

Hooks equipped with magnets can increase catches of blue shark (Prionace glauca) by longline fishery

Sebastián Biton Porsmoguer, Daniela Bănaru, Charles Boudouresque, Ivan Dekeyser, Christophe Almarcha

▶ To cite this version:

Sebastián Biton Porsmoguer, Daniela Bănaru, Charles Boudouresque, Ivan Dekeyser, Christophe Almarcha. Hooks equipped with magnets can increase catches of blue shark (Prionace glauca) by longline fishery. Fisheries Research, 2015, 172, pp.345-351. 10.1016/j.fisheres.2015.07.016. hal-03589564

HAL Id: hal-03589564 https://amu.hal.science/hal-03589564

Submitted on 25 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hooks equipped with magnets increase catch of blue shark (Prionace glauca) by 1 longline fishery 2 3 Sebastián Biton Porsmoguer^{a*}, Daniela Bănaru^a, Charles F. Boudouresque^a, Ivan 4 Dekeyser^a and Christophe Almarcha^b 5 6 ^a Aix-Marseille University, CNRS, Toulon University, IRD, MIO (Mediterranean 7 Institute of Oceanography) UM110, Campus de Luminy, Case 901, 13288 Marseille 8 cedex 09. France. 9 ^b Aix-Marseille University, CNRS, Centrale Marseille, IRPHE, UMR 7342, 13384 10 Marseille, France 11 12 * Corresponding author: <u>sebastien.biton@mio.osupytheas.fr</u> 13 14 Short title. Magnets do not reduce by-catch of blue shark 15 Abstract 16 The blue shark (*Prionace glauca*) populations are globally decreasing and the blue 17 18 shark has been classified as near threatened. However it is the main species in the Spanish and Portuguese longline fisheries catches and targeted by a part of these 19 fisheries in the northeastern Atlantic Ocean. Sharks locate their prey using electric 20 21 sense. The use of magnets as a repellent for shark fisheries was previously proposed as 22 a measure of conservation. This is the first paper describing the magnetic effect on blue shark catch. In this study, we tested during 3 days under real fishing conditions 2 23 24 models of magnets made of neodymium with high resistance in time and magnet power. The results of our tests showed that magnets did not decrease catches of blue shark and 25 can even have an attraction effect. This effect was significantly higher for the large 26 magnet model tested (26 mm x 11 mm x 12 mm, 0,885 tesla) compared to the smaller 27 one (20 mm x 13 mm x 15 mm, 0,464 tesla). Physical measurements were associated 28 29 with this study and also revealed an important practical aspect to be taken into account in this kind of experiments: that hooks remain magnetized after removal of the magnets 30 and are even slightly magnetized without any previous contact with a magnet. 31

Keywords

34 Blue shark, by-catch, longline, magnet, repellent, CPUE

35

36

65

33

1. Introduction

37 The blue shark *Prionace glauca* (Linnaeus, 1758) is a species with worldwide 38 distribution (Moreno, 2004). Like most of pelagic shark species, the blue shark presents 39 40 a low fecondity rate and a slow growth rate (Ferretti et al., 2008) and is therefore particularly vulnerable to fishery exploitation. 41 42 In the northeastern Atlantic Ocean, one part of the Spanish and Portuguese longline fleet targets swordfish Xiphias gladius Linnaeus, 1758, tuna (teleosts of the group 43 44 Thunini) and shortfin mako near Azores archipelago and between Azores archipelago and Iberian Peninsula (Buencuerpo et al., 1998; Stevens et al., 2000; Baum and Myers, 45 46 2004). The bait is mackerel (Scomber scombrus). However, about 60% of the catch is represented by blue shark (Xunta de Galica. pers. comm.). The second part of the 47 48 longline fleet concerned by this study targets only blue shark (*Prionace glauca*) near Iberian Peninsula. The bait is longfin inshore squid (Doryteuthis pealeii). Over 200 tons 49 of blue shark were landed each month in 2013 in Vigo (Xunta da Galicia, i.e. regional 50 government, pers. comm.). In both case, Spanish and Portuguese longline fishermen can 51 52 be interested by a repulsive system as if they catch more commercial species like 53 swordfish and tuna they may increase their profit. Moreover most pelagic sharks are on 54 top of the food web and play an important role in marine ecosystems as they contribute 55 to the management of healthy ocean ecosystems (Ferretti et al., 2010). 56 Elasmobranchs use the electric sense due to the ampullae of Lorenzini for the detection 57 of the bioelectric fields produced by prey organisms (Kalmijn, 1971). However the chemoreception will be probably used on large distances to detect prey even if at a 58 59 small distance from the prey electric sense may influence their behaviour. According to Hueter et al. (2004) *Prionace glauca* is attracted to an area by odor but preferentially 60 61 attacked an active dipole source that simulated the prey's bioelectric field rather than 62 the odor source of the prey. This electric sense is also related to their two modes of 63 navigation. In the passive mode, the elasmobranch simply measures the electric fields 64 are produced by the flow of ocean water through the Earth's magnetic field. In the

active mode, the elasmobranch measures the voltage gradients that are induced through

