wavelengths, normally peaking in the MIR
regime at 20–50 μm. It has also been shown that for select
extreme cases (Mullaney et al. 2011) the AGN emission
dominates the SED of a galaxy even at 60 μm, which presents a
new challenge when calculating an infrared luminosity of a
source. Infrared-derived SFR estimates rely on a robust
understanding of the LIR. Therefore, it is imperative to separate
the energy contributions from hot dust in the ISM and a
possible AGN.
In order to account for the effects of the IR contamination by

AGNs when calculating LIR, as well as to identify all the
possible systems that might contain an active nucleus in our
sample, we have decided to adopt a set of AGN templates from
Mullaney et al. (2011, hereafter M11). These templates have
been empirically derived by assuming an MBB function and
fitting it to a set of Swift-BAT AGNs and IRAS spectra. The
obtained models describe intrinsic AGN emissions in the range
spanning from MIR to FIR (6–100 μm). In this case, a typical
AGN SED could be thought of as a broken power law at
�40 μm, which rapidly vanishes when moving above 40 μm.
The average intrinsic AGN emission can be described as
follows:
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where nF BB is the MBB function and α is the spectral index. In
our procedure we utilize the high- and low-luminosity
templates, with α= 0.0 and 0.4, respectively. In addition to
that, we allow for a linear combination between the two, with
varying coefficients, thus expanding the existing template
space.

A.3. Stellar Emission Component

The contribution of stellar emission in the observed NIR
bands, such as Spitzer IRAC 1-4, can be quite significant,
especially when we move to higher z. Therefore, if no libraries
representing the luminosity from dust-attenuated stellar light
are available, one might either underestimate the slope of the
AGN or overestimate its normalization. This can lead to
erroneously assigning more luminosity to the AGN component
in the MIR and therefore underestimating the LIR.

21

The Astrophysical Journal, 921:40 (27pp), 2021 November 1 Kokorev et al.



To avoid this, we additionally incorporate a library of stellar
emission models, which are an updated version of the templates
described by Brammer et al. (2008, hereafter GB08). These are
based on the SPS models (Conroy et al. 2009), which were
optimized for deep optical−NIR broadband surveys. The
models form a basis set of a larger library and were derived
by using the “nonnegative matrix factorization” algorithm that
was described in Blanton & Roweis (2007). The method
attempts to reproduce the full library of templates, by finding a
nonnegative linear combination of a smaller number of models.
These can be considered as the “principal component”
blueprint of the larger catalog. In total, there are 12 optical
SEDs, which include both dust-attenuated and nonattenuated
starlight. We have incorporated these models into our fitting
routine, and if the UV−optical photometry is available, this
allows us to extract properties such as M*, SFR, E(B−V ), and
SFH. If no UV−optical data are available, the addition of these
templates is still useful, as they can account for the excess flux
in the rest-frame NIR bands, in conjunction with AGN and IR
templates.

To test how our fits behave without the stellar component, we
have isolated ∼100 objects with z> 2, so that our bluest
available band traces λrest∼ 1 μm, where the contribution from
stellar emission becomes nonnegligible. We then exclude GB08
templates and refit our objects. This results in two outcomes that
can be seen in Figure 18. We find that, by removing the
additional component, we tend to either overestimate the AGN
contribution (blue squares), with the median being ∼1.5, or
alternatively erroneously assign a galaxy to contain an AGN (red
points).

A.4. Bringing It All Together

In order to model an SED of a galaxy and extract the
physical parameters, we first transport all three components—
the stellar, the dusty torus AGN, and the infrared dust emission
—to a common wavelength grid spanning the range from 10−4

to 105 μm. Our method relies on a linear combination of these
models, thus making it imperative for them to share a common
range, so that co-adding them is made possible. In certain cases
where this grid falls outside the original range of the template,
we extrapolate blueward and redward by using a steeply

declining power law. This was done to ensure that the resultant
galaxy emission is continuous without any sudden breaks,
which could interfere with the fitting, where one of the
templates has ran out of range. These added power laws do
not introduce any additional emission, as the flux density
contribution from them is orders of magnitude lower than that
of the original template. We then redshift the wavelength grid
on a per-galaxy basis and normalize the templates to ensure that
they are not separated by tens of orders of magnitude. In
Figure 19 we show all the templates used in Stardust,
normalized to the K band, and in Table 2 we list all the relevant
parameters of the models.
Subsequently, we perform a synthetic photometry on all

three components separately in all observed bands where data
are available. This is done by convolution of the filter
transmission curves with the model SEDs. The resultant
synthetic fluxes for each template and available observed band

Figure 18. A comparison between fits that incorporate the stellar component
and those that do not for z > 2 galaxies. Blue squares and red circles represent
objects that were assigned fAGN > 0.01 and fAGN < 0.01, respectively, by the
means of our three-component fit. The median uncertainty for both quantities is
in the lower right corner. The black solid line represents the 1:1 relation, and
the gray regions cover the 0.3 dex range.

