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Effects of symmetry‑breaking 
on electromagnetic backscattering
Mohamed Ismail Abdelrahman1,2,5, Evgeniia Slivina3,4, Carsten Rockstuhl1,3 & 
Ivan Fernandez‑Corbaton3*

Systems with a discrete rotational symmetry 2π/n where n ≥ 3 that also have electromagnetic duality 
symmetry exhibit zero backscattering. The impact of breaking one of the two symmetries on the 
emerging backscattering has not yet been systematically studied. Here, we investigate the effect that 
perturbatively breaking each of the two symmetries has on the backscattering off individual objects 
and 2D arrays. We find that the backscattering off electromagnetically‑small prisms increases with 
the parameters that determine the symmetry breaking, and that the increase of the backscattering 
due to the progressive breaking of one of the symmetries can be related to the other symmetry. 
Further exploration of the interplay between the two symmetries reveals that, in systems lacking 
enough rotational symmetry, the backscattering can be almost‑entirely suppressed for a given linear 
polarization by deliberately breaking the duality symmetry. This duality breaking can be interpreted as 
an effective increase of the electromagnetic degree of rotational symmetry for that linear polarization.

The seminal work by Kerker et al.1 on backscattering suppression has been recently understood as a consequence 
of systems having two symmetries: Discrete rotational symmetry and duality  symmetry2–5. In Ref.5 two sufficient 
conditions for the complete suppression of backscattering from a general system are identified: (i) A discrete 
rotational symmetry, from the perspective of the illuminating plane wave, of at least third order n ≥ 3 , so C3 , 
C4 , etc, including the cylindrical symmetry as the limiting case C∞ , and (ii) helicity preservation, that is, zero 
cross-talk between the two polarization handedness of the field upon light-matter interaction (see Fig. 1). The 
symmetry that achieves helicity preservation in a geometry-independent way is the electromagnetic duality 
symmetry. Very recent  work6 shows that separately meeting each of the two symmetry conditions, duality and 
Cn≥3 , is not necessary: Invariance of the system under simultaneous discrete geometric and duality rotations 
with the same angle θ = 2π

n  for n ≥ 3 is sufficient for achieving zero backscattering (ZBS).
For the macroscopic Maxwell equations, a system composed piece-wise by domains of homogeneous and 

isotropic materials is dual symmetric if and only if µi
εi

 is constant throughout the  domains4 (see Fig. 1). We note 
that helicity preservation under particular illumination conditions can be achieved by geometrical optimization 
for systems where εr  = µr = 1 , allowing the theoretical consideration and  design6–20 of systems with sufficient 
conditions for ZBS. Such systems can be practically  realized8,21–25 and have potential applications in holography 
and anti-reflective nano-coatings for ultra-thin solar cells.

In general, ZBS behavior has been extensively investigated in the literature for symmetrical systems. In 
contrast, the behavior of systems with broken symmetry conditions is less explored. Our purpose here is to 
systematically investigate the effect of perturbatively breaking the ZBS symmetry conditions. We will consider 
µr  = 1 materials for the straightforward implementation of duality symmetry and its breaking. While the results 
are hence not directly applicable in many frequency bands, e.g. at optical frequencies, this approach allows us to 
treat duality symmetry in a geometry-independent way.