- the animal's body due to its own swimming movements through the geomagnetic field
- 67 (Hueter et al., 2004).
- Permanent magnets have been shown to have repellent effect on sharks by creating an
- abnormally strong electrical stimulus to overwhelm the elasmobranchs' acute
- electrosensory system (Stoner et al., 2008; Tallack and Mandelman, 2009; O'Connell et
- al., 2011a, 2012; Hutchison et al., 2012). Magnets constitute therefore a possible means
- to reduce the by-catch. Actually, among 20 pelagic shark species concerned by fisheries
- and/or bycatch, three are now classified by the International Union for the Conservation
- of Nature (IUCN, 2013) as endangered, namely *Mobula mobular* (Bonnaterre, 1788),
- 75 Sphyrna lewini Griffith & Smith, 1834, Sphyrna mokarran Rüppell, 1837, nine as
- vulnerable, namely *Alopias pelagicus* Nakamura, 1935, *A. superciliosus* Lowe, 1841, *A.*
- vulpinus (Bonnaterre, 1788), Carcharodon carcharias (Linnaeus, 1758), Cetorhinus
- 78 maximus (Gunnerus, 1765), Isurus oxyrinchus Rafinesque, 1810, I. paucus Guitart,
- 79 1966, Lamna nasus (Bonnaterre, 1788), Sphyrna zygaena (Linnaeus, 1758), and one, P.
- 80 *glauca*, as near threatened.
- During the last years, many works tried to test the deterrent electromagnetic effect on
- sharks (Annexe 1). They used permanent magnet composed by Barium (Ba), Boron (B),
- 83 Iron (Fe) and Neodymium (Nd) or electropositive metal (EPM) composed by
- 84 Lanthanides metal. Different EPM tested were Barium (Ba), Neodymium (Nd),
- 85 Praseodymium (Pr), Cerium (Ce), Cerium-Lanthanum (CeLa), Praseodymium-
- 86 Neodymium metal alloy (PrNdA), and Praseodymium-Neodymium mischmetal
- 87 (PrNdM) (Annexe 1).
- 88 The tests published were realized in laboratory (in experimental conditions) or in field
- 89 (in experimental conditions, in experimental fishing or in real fishing conditions). Many
- 90 species were used to test several magnet models or EPM. Some species have a pelagic
- 91 behaviour (Dasyatidae, Carcharhinidae, Lamnidae, Sphyrnidae and Triakidae) and
- others, a benthic behaviour (Rajidae and Squalidae). The results show contrasted
- effects. In laboratory, the results of experiments are sometimes positive (Brill et al.,
- 94 2009; Rigg et al., 2009; O'Connell et al., 2010; Jordan et al., 2011; O'Connell et al.,
- 2011b, 2014a, 2014c; Smith and O'Connell, 2014), and sometime, negative or partial
- 96 (Stoner and Kaimmer, 2008; Rigg et al., 2009; Jordan et al., 2011; McCutcheon and
- 97 Kajiura, 2013). Tests realized in field obtained both positive (Rice, 2008; Wang et al.,
- 98 2008; O'Connell et al., 2011a, 2014b, 2014d, 2015) and negative results (Robbins et al.,