Figure 19. A compilation of all template flavors used in Stardust. Color-
coding is blue, green, and maroon for Brammer et al. (2008) UV−optical SPS
models, Mullaney et al. (2011) AGN models, and Draine et al. (2007) IR dust
models, respectively. We show the variations inUmin, qPAH, and γ separately in
each panel, while other parameters are fixed. For visualization purposes all
templates shown here have been normalized to the K band.
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are then all combined into a two-dimensional matrix and passed
onto the nonnegative least-squares (nnls) algorithm in the
Python scipy.optimize.nnls package, which finds the
best solution vector for that object. The nnls is a simple
minimization algorithm that in our case takes the form of

- A x y xmin where 0, A7b t
t b

, 2∣∣ ∣∣ ( )

where A is the uncertainty-weighted template matrix, y is the S/
N for each band, x is the solution vector, and ||. ||2 signifies the
Eucledian norm. Instead of finding the best-fitting template, the
algorithm computes the best-fit coefficients x, with x� 0. The
number of simultaneously fit templates is user defined. For our
purposes we chose to fit all 12 GB08 and 2 M11 templates at
the same time, each time combining them with a single DL07
template, iterating through all the possible combinations, and
then finding the best fit. Following Equation (A7), this is done
by building the matrix A, for each band b and each template t,
where the first 14 templates in the matrix remain fixed, while
the last element is being continuously replaced with a
new DL07 model and looped over. In the end we obtain
4862 possible best-fit vectors—x t, one per each DL07 model.
The final result is then extracted from the χ2 distribution of all
best-fit solutions. The advantage of this method is in avoiding
progressively looping over all possible template combinations
to find the best solution, and instead only choosing to loop
through DL07 templates. This approach significantly reduces
the amount of required computational resources. The resultant
solution vector encodes the individual contributions from each
template to the total emitted flux in each band. These are then

added together to return the best-fit solution. This three-
component split allows us to predict exactly how much each
component contributes to the source’s LIR, thus allowing us to
differentiate between the AGN and the warm ISM dust
emissions. In addition to that, the normalization of DL07
templates leads us directly to the number of hydrogen nucleons,
linking it to dust mass via Equation (A4). The radio data points
are not being considered by our fitting routine; however, we
add a power-law radio slope with a spectral index of −0.75, as
described by the FIR−radio correlation in Delvecchio et al.
(2021), mainly for visualization purposes, but also to detect the
existence of the AGN radio excess.

Table 2
Template Parameters Used for Stardust Fit

Parameter Value

Dust Emission: DL07 (Updated in Draine et al. (2014))

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,[
Umin 1.0,1.7,2.0,3.0,4.0,5.0,7.0,8.0,

10.0, 12.0, 15.0, 20.0, 25.0], 26 values

qPAH [0; 0.1], 11 values in steps of 0.1

[0,0.001, 0.0025, 0.005, 0.0075]
γ +[0.01; 0.1], 9 values in steps of 0.01

+[0.2, 0.35, 0.5], 17 values in total

Optical Emission: Brammer et al. (2008)a

AV (Calzetti et al.
2000)

[0.6, 0.12, 0.19, 0.29, 1.05, 2.68,

0.11, 0.36, 0.98, 1.54, 1.97, 2.96]

M/LV [0.38, 0.76, 1.68, 4.01, 6.45, 44.48,
0.12, 0.21, 0.33, 0.64, 1.57, 4.00]

log10(sSFR) [−10.75, −11.37, −11.90, −12.53, −12.05,
−12.47, −8.37, −8.60, −8.50, −8.57,

−8.93, −8.90]

Note.
a Please refer to Brammer et al. (2008) for a more detailed description of the
creation and selection of these basis-set templates. See Blanton & Roweis
(2007) for a methodology regarding the SFH.