In this article we investigate the effect that breaking the ZBS symmetry conditions has on the backscattering 
off electromagnetically-small (dipolar-regime) prisms, individually, and in 2D arrays. We first consider systems 
with sufficient rotational symmetry and examine the backscattering as the material parameters deviate from 
the duality point εr/µr = 1 . For single prisms we find that, for a fixed value of εr/µr  = 1 , the backscattering 
decreases monotonically as the degree of rotational symmetry increases, with cylinders showing the least back-
scattering. For 2D arrays of prisms, the interplay between lattice and prism symmetry gives rise to a richer set of 
effects. In the immediate vicinity of the duality point, the backscattering decreases monotonically as the overall 
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degree of rotational symmetry of the system increases. For large deviations from the duality point the backscat-
tering decreases monotonically as the prism symmetry increases. In between these two regimes, there is an 
intermediate region where the backscattering is not ordered according to a single symmetry number. For arrays 
with insufficient degree of rotational symmetry ( n = {1, 2} ), the backscattering at the duality point decreases 
monotonically with n and also with the degree of prism symmetry n. We then consider dual-symmetric systems 
where the initially sufficient rotational symmetry is increasingly broken into C2 : A single sphere deformed into 
an ellipsoid, and a 2D-array of disks whose initial square lattice is deformed into a rectangular lattice. The two 
systems show the same behavior: The larger the parameter that controls the symmetry breaking, the larger the 
backscattering, which is almost equal for similar deformations along different orthogonal axes. Additionally, we 
study how, for the particular linear polarization (LP) that is adapted to the geometrical symmetry breaking, the 
backscattering can be minimized to values comparable to those numerically achieved by ZBS  systems26,27. The 
minimization is achieved by compensating the rectangular anisotropy with a permittivity to permeability ratio 
different from unity. The compensation can be seen as the restoration of an effective electromagnetic C4 sym-
metry for the geometrically C2 ellipsoid(array), for that particular linear polarization. For electromagnetically 
small ellipsoids, the ratio of material parameters that minimizes the LP backscattering for a given axial ratio can 
be predicted analytically to a very good approximation.

Results
Backscattering (reflection) off individual objects and 2D arrays. We start by studying the backscat-
tering off isolated prisms. We consider different n-sided prisms (featuring Cn symmetry), namely: Triangular 
n = 3 , square n = 4 , hexagon n = 6 , and a cylinder n → ∞ . All the discrete objects that we consider throughout 
the article have a volume V equal to the volume of a sphere of one-tenth-the-wavelength radius and a height 
(extend in z) h = 3

√
V  . The illumination is a RCP plane wave propagating in the direction parallel to the axis 

of symmetry of the prisms (z-axis). It is important to note that, for systems with n ≥ 3 that additionally have 
a mirror symmetry across a plane containing the optical axis, the backscattered power is independent of the 
polarization: The particular choice of RCP does not imply any loss of generality. We will consider the backscat-
tering ratio Rb = Qb/Qsca , where the backscattering efficiency Qb and the scattering efficiency Qsca are defined in 
Ref.28 (Secs. (4.6) and (3.4), respectively). For spherical particles, both quantities can be directly evaluated using 
Mie coefficients, while in the general case numerical calculations are necessary. The quantity Qb is proportional 
to the absolute value square of the far-field amplitude of the scattered electric field in the backward direction 
relative to the illumination. The far-field scattered electric field is defined as Efar(θ ,φ) = limr→∞ r Esca(r, θ ,φ) , 
where (r, θ ,φ) are the radial, polar, and azimuthal spherical coordinates. For lossless particles like the ones we 
consider throughout the article, the optical theorem can be used to evaluate Qsca [28, Eq. (3.24),]: Qsca is propor-
tional to the imaginary part of the complex dot product between the total far-field Efar in the forward direction 
(θ = 0,φ = 0) and the polarization vector of the incident field. For example, for a RCP incident plane wave with 
electric field given by Ei = eik0z (x̂ − iŷ) , the backscatttering ratio can be computed as

Figure 2 shows Rb as a function of the permeability of the prisms around a fixed permittivity εr = 4 . We 
observe that the backscattering increases as εr/µr departs from the duality point εr/µr = 1 , and that the higher 

(1)Rb =
√
2k0

|Efar(θ = π ,φ = 0)|2
Imag

{

Efar_x(θ = 0,φ = 0)+ iEfar_y(θ = 0,φ = 0)
} .

Figure 1.  Two conditions that, together, are sufficient for ZBS: A rectangular prism of height h illuminated by a 
normally incident plane wave (propagating in the +z-direction) of an arbitrarily polarization exhibits ZBS when 
the prism base sides are equal a = b ( C4 symmetry) and the prism material is dual εr = µr at the excitation 
frequency.
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the degree of discrete rotational symmetry, the smaller the backscattering for a fixed value of εr/µr  = 1 , with the 
cylinder exhibiting the least backscattering. The behavior of Rb is smooth near the duality point and decreases 
monotonically while approaching it, consistently with the findings in Ref.11 for the case of spherical particles.