99	2008; Tallack and Mandelman, 2009; O'Connell et al., 2011a; Hutchinson et al., 2012;
100	Godin Cosandey et al., 2013; Smith, 2013; O'Connell et al., 2014d).
101	Some species may have opposite behaviour in different conditions. For example,
102	smooth dogfish (Mustelus canis) in contact with Neodymium (Nd) metal can have a
103	repellent reaction in group but not alone (Jordan et al., 2011). Carcharhinus plumbeus
104	can have a repellent reaction in laboratory (Brill et al., 2009) but not in field (O'Connell
105	et al., 2011a). Globally, all the tests with electromagnetic dispositive obtained highly
106	contrasted results between laboratory and field experiments, between species and
107	according to the electromagnetic dispositive.
108	Repellent effects with EPM were proposed to be used to limit the intense fishing
109	activities especially for blue shark (Prionace glauca) and shortfin mako (Isurus
110	oxyrinchus). However, previous experiments realized in field and in real fishing
111	conditions with EPM, were negative for both species (Hutchinson et al., 2012; Godin
112	Cosandey et al., 2013).
113	The aim of this paper was to test the effects of neodymium magnets on catches of the
114	blue shark aboard a fishing vessel targeting pelagic species in the eastern Atlantic
115	Ocean. This is the first paper measuring and taking into account the physical properties
116	of the magnets and their effect on the hooks.
117	
118	2. Methods
119	
120	Physical properties of the two magnet models
121	The magnet is mainly composed of neodymium, a magnet element with high resistance
122	in time and magnet power. The magnets were of the N35-Ni and N35-NdFeB types.
123	The higher the grade (the number following the 'N'), the stronger the magnet. Ni
124	indicates the presence of traces of nickel. NdFeB indicates that the magnet is composed
125	of neodymium, iron and boron. Neodymium is a rare-earth magnet element with
126	degradation trends in sea water. However the experiment lasted only 3 days and there
127	was no degradation of the magnets. We did not measure the level of dissolution in
128	laboratory because as the lanthanides dissolve, the voltage (mV) remains unchanged
129	despite the decreasing mass (McKutcheaon and Kajiura, 2013).
130	The dimensions of the two cylindrical magnet models with a central hole, tested were
131	26 mm x 11 mm x 12 mm (model 1, 0,885 tesla - from Ingeniera Magnética Aplicada,

132	Barcelona, Spain) and 20 mm x 13 mm x 15 mm (model 2, 0,464 tesla - from
133	Firstmagnetic, Roncq, France). The magnetic fields produced by the two types of
134	magnets, with the hook, were measured at several distances (between 7 and 70 cm). We
135	also measured the magnetic fields of two hooks after contact with the two types of
136	magnets and the magnetic fields of a hook which was never in contact with magnets.
137	As each model has always been composed of three magnets in experiments, we report
138	here the measurements for sets of three magnets. When magnets are stuck together, the
139	magnetic field produced by three magnets is not exactly equal to three times the field
140	produced by one as they are not physically at the same point (the more distant magnet
141	has a lower influence, due to the increasing discrepancy of magnetic field with
142	distance). But at a long distance in relation to the size of the magnet, the field can be
143	considered as approximately three times the field of each.
144	The hook used in the experiments is made of steel, a ferromagnetic material. In
145	consequence, it concentrates the magnetic lines and changes the map of the magnetic
146	field. Moreover, the size of the hook is much larger than the size of the magnets so that
147	very close to the hook, if the magnets are on the opposite side of the hook, the magnetic
148	field can be greater than what it would be with the magnets alone. To measure precisely
149	the field produced, we used a Gauss/Teslamètre Sypris 7030 F.W.Bell and recorded the
150	variation in the magnetic field in a figure that gives the magnetic field in tesla units
151	along the distance X in centimeters for a hook filled with respectively big magnet (big
152	circle) and small magnet (small circle) in a log-log scale. The measurements were made
153	from the position of the center of the magnet on the hook (approximate position when
154	magnet was absent). The magnetic fields of two hooks after contact with the two types
155	of magnets and the magnetic fields of a hook which was never in contact with magnets
156	were also recorded in the same figure.
157	
158	Experiments under real fishing conditions
159	The experiments were carried out in the northeastern Atlantic Ocean $(8^{\circ} - 9^{\circ} \text{W})$ and 42°
160	-45° N) (Figure 1) aboard a longline fishing vessel, during 3 days (October 2013). The
161	vessel, the <i>Pescalema</i> , was based in Muxía, a small port in Galicia (Spain). The vessel,
162	~20 m long, carried 8 crew members, plus the scientific observer (SBP). The
163	experiments concerned 1076 shark individuals. We determined their sex and