Table 3
Structure of the Best-fit Cataloga

Column Name Units Description

Catalog L Catalog identifier code
ID L ID of the object from the parent catalog
R.A. deg R.A. coordinate, as given in the parent catalog
Decl. deg Decl. coordinate, as given in the parent catalog
Area L Same as goodArea flag in the parent catalogs
z L Redshift used for fitting
ztype L Redshift type, 1 for spectroscopic, 0 for photo-

metric, and 2 for zphot from EAZY
LIR_total Le Total FIR luminosity, obtained as the sum between

AGN and DL07 components
eLIR_total Le Uncertainty on the total FIR luminosity
Lagn_total Le AGN luminosity
eLagn_total Le Uncertainty on the AGN luminosity
Lir_draine Le Luminosity given by the DL07 template
eLir_draine Le Uncertainty on the luminosity given by the DL07

template
MD Me Dust mass as predicted by the best-fit DL07

template
eMD Me Uncertainty on the dust mass
deltaGDR L Gas-to-dust ratio
MG Me Gas mass computed from δGDR and Mdust

eMG Me Uncertainty on gas mass
Mstar Me Stellar mass, equal to the one in the original catalog
lastdet μm Last band that has an S/N > 3 detection (λlast);

given in rest frame
chi2 L The χ2 of the best-fit coefficients
f_agn L AGN fraction, given as LAGN/LIR,total
efagn L Uncertainty on the AGN fraction
fgas L Gas fraction computed as Mgas/Mdust

fgas_FMR L Gas fraction computed assuming δGDR = 100
Umin L Best-fit Umin

gamma L Best-fit γ
qpah L Index of the best-fit qPAH value
U L Average radiation field intensity 〈U〉
sU L Uncertainty on 〈U〉
deltaMS L SFR/SFRMS, where SFR = LIR,draine ×10−10 and

SFRMS is given by Schreiber et al. (2015)
e_deltaMS L Uncertainty on ΔMS

Notes.
a Stardust also returns M*, AV, and UV−optical SFR; these are not
included in the release version of the catalog but are available upon request.
b We have used the 7970d55 (28/06/21) version of Stardust to produce
these catalogs.

(This table is available in its entirety in machine-readable form.)
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A.5. Calculating the IR Properties

To derive luminosity estimates, we integrate the three-
component summed SED in the 8–1000 μm. This gives us the
LIR,tot that contains within itself the energy emitted by the ISM
dust and AGN torus, if present. The contribution of stellar
emission at λrest> 8 μm is negligible; therefore, we do not go
through an additional step of subtracting those models. We then
integrate the best-fit template with just the AGN contribution in
it, to obtain the LAGN and LIR= LIR,tot−LAGN. We also
compute the fAGN= LAGN/LIR,tot to estimate how strongly the
infrared SED of a galaxy is contaminated by AGN activity. In
addition to that, it allows us to separate our sample into objects
that have an active nucleus and those that do not. The
conditions of the ISM in these different environments may vary
quite significantly and would affect the extracted scaling
relations if not treated correctly.

The normalization of the DL07 models returns the number of
hydrogen nucleons as one of its free parameters, from which
we can obtain the fiducial MH. We then compute Mdust by
converting this quantity assuming a fixed gas-to-dust ratio of
δGDR= 100, as prescribed in DL07. It is important to note that
this ratio is encoded into the models and does not represent an
actual physically meaningful conversion factor. We also
compute a Tdust proxy in the form of the average radiation
field intensity 〈U〉, from Equation (A4), by assuming a
P0= 125. We note, however, that this quantity represents the
luminosity-weighted dust temperature and has little to no
bearing on the temperature of the cold dust or gas (see, e.g.,
Scoville et al. 2016, 2017). The structure of the final output
catalog is presented in Table 3.