Since symmetry conditions for ZBS apply to general systems, we now study the reflection off periodic planar 
arrays of identical prisms. We consider square and hexagonal 2D Bravais lattices. The reflection coefficient R is 
defined as the reflected power divided by the input power. The reflected power is calculated as the integral over 
the surface of a unit cell of the component of the Poynting vector on the backward direction, opposite to the 
illumination.

In the following, we adopt the notation [np, nl , n] to label a given choice of np-sided prisms, lattice symmetry 
nl ∈ {4, 6} , and overall degree of discrete rotational symmetry of the system n, which depends on both np and 
nl . For example, triangular prisms ( np = 3 ) arranged in a square lattice ( nl = 4 ) result in a combined system 
without rotational symmetry, hence n = 1 . Table 1 shows the considered [np, nl , n] combinations, while Fig. 3 
illustrates a few examples pictorially.

The reflection coefficient for square (solid lines) and hexagonal (dashed lines) lattices of identical prisms 
with different n-fold symmetry is shown in Fig. 4 as a function of the permeability of the prisms around a fixed 

Figure 2.  Backscattering ratio Rb of different n-sided prisms (legend) with permittivity εr = 4 as a function of 
permeability around the duality point εr = µr.

Table 1.  The combinations of prisms, lattices, and the resulting overall degree of discrete rotational symmetry 
n for all the arrays that we consider.

np-sided prisms 3 4 6 ∞ 3 4 6 ∞

lattice nl 4 4 4 4 6 6 6 6

overall symmetry n 1 4 2 4 3 2 6 6

Figure 3.  (a) An array of triangular prisms ( np = 3 ) arranged in a square lattice ( nl = 4 ) will not be mapped 
onto itself if it is rotated by any angle rather than multiples of 360◦ (overall symmetry n = 1 ), while (b) an array 
of square prisms ( np = 4 ) arranged in a square lattice ( nl = 4 ) is symmetric under rotations by multiples of 90◦ 
(overall symmetry n = 4 ), and (c) an array of triangular prisms ( np = 3 ) arranged in a hexagonal lattice ( nl = 6 ) 
is symmetric under rotations by multiples of 120◦ (overall symmetry n = 3).
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permittivity εr = 4 . The portion of unit cell area occupied by the prisms is the same in both kinds of lattices. 
This is achieved by setting the lattice pitch to 26% of the excitation wavelength for the square lattices and 28% 
for the hexagonal lattices. Only a zeroth diffraction order occurs in all cases.

Let us first analyze the behavior at the duality point in Fig. 4. We have removed the data points for εr = µr 
for some configurations because their very small values are detrimental to the visibility of the rest of the data. 
As expected, all the systems with n ≥ 3 , like square lattices of square prisms [4, 4, 4] or cylinders [∞, 4, 4] , and 
hexagonal lattices of triangular prisms [3, 6, 3], hexagonal prisms [6, 6, 6], or cylinders [∞, 6, 6] , exhibit ZBS at 
the duality point εr = µr up to numerical accuracy. On the other hand, the configurations with n < 3 do not 
achieve ZBS at the duality point. For these n < 3 cases, we observe that the reflection at the central point decreases 
monotonically when n(np) increases. As we move away from the duality point we can identify an interval where 
the backscattering of the n ≥ 3 systems keeps below that of the n < 3 systems. We will call this interval the per-
turbation region, which is marked by a dark gray background. In this perturbation region the backscattering 
decreases monotonically with n. Immediately outside the perturbation region, the light gray background marks 
an intermediate region where the backscattering of the different systems is not ordered by a single number. For 
an even larger εr and µr mismatch, the backscattering decreases monotonically as the rotational symmetry of 
the prism ( np ) increases (see the inset). We note that the width of both near-duality perturbation region and 
intermediate region shrink when the lattice pitch to wavelength ratio increases, as observed in the results of 
extra simulations (not included here) where a ratio of 35% was used. As the particle separation increases, the 
electromagnetic coupling between the particles in the array decreases which, at its turn, decreases the relevance 
of the lattice symmetry, and shrinks both regions. In the limit of large separation, the overall symmetry n is 
effectively determined by the prisms symmetry np and the systems should behave as dictated by the latter (see 
Fig. 2), which is what we observe in the results. Finally, we note that for n ≥ 3 systems made out of the same 
prisms, the hexagonal lattice results in smaller backscattering than the square lattice. This behavior has been 
reported for fully dielectric µr = 1  systems18.