- approximate size. They belonged to the following size classes (cm): [90-100), [100-
- 165 110), [110-120), [120-130), [130-140), [140-150), [150-200), [>200.
- The longline measured about 50 km with 1 300 hooks, about 40 m apart. Hooks were
- located at about 20 m depth. The ring-shaped hooks (model 9202, MustadTM, Lilleaker,
- Oslo area, Norway) measured 8 cm in total height and 2 cm in width.
- The shape and size of the magnets were chosen to correspond to the size of the hook
- 170 (Figure 2).
- 171 A positive and encouraging aspect of the experiment was that the fishermen were able
- themselves to place the magnets on the hooks without the assistance of the scientist
- 173 (SBP), who just passed them the magnets stored in a polystyrene box. Inserting the
- hook within the magnet did not reduce the hectic speed of the immersion of the baited
- hook and the supporting line, lasting 7-8 h, by night, during a real fishing operation.
- 176 The polarization of the magnets was randomly orientated so that the magnetic field N or
- S corresponded to the hook axis. Fishermen had no difficulty in attaching the magnets
- and removing them from the hook. The bait was located close to the magnet so that
- sharks would feel the magnetic field when trying to feed. The fishermen used only
- longfin inshore squid (*Doryteuthis pealeii*) (Lesueur, 1821) as bait. The longline carried
- the same number of hooks during the three days of the experiment. We divided the
- longline into 3 test zones with the same number of hooks (zone 1 at the beginning of the
- longline, zone 2 in the middle of the line and zone 3 at the end) and the rest of the
- longline was the zone 4 (Table 1; Figure 3). The reason for this partitioning is that zone
- 185 1 remained immersed for a longer time than zone 3 (approximately 7 hours) and this
- may influence the catch values. Within each test zone, we used 5 hooks with magnets of
- the first model, 11 hooks with magnets of the second model and 16 control hooks
- without magnets (Figure 3). The aim of this strategy was to observe whether there was
- any significant difference in the catch rate between test hooks and control hooks and
- between the two types of magnet within test zones. The rate of catch per unit of effort
- 191 (CPUE) represents the relation between the number of individuals in catches and the
- 192 number of hooks.
- 193 The three days were considered as replicates. We compared catch values for the 144
- hooks with magnets from test zones 1 to 3 with 144 control hooks under normal fishing
- conditions (i.e. without magnets)(Table 1). Inside the test zones, we tested the influence

196	of different factors (size, sex, presence or absence of magnets and the models of
197	magnet) on the CPUE values.
198	
199	Data treatment
200	Data were analyzed with Statistica 9.1. Normality and homogeneity of variance were
201	previously tested using Shapiro and Levene tests. One-way ANOVA was used in each
202	zone and for all the tested zones together to test the differences in CPUE values between
203	hooks with magnets and control hooks as well as between the two models of magnet.
204	
205	3. Results and discussion
206	
207	Physical tests
208	Figure 4 shows the measurement of the magnetic field in tesla (T) along the distance X
209	in cm for a hook carrying respectively big magnets (big black circles) and small
210	magnets (small grey circles) in a log-log scale. The lines correspond to the theoretical
211	variation of the magnetic field as X ⁻³ . We note that despite the presence of the hook, for
212	a distance more than 10 cm, the magnetic field intensity varies like that of a dipole. At
213	these distances, the intensity of the large magnets was twice as high as that of the
214	smaller magnets.
215	The intensity of the magnetic field produced by the magnets has to be
216	compared with the additional intensity of the magnetic field of the Earth (between
217	0.00002 T and 0.00007 T, depending on the position on the Earth). From figure 4, we
218	note that the intensity of the magnetic field from the magnets was the same
219	intensity as that of the magnetic field of the Earth at a distance around 25 to 35 cm for
220	small magnets, and 30 to 45 cm for big magnets.
221	An important aspect to be considered is that hooks equipped with both big and small
222	magnets remained magnetized when removing the magnets and this phenomena is
223	permanent (Figure 4). For example, a hook magnetized after contact with a big magnet
224	at 6 cm distance induced the same magnetic field that a hook with a big magnet at 7 cm
225	distance. Moreover, a hook alone which was never in contact with a magnet shows also
226	a measurable magnetic field, even if it's lower than the magnetic field of hooks after
227	contact with a magnet. For example at 6 cm distance from the hook which was never in