Appendix B
Stellar Mass Comparison

To test the robustness of Stardust-derived M* estimates,
we start by first comparing them to the M* as given by the
original catalog. The SDC2 takes its M* directly from the
COSMOS 2015 catalog (Laigle et al. 2016), which uses SED
fitting code LePhare (Arnouts et al. 1999; Ilbert et al. 2006)
to constrain the photometric redshift, M*, and a host of other
parameters. Similarly to our approach, LePhare relies on
Bruzual & Charlot (2003) simple stellar population (SSP)
libraries to fit galaxy SEDs. We begin our fitting procedure by
carefully correcting all the COSMOS 2015 aperture fluxes to
total fluxes, as well as correcting for the MW extinction, as
prescribed in Laigle et al. (2016). We then cross-match these
sources to SDC2, by using the K band, and fit the entirety of the
36 available bands with our code. As a sanity check, we
additionally run the same photometric catalog through EAZY,
albeit stopping at IRAC 2.
We present this comparison in Figure 20. The M* given by

the parent catalog and the ones derived by Stardust-derived
M* agree very well, with Stardust on average under-
predicting the M* by ∼0.01 dex. We attribute a considerable
0.31 dex scatter to the fact that in their LePhare fit Laigle et al.
have used an iterative procedure, which involved correcting the
observed fluxes in order to match the colors of the model library.
More reassuringly, we find a good correlation when comparing

our M* to EAZY, with a median offset of −0.03 dex and a minor
0.15 dex scatter being most likely induced by the fact that with
Stardust we fit the entire available spectrum from UV to FIR,
as opposed to just UV−optical, with EAZY.

Figure 20. Comparison of the Stardust-derived M* vs. SDC2 (top) and EAZY (bottom). The dashed maroon line represents a 1:1 relation. The solid and dashed
maroon lines represent a 1:1 relation and the 68% confidence interval, respectively.
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Appendix C
Comparison with CIGALE

In order to better understand how our independent linear
combination approach compares to the energy balance method,
we have fit our sources with CIGALE. For this we have utilized
a set of SSP models from Bruzual & Charlot (2003) for the
nonobscured stellar light; the revised version of the Draine &
Li (2007) templates for the obscured stellar light, reprocessed
by dust; and Fritz et al. (2006) for the AGN contribution. The
attenuation law that we considered was described in Calzetti
et al. (2000). For the SSP templates, we have assumed a single
delayed SFH. These CIGALE fits should be treated as a “basic”
first-pass approach, due to the computational limitations
necessitating a constrained range for the template parameters.
Ideally, such an analysis would require a flexible SFH, in order
to obtain better SFR, as well as a wider range of parameters, for
both the DL07 and Fritz et al. templates.

We show the comparison between the two methods in
Figure 21. There is a very good agreement between the Mdust

derived with our code and CIGALE, with the difference having
a mean of 0.09 dex and median of 0.02 dex. The derived values
of LIR are, however, in tension, with a mean of 0.20 dex and
median of 0.11 dex. We attribute the significant outliers (>1σ)
to cases where the energy balance method in CIGALE has

failed to account for the extra FIR flux. We also compare the
Stardust- and CIGALE-computed M* and find that the two
agree within 0.1 dex, albeit with a significant 0.3 dex scatter.
As we have already discussed in Section 3, in certain
environments the stellar emission and the dust emission could
be spatially disconnected; thus, the energy balance might not be
the best physically motivated option. In addition, when dealing
with extreme sources, the Calzetti et al. attenuation law might
not allow the energy balance approach to account for all IR flux
(see, e.g., Buat et al. 2019). The above, however, are not the
only explanations, as the identification/matching problems and
IR flux extractions could also play a part in creating this tension
between our results and CIGALE (see, e.g., Małek et al. 2018).
When directly comparing computation times, it is important

to note that CIGALE fits sources within redshift blocks, where
it precompiles a set of models first and then estimates the best-
fit parameters, while Stardust fits sources sequentially. As
such, despite both methods being parallelized, it is difficult to
achieve a fair comparison between the two. Within a single
redshift block, which numbers 288 objects, CIGALE has
computed 50×106 models and found the best fit in about
2.5 hr. Due to how the linear combination is performed within
Stardust, defining an exact number of models attempted
is not possible. However, considering that the 12 optical

Figure 21. Comparison of the derived Mdust (top) and LIR (bottom) between Stardust and CIGALE. The solid and dashed maroon lines represent a 1:1 relation and
the 68% confidence interval, respectively.

25

The Astrophysical Journal, 921:40 (27pp), 2021 November 1 Kokorev et al.



templates have been constructed as a basis set of ∼3000
models described in Brammer et al. (2008) and combining that
with two AGN templates and ∼4800 DL07 models results in
roughly 30× 106 total effective model combinations. Our code
then takes 14 minutes in total to fit the same 288 objects, which
is approximately 11 times faster than CIGALE, for the same
number of CPU cores.
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