We now investigate the backscattering off εr = µr dual systems as the initially sufficient degree of rotational 
symmetry for ZBS is progressively broken into C2 . We consider two systems: A single sphere deformed into an 
ellipsoid of axes (a, b, a) as the axial ratio b/a deviates from unity, and a 2D-array of disks whose initial square 
lattice is deformed into a rectangular lattice breaking n = 4 into n = 2 . While in general the backscattered power 
off C2 systems depends on the polarization, it is straightforward to show that the backscattered power off dual-
symmetric systems with a mirror symmetry across a plane containing the optical axis does not depend on the 
incident polarization. Therefore, without loss of generality, we can choose a particular linear polarization which 
is adapted to the system, and to the geometrical symmetry breaking. Namely, the electric field of the incident 
plane wave is linearly polarized along the y-axis, which coincides with the b dimension of the ellipsoid and with 
one of the two lattice vectors of the array. The plane wave propagates along the z-axis, perpendicularly to the 
plane of the array. Only the main diffraction order is allowed in all the different array lattices. Figure 5 shows the 
results. The backscattering at the duality point εr/µr in Fig. 5a,b shows that: (i) The further the axial(pitch) ratio 
deviates from unity (The larger the C∞(C4) symmetry breaking), the larger the backscattering, and, notably that 
(ii) axial(pitch) ratios that correspond to the same degree of symmetry breaking like 0.9 and 1.1, or 0.77 and 1.3 
exhibit almost the exact same backscattering at the duality point. This observation can be related to previous 
ones: It is similar to the decrease of backscattering as the rotational symmetry increases in systems with n < 3 
at the duality point, and, by switching the roles of duality and rotational symmetries, can be seen as the coun-
terpart of the increase of backscattering as the duality symmetry of a system with sufficient discrete rotational 
symmetry is increasingly broken.

Figure 4.  Reflection of square (solid) and hexagonal (dashed) lattices of identical np-sided prisms (legend: np
-order) as a function of the permeability. The permittivity is fixed at εr = 4 . The labels [np, nl , n] indicate the 
rotational symmetry of the prisms ( np ), the lattice (nl) , and the overall system (n). The lattice pitch is equal to 
26%(28%) of the wavelength for square(hexagonal) lattices.
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Backscattering suppression for systems of a broken symmetry. Figure 5 also shows that the back-
scattering for the chosen linear polarization is minimized for some ratio of the material parameters away from 
the duality point. This is a remarkable feature as it suggests that the breaking of rotational symmetry can be 
compensated by deliberately breaking the duality symmetry to restore the vanishing of backscattering. We now 
investigate this further. However, it is important to keep in mind that: (i) Such minimization is not equivalent to 
ZBS, which implies zero back reflection for all incident polarizations, and that (ii) the backscattering off mirror 
symmetric systems is independent of the polarization only at the duality point. Away from duality, the dips in 
Fig. 5 are reflection minima for the chosen linear polarization. Figure 6 shows the permeability to permittivity 
(permittivity to permeability) ratio that achieves minimum backscattering for each different axial (pitch) ratio 
of the ellipsoid (array). This graph, and in particular, the inversion of the material parameters ratio from the 
ellipsoid to the array can be understood as follows. We consider the strength of the response of the systems in 
the direction of the electric field relative to the strength of the response of the systems in the direction of the 
magnetic field. Such relative strength grows as the axial ratio of the single ellipsoid increases because the induced 

Figure 5.  (a) Backscattering ratio Rb for a ellipsoid of permittivity εr = 2 for a varying axial ratio b/a (legend) 
as a function of the permeability. (b) Reflection off a 2D array of identical cylinders of permeability µr = 2 
arranged in a rectangular lattice for varying pitch ratio (legend) of the lattice as a function of the permittivity. 
The top parts of each figure show the geometries and illuminations. The electric field of the illumination is 
parallel to the distinct axis of the ellipsoid (of length b), and to the lattice vector whose length is the numerator 
of the pitch ratio of the array. The horizontal dashed lines mark the duality points εr/µr = 1.