contact with a magnet the magnetic field is equivalent to that of a hook with a big 228 229 magnet model 1 measured at 8 cm distance. 230 231 Experiments under real fishing conditions 232 During the fishing campaign, 1 076 blue shark *Prionace glauca* were caught by the longline vessel (Figure 5; Table 2). In addition to the blue sharks, one small swordfish 233 234 Xiphias gladius, one albacore Thunnus alalunga (Bonnaterre, 1788), 3 sunfish Mola 235 mola (Linnaeus, 1758), 6 pelagic stingray Pteroplatytrygon violacea (Bonaparte, 1832) 236 and one common thresher shark Alopias vulpinus were caught. 237 The total length of the captured blue sharks ranged from 70 to 240 cm, corresponding 238 mainly to juvenile individuals (Table 2). For the blue shark, sexual maturity is reached at 180 cm in males and 200 cm in females (Moreno, 2004). 239 Sex ratio (% of males) was 0.52 - 0.55 in the tested zones 1 to 3 and 0.77 in the zone 4. 240 241 The total length and sex of the caught individuals did not differ significantly according to whether they were caught with hooks equipped with magnets or not (p=0.062, 242 respectively p=0.892). 243 244 The presence of the magnets had a significant effect on the catch rate per unit of effort (CPUE) only in the zones 2 (F=10.48; p=0.014) and 3 (F=7.99; p=0.026) with higher 245 246 CPUE values for hooks equipped with magnets in both areas (0.73 in zone 2 and 0.75 in zone 3 for hooks with magnets compared to 0.52 and 0.38 respectively for hooks 247 248 without magnets) (Table 1; Figure 6). These values were significantly higher only for 249 the hooks equipped with the model 1 magnet (0.80) than for the control hooks in the 250 zone 2 (0.52) (F=5.25; p=0.048). In contrast, there were no significant differences in 251 CPUE between the two magnet models 1 and 2, between model 2 magnet hooks and the 252 control hooks in the zone 2, and between the two magnet models and the control hooks 253 in the zones 1 and 3. Globally for all the tested areas CPUE values for hooks with magnets are higher than 254 those of hooks without magnets (mean 0.74, SD 0.15 and respectively mean 0.47, SD 255 0.17) (F=18.29, p=0.000). These values are also higher than those of CPUE in the zone 256 257 4 (mean 0.25, SD 0.43). However as the number of hooks is much higher in the zone 4 (1204 hooks x 3 days) than in the tested zones (48 hooks x 3 days) this might influence 258

the comparison between the mean CPUE values among these zones.

260	It remains unclear whether it is the absolute strength of the magnetic field in the water,
261	which at some level induces reaction behaviour of blue sharks, or whether it is the
262	magnitude of the change in magnetism with distance that elicits the response. However,
263	the presence of magnets near the hook did not provide the expected repellent effect. One
264	of the two tested models of magnet even increased the catch rate. Magnets would
265	therefore not appear to constitute an effective device to avoid by-catch for this species
266	in real fishing conditions. Our results would appear to contradict these promising
267	experimental previous results. However, several factors are to be considered. (i) Results
268	from the literature are mainly based upon laboratory experiments, and/or in situ
269	experiments more or less remote from the real conditions of a professional fishing fleet
270	(Stoner and Kaimmer, 2008; Tallack and Mandelman, 2009; O'Connell et al., 2011a,
271	2014; Robbins et al., 2011). (ii) Clearly, the results from previous authors evidence the
272	non-congruence of deterrent effects depending upon the species (Hutchinson et al.,
273	2012); for example, these authors showed the ineffectiveness of EPM with blue shark
274	and shortfin mako, although effective with another species (Annex 1). (iii) Our results,
275	together with similar results from the literature (e.g. Hutchinson et al., 2012), concern
276	juveniles. It is known that the electrosensory sensitivity, in many elasmobranchs,
277	increases with growth (e.g. Fishelson and Baranes, 1999; Tricas and Sisneros, 2004).
278	(iv) The repellent devices used in the literature are rather disparate. Their characteristics
279	and strength are often poorly described. In addition, the effectiveness of the magnet is
280	influenced by the parallelism, or non-parallelism, of the axis of polarization with the
281	axis of the hook (O'Connell et al., 2011a).
282	Most of the previously published papers on the deterrent effect on sharks tested the
283	effects of electropositive metals (Annex 1), excepting Rigg et al., (2009). This is the
284	first paper describing the magnetic effect on blue shark catch. Previous papers
285	concerning the blue shark analyzed only the electropositive effects (Godin Cosandey et
286	al., 2013; O'Connell et al., 2014d) (Annex 1). In our case, blue shark probably detects
287	by odour at a large distance the presence of bait on the longlines. However at a short
288	distance when swimming towards the bait it should feel the electric field induced by
289	both the magnet and the electropositive metal. We probably have a cumulated effect of
290	electric field induced the shark movement in the magnetic field and an electric field
291	generated by the electropositive metal in contact with seawater that we cannot dissociate

292	in field conditions. The measurements in laboratory concerned only magnetic field, but
293	in perspective we will try to develop a protocol to measure the electric field too.
294	Our results, as well as others experiments in real fishing conditions did not reduce the
295	by-catch of sharks (Godin Cosandey et al., 2013). Permanent magnet or electropositive
296	metal is actually not proved yet as a solution to limit by-catch or to reduce negative
297	impact of longline fisheries. As suggested by Jordan et al., (2013), we will have to
298	explore new approaches to reduce the by-catch of sharks, as magnets seem to even have
299	an attraction effect. Other management measures such as quotas or minimum catch
300	length may be more appropriate for blue shark fishery.
301	
302	Acknowledgments
303	
304	We gratefully acknowledge the Captain and crews of the Pescalema based in Muxía
305	(Galicia, Spain). This work was support by the Spanish Ministry of Agriculture, Food
306	and Environment. The funding providers played no part in the study design, data
307	collection, and analysis, decision to publish, or preparation to the manuscript. Thanks
308	are also due to Michael Paul for improvement of the English. Finally, we acknowledge
309	the two anonymous reviewers for valuable comments and suggestions.
310	
311	References
312	
313	Baum, J.K., Myers, R.A., 2004. Shifting baselines and the decline of pelagic sharks in
314	the Gulf of Mexico. Ecol. Lett. 7, 135-145.
315	Brill, R., Bushnell, P., Smith, L., Speaks, C., Sundaram, R., Stroud, E., Wang, J., 2009.
316	The repulsive and feeding-deterrent effects of electropositive metals on
317	Carcharhinus plumbeus. Fish. Bull. 107(3), 298-307.
318	Buencuerpo, V., Ríos, S., Morón, J., 1998. Pelagic sharks associated with the swordfish
319	Xiphias gladius fishery in the eastern north Atlantic Ocean and the Strait of
320	Gibraltar. Fish. Bull. 96, 667-685.
321	Ferretti, F., Myers, R.A., Serena, F., Lotze, H.K., 2008. Loss of Large Predatory Sharks
322	from the Mediterranean Sea. Conserv. Biol. 22(4), 952–964.
323	Ferretti, F., Worm, B., Britten, G.L., Heithaus, M.R, Lotze, H.K., 2010. Patterns and
324	ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055-1071

- Fishelson, L., Baranes, A., 1999. Morphological and cytological ontogenesis of the
- ampullae of lorenzini and lateral line canals in the Oman shark, *Iago omanensis*
- Norman 1939 (Triakidae), from the Gulf of Aqaba, Red Sea. The Anatomical
- 328 Record, 252(4), 532-545.
- Godin Cosandey, A., Winner, T., Wang, J. H., Worm, B., 2013. No effect from rare-
- earth metal deterrent on shark bycatch in a commercial pelagic longline trial. Fish.
- 331 Res. 143, 131–135.
- Hueter, R. E., Mann, D. A., Maruska, K. P., Sisneros, J. A., Demski, L. S., 2004.
- Sensory Biology of Elasmobranch. Chapter 12 in Biology of Sharks and their
- relatives. Ed. Carrier, J. C., Musick, J. A., Heithaus, M. R. CRC Press, 326-
- 358. Hutchinson, M., Wang J.H., Swimmer Y., Holland K., Kohin S., Dewar H.,
- Wraith J., Vetter R., Heberer C., Martinez J., 2012. The effects of a lanthanide
- metal alloy on shark catch rates. Fish. Res. 131-133, 45–51.
- 338 IUCN 2013. IUCN Red List of Threatened Species. Version
- 339 2013.2.www.iucnredlist.org. Downloaded on 02 June 2014.
- Jordan, L.K., Mandelman, J.W., Kajiura, S.M., 2011. Behavioral responses to weak
- electric fields and a lanthanide metal in two shark species. J. Exp. Mar. Biol. Ecol.
- 342 409, 345–350.
- Jordan, L.K., Mandelman, J.W., McComb, D.M., Fordham, S.V., Carlson, J.K., Werner,
- T.B., 2013. Linking sensory biology and fisheries bycatch reduction in
- elasmobranch fishes: a review with new directions for research. Conserv. Physiol.
- 346 409, 345–350.
- Kalmijn, A.J., 1971. The electric sense of sharks and rays. J. Exp. Biol. 55, 371–383.
- McKutcheon, S.M., Kajiura, S.M., 2013. Electrochemical properties of lanthanide
- metals in relation to their application as shark repellents. Fish. Res. 147, 47–54.
- Moreno, J.A., 2004. Guía de los tiburones de aguas ibéricas, Atlántico nororiental y
- 351 Mediterráneo. Barcelona: Omega publ. 315 p.
- O'Connell, C.P., Abel, D.C., Rice, P.H., Stroud, E.M., Simuro, N.C., 2010. Response of
- 353 the southern stingray (Dasyatis americana) and the nurse shark (Ginglymostoma
- *cirratum*) to permanent magnets. Mar. Fresh. Behav. Physiol. 43(1), 63-73.
- O'Connell, C.P., Abel, D.C., Stroud, E.M., Rice, P.H., 2011a. Analysis of permanent
- magnets as elasmobranch bycatch reduction devices. Fish. Bull. 109, 394–401.