Figure 6.  The permeability to permittivity(permittivity to permeability) ratio that achieves minimum 
backscattering for each different axial(pitch) ratio of the ellipsoid(array) is shown by the continuous blue(red) 
line. The blue dashed line is an analytical prediction of the axial ratio required for the ellipsoid.
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electric dipole moment grows with respect to the induced magnetic dipole moment. On the other hand, the 
relative strength decreases as the pitch ratio of the rectangular cell of the 2D array increases because the array 
becomes less dense along the electric field direction relative to its density along the magnetic field direction. 
Then, for the materials to compensate the geometrically induced change in the relative strength, µr/εr must 
increase in the case of the ellipsoid and decrease in the case of the array. Such compensation can be interpreted as 
the induction of an effective electromagnetic C4 symmetry onto the geometrically C2-symmetric ellipsoid(array), 
but only for the particular linear polarization.

Finally, we will show that the µr/εr ratio that achieves the minimal backscattering off the ellipsoid for the 
chosen linear polarization can be predicted analytically to good approximation when considering the electric 
and magnetic dipole polarizability of a ellipsoid and ignoring higher multipolar orders. This is a reasonable 
approximation because the considered ellipsoid has a volume corresponding to a sphere with radius equal to 
one-tenth of the excitation wavelength. The normalized electric dipole polarizability of a ellipsoid is anisotropic 
and is given by Ref.29 as

where i represents the component of the polarizability along the axes x, y, z. Ni is the depolarization factor of the 
ellipsoid in the x, y, z-directions, which can be calculated numerically depending on the ellipsoid axial ratio, and 
Nx + Ny + Nz = 1 . The normalized magnetic dipole polarizability can be inferred using a duality transformation,

For a nondual material of the ellipsoid ( εr  = µr ), minimum backscattering is anticipated when the electric 
dipole polarizability equals its magnetic counterpart. The condition of minimum linearly polarized backscat-
tering for an incident y-polarized plane wave can be easily derived to be:

Equations (2–4) allow to compute the axial ratio that achieves Eq. (4) for a particular permeability to permit-
tivity ratio. The analytical prediction is shown by the blue dashed line in Fig. 6, and is in very good agreement 
with the actual optimal axial ratio values extracted from the simulations (continuous blue dashed line). The 
previous interpretation of electromagnetic C4 restoration onto a geometrical C2 system by means of µr/εr  = 1 
can be appreciated in the fact that Eq. (4) is met by a C4 system with µr/εr = 1.

In conclusion, we have analyzed the consequences of perturbatively breaking the two symmetries involved 
in zero-backscattering: Discrete rotational symmetry Cn≥3 , and duality symmetry. In general terms, when one 
of the symmetries is broken, the backscattering grows with the parameter that controls the symmetry breaking, 
and very similar behavior can be observed in both single objects and regular 2D arrays. For isolated Cn≥3-sym-
metric prisms, the growth of the backscattering as duality is increasingly broken is slower for larger values of 
n, and the cylinder with n → ∞ shows always the least backscattering. A similar, albeit not identical behavior 
can be observed in 2D arrays, where both the inclusion and lattice symmetries play a role. For dual systems, 
the progressive breaking of the sufficient discrete rotational symmetry results in a progressive increase of the 
backscattering in both isolated objects and arrays. Finally, it is seen that the violation of the sufficient degree of 
rotational symmetry in the ellipsoids and C2 arrays can be compensated for a particular linearly-polarized illu-
mination by a corresponding deliberate breaking of the duality symmetry. We consider the comparison of these 
results with a study of symmetry-breaking in εr  = µr = 1 systems where helicity preservation is achieved by 
geometrical and material optimization to be a worthwhile future step. We also consider to extend the investiga-
tion of symmetry-breaking effect on backscattering to larger objects, comparable to the excitation wavelength, 
which could potentially enhance our understanding of the intricate backscattering behaviour of complex scat-
tering systems.

Methods
COMSOL  Multiphysics® (version 5.2, COMSOL AB, Stockholm, Sweden) and JCMsuite 3.1830 are used for 
numerical calculation of the far-fields. The perfectly matched layer (PML) approach is implemented to truncate 
the far-field problem onto a shell surrounding the scattering particle (see Ref.31). The meshing of particles is criti-
cal especially when the effect of rotational symmetry is investigated. The tetrahedron-type meshing used typically 
breaks rotational symmetry of particles, unless specifically designed to avoid it. Alternatively, the meshing has 
to be fine enough so that symmetry breaking due to the meshing process is negligible. Therefore, multiple tools 
were used to confirm results.

Received: 14 July 2020; Accepted: 16 December 2020

References
 1. Kerker, M., Wang, D.-S. & Giles, C. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).
 2. Lindell, I. V., Sihvola, A., Yla-Oijala, P. & Wallén, H. Zero backscattering from self-dual objects of finite size. IEEE Trans. Antennas 

Prop. 57, 2725–2731 (2009).
 3. Zambrana-Puyalto, X., Fernandez-Corbaton, I., Juan, M., Vidal, X. & Molina-Terriza, G. Duality symmetry and Kerker conditions. 

Opt. Lett. 38, 1857–1859 (2013).

(2)(αe)i =
εr − 1

1+ Ni(εr − 1)
,

(3)(αm)i =
µr − 1

1+ Ni(µr − 1)
.

(4)(αe)y = (αm)x .



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1721  | https://doi.org/10.1038/s41598-020-80347-5

www.nature.com/scientificreports/

 4. Fernandez-Corbaton, I. et al. Electromagnetic duality symmetry and helicity conservation for the macroscopic Maxwells equations. 
Phys. Rev. Lett. 111, 060401 (2013).

 5. Fernandez-Corbaton, I. Forward and backward helicity scattering coefficients for systems with discrete rotational symmetry. Opt. 
Express 21, 29885–29893 (2013).

 6. Yang, Q., Chen, W., Chen, Y. & Liu, W. Electromagnetic duality protected scattering properties of nonmagnetic particles. arXiv 
preprint arXiv :2004.00418  (2020).

 7. Nieto-Vesperinas, M., Gomez-Medina, R. & Saenz, J. J. Angle-suppressed scattering and optical forces on submicrometer dielectric 
particles. J. Opt. Soc. Am. A 28, 54–60 (2011).

 8. Pors, A., Andersen, S. K. H. & Bozhevolnyi, S. I. Unidirectional scattering by nanoparticles near substrates: Generalized Kerker 
conditions. Opt. Express 23, 28808–28828 (2015).

 9. Alaee, R., Filter, R., Lehr, D., Lederer, F. & Rockstuhl, C. A generalized Kerker condition for highly directive nanoantennas. Opt. 
Lett. 40, 2645–2648 (2015).

 10. Baryshnikova, K., Petrov, M., Babicheva, V. & Belov, P. Plasmonic and silicon spherical nanoparticle antireflective coatings. Sci. 
Rep. 6, 22136 (2016).

 11. Abdelrahman, M. I., Rockstuhl, C. & Fernandez-Corbaton, I. Broadband suppression of backscattering at optical frequencies using 
low permittivity dielectric spheres. Sci. Rep. 7, 14762 (2017).

 12. Lee, J. Y., Miroshnichenko, A. E. & Lee, R.-K. Reexamination of Kerker’s conditions by means of the phase diagram. Phys. Rev. A 
96, 043846 (2017).

 13. Länk, N. O., Johansson, P. & Käll, M. Directional scattering and multipolar contributions to optical forces on silicon nanoparticles 
in focused laser beams. Opt. Express 26, 29074–29085 (2018).

 14. Rahimzadegan, A., Rockstuhl, C. & Fernandez-Corbaton, I. Core-shell particles as building blocks for systems with high duality 
symmetry. Phys. Rev. Appl. 9, 054051 (2018).

 15. Zhang, X. M., Zhang, Q., Zeng, S. J., Liu, Z. Z. & Xiao, J.-J. Dual-band unidirectional forward scattering with all-dielectric hollow 
nanodisk in the visible. Opt. Lett. 43, 1275–1278 (2018).