- O'Connell, C.P, Abel, D.C., Gruber, S.H., Stroud, E.M., Rice, P.H., 2011b. The
- response of juvenile lemon sharks, *Negaprion brevirostris*, to a magnetic barrier
- simulating a beach net. Ocean and Coastal Manag. 54, 225-230.
- O'Connell, C.P., Stroud, E. M., and He, P., 2012. The Emerging Field of Electrosensory
- and Semiochemical Shark Repellents: Mechanisms of Detection, Overview of
- Past Studies, and Future Directions. Ocean and Coast. Manag. 97, 2-11.
- O'Connell, C. P., Hyun, S-Y., Gruber, S. H., O'Connell, T. J., Johnson, G., Grudecki,
- K., He, P., 2014a. The use of permanent magnets to reduce elasmobranch
- encounter with a simulated beach net. 1. The bull shark (*Carcharhinus leucas*).
- Ocean and Coastal Manag. 97, 12-19.
- O'Connell, C.P., Andreotti, S., Rutzen, M., Meÿer, M., He. P., 2014b. The use of
- permanent magnets to reduce elasmobranch encounter with a simulated beach net.
- 2. The great white shark (*Carcharodon carcharias*). Ocean and Coastal Manag.
- 370 97, 20-28.
- O'Connell, C.P., Guttridge, T.L., Grube, S.H., Brooks, J., Finger, J.S., He, P., 2014c.
- Behavioral modification of visually deprived lemon sharks (*Negaprion*
- *brevirostris*) towards magnetic fields. J Exp Mar Biol Ecol. 453, 131–137.
- O'Connell, C.P., He, P., Joyce, J., Stroud, E. M., Rice, P.H., 2014d. Effects of the
- 375 SMART_ (Selective Magnetic and Repellent-Treated) hook on spiny dogfish
- catch in a longline experiment in the Gulf of Maine. Ocean and Coastal Manag.
- 377 97, 38-43.
- 378 O'Connell, C.P., Hyun, S-Y., Gruber, S-H., He, P., 2015. Effects of barium-ferrite
- permanent magnets on great hammerhead shark *Sphyrna mokarran* behavior and
- implications for future conservation technologies. Endang. Species Res. 26, 243–
- 381 256.
- Rice, P., 2008. A shocking discovery: how electropositive metals (EPMs) work and
- their effects on elasmobranchs. Workshop, 10–11 April 2008. US Department of
- Commerce, NOAA Technical Memorandum NOAA-TM-NMFS-PIFSC-16, 36–
- 385 40.
- Rigg, D.P., Peverell, S.C., Hearndon, M., Seymour, J.E., 2009. Do elasmobranch
- reactions to magnetic fields in water show promise for bycatch mitigation? Mar.
- 388 Freshwater Res. 60(9), 942–948.

389	Robbins, W.D., Peddemors, V.M., Kennelly, S.J., 2011. Assessment of permanent
390	magnets and electropositive metals to reduce the line-based capture of Galapagos
391	shark Carcharhinus galapagensis. Fish. Res. 109, 100-106.
392	Smith, K.T., 2013. Electrogenic metals for elasmobranch bycatch mitigation. Florida
393	Atlantic University, Boca Raton, Florida. Master thesis. 35 pp.
394	Smith, L.E., O'Connell, C.P., 2012. The effects of neodymium-iron-boron permanent
395	magnets on the behaviour of the small spotted catshark (Scyliorhinus canicula)
396	and the thornback skate (Raja clavata). Ocean and Coastal Manag. 97, 44-49.
397	Stevens, J.D., Bonfil, R., Dulvy, N.K., Walker, P.A., 2000. The effects of fishing on
398	sharks, rays and chimeras (chondrichthyans), and the implications for marine
399	ecosystems. ICES J. Mar. Sci. 57, 476-494.
400	Stoner, A.W. and Kaimmer, S.M., 2008. Reducing elasmobranch bycatch: laboratory
401	investigation of rare earth metal and magnetic deterrents with spiny dogfish and
402	Pacific halibut. Fish. Res. 92, 162-168.
403	Tallack, S.M.L. and Mandelman, J.W., 2009. Do rare-earth metals deter spiny dogfish
404	A feasibility study on the use of electropositive "mischmetal" to reduce the
405	bycatch of Squalus acanthias by hook gear in the Gulf of Maine. ICES J. Mar.
406	Sci. 66,\$ 315-322
407	Tricas, T.C., Sisneros, J.A., 2004. Ecological functions and adaptations of the
408	elasmobranch electrosense. The sense of fish, Springer, Netherlands, 308-329
409	Wang, J.H., McNaughton, L., Swimmer, Y. A., 2008 shocking discovery: how
410	electropositive metals (EPMs) work and their effects on elasmobranchs.
411	Workshop, 10-11 April 2008. US Department of Commerce, NOAA Technical
412	Memorandum NOAA-TM-NMFS-PIFSC-16, 36–40.