 16. Terekhov, P. D. et al. Broadband forward scattering from dielectric cubic nanoantenna in lossless media. Opt. Express 27, 10924–
10935 (2019).

 17. Dezert, R., Richetti, P. & Baron, A. Complete multipolar description of reflection and transmission across a metasurface for perfect 
absorption of light. Opt. Express 27, 26317–26330 (2019).

 18. Slivina, E. et al. Insights into backscattering suppression in solar cells from the helicity-preservation point of view. Phys. Rev. Appl. 
12, 054003 (2019).

 19. Olmos-Trigo, J. et al. Kerker conditions upon lossless, absorption, and optical gain regimes. arXiv preprint arXiv :2005.01441  
(2020).

 20. Rahimzadegan, A. et al. Beyond dipolar Huygens metasurfaces for full-phase coverage and unity transmittance. Nanophotonics 9, 
75 (2020).

 21. Geffrin, J.-M. et al. Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric 
subwavelength sphere. Nat. Commun. 3, 1171 (2012).

 22. Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13, 1806–1809 (2013).
 23. Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS 

Nano 7, 7824–7832 (2013).
 24. Chong, K. E. et al. Efficient polarization-insensitive complex wavefront control using Huygens metasurfaces based on dielectric 

resonant meta-atoms. ACS Photonics 3, 514–519 (2016).
 25. Abdelrahman, M. I. et al. Experimental demonstration of spectrally broadband Huygens sources using low-index spheres. APL 

Photonics 4, 020802 (2019).
 26. Yang, Y. et al. Multimode directionality in all-dielectric metasurfaces. Phys. Rev. B 95, 165426 (2017).
 27. Isro, S. D., Iskandar, A. A., Kivshar, Y. S. & Shadrivov, I. V. Engineering scattering patterns with asymmetric dielectric nanorods. 

Opt. Express 26, 32624–32630 (2018).
 28. Bohren, C. F. & Huffman, D. R. Absorption and scattering of light by small particles (John Wiley & Sons, New York, 2008).
 29. Sihvola, A. Dielectric polarization and particle shape effects. J. Nanomater. 2007, 5 (2007).
 30. Burger, S., Zschiedrich, L., Pomplun, J. & Schmidt, F. JCMsuite: An adaptive FEM solver for precise simulations in nano-optics. 

In Integrated Photonics and Nanophotonics Research and Applications, ITuE4 (Optical Society of America, 2008).
 31. Yushanov, S., Crompton, J. S. & Koppenhoefer, K. C. Mie scattering of electromagnetic waves. In Proceedings of the COMSOL 

Conference (2013).

Acknowledgements
This work has been partly funded by the German Science Foundation within the priority program SPP1839 
Tailored Disorder (RO 3640/7-2) under project number 278744673 and under Germany’s Excellence Strategy 
via the Excellence Cluster 3D Matter Made to Order (EXC-2082/1 – under project number 390761711). It has 
also been supported by the Carl Zeiss Foundation through the “Carl-Zeiss-Focus@HEiKA”. The first author 
acknowledges the funding by Erasmus EUROPHOTONICS M.Sc. program and A*MIDEX foundation. The 
authors are grateful to the company JCMwave for their free provision of the FEM Maxwell solver JCMsuite with 
which some of the simulations have been performed. We would like to express our gratitude to Dr. Aimi Abass 
for useful discussions.

Author contributions
M.I.A. and E.S. performed the simulations; M.I.A.. and I.F.-C. wrote the article, with contributions from all 
authors; C.R. and I.F.-C. supervised and guided the study; All the authors contributed to discussion of the project.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to I.F.-C.

Reprints and permissions information is available at www.nature.com/reprints.

http://arxiv.org/abs/2004.00418
http://arxiv.org/abs/2005.01441
www.nature.com/reprints


8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1721  | https://doi.org/10.1038/s41598-020-80347-5

www.nature.com/scientificreports/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	Effects of symmetry-breaking on electromagnetic backscattering
	Results
	Backscattering (reflection) off individual objects and 2D arrays. 
	Backscattering suppression for systems of a broken symmetry. 

	Methods
	References
	Acknowledgements