413 Tables

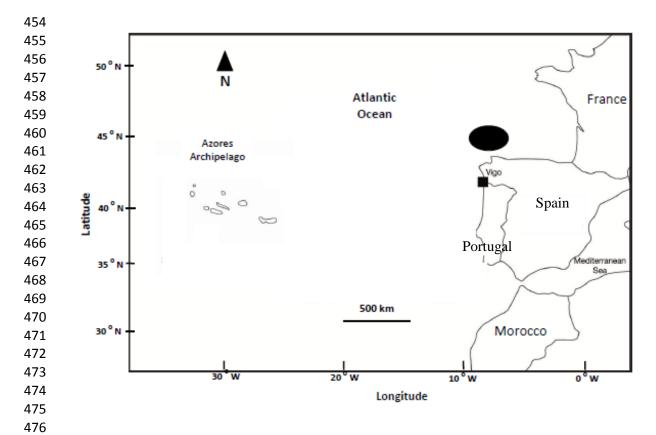
Table 1. Comparison of mean values of CPUE (catch per unit of effort, where the unit of effort was the number of hooks) for blue shark (*Prionace glauca*) between longline zones during the test period (3 days). No=number. SD=Standard Deviation.

Blue shark catch tests	Zone 1		Zone 2			Zone 3			
	No of hooks	CPUE	SD	No of hooks	CPUE	SD	No of hooks	CPUE	SD
Magnet model n°1	3x5	0.87	0.35	3*5	0.80	0.45	3*5	0.80	0.41
Magnet model n°2	3x11	0.64	0.49	3*11	0.70	0.47	3*11	0.70	0.47
Hooks without magnets	3x16	0.52	0.51	3x16	0.52	0.50	3x16	0.38	0.49

Table 2. Total length (TL) of captured blue sharks. - = missing data, Min = Minimum, Max = Maximum, SD = standard deviation.

Blue sharks catch	n	Min. and Max.	Mean length (SD)	Sex ratio
		TL		(% of males)
Total caught individuals	1 076	70 to 240 cm	-	-
Individual caught by hooks	94	100 to 200 cm	109 (18) cm	52%
equipped with magnets inside the				
zones 1, 2 and 3				
Individual caught by control	75	100 to 200 cm	112 (15) cm	55%
hooks inside the zones 1, 2 and 3				
Individual caught by hooks	907	100 to 200 cm	-	77%
without magnets in the zone 4				

Table 3. References concerning tests of electropositive and magnetic effects on sharks in laboratory (Lab) and field.


424	
425	
426	

Species	Electromagnetic	Study	Detterent	References
Species	dispositive	Study	effect	nererences
Prionace glauca	NdFeB N35 – NdNi N35	Field	no	This study
Sphyrna mokarran	BaFe12O19	Field	yes	O'Connell et al., 2015
Carcharhinus leucas	BaFe12O19	Lab	yes	O'Connell et al., 2014a
Negaprion brevirostris	BaFe12O19	Lab	yes	O'Connell et al., 2014c
Scyliorhinus canicula	Nd2Fe14B	Lab	yes	Smith and O'Connell, 2014
Raja clavata	Nd2Fe14B	Lab	yes	Smith and O'Connell, 2014
Carcharodon carcharias	BaFe12O19	Field	yes	O'Connell et al., 2014b
Squalus acanthias	Electropositive metal	Field	yes	O'Connell et al., 2014d
Amblyraja radiata	Electropositive metal	Field	no	O'Connell et al., 2014d
Dipturus laevis	Electropositive metal	Field	no	O'Connell et al., 2014d
Prionace glauca	Electropositive metal	Field	no	O'Connell et al., 2014d
Rhizoprionodon terraenovae	Neodymium (Nd) metal	Field	partial	Smith, 2013
Carcharhinus limbatus	Neodymium (Nd) metal	Field	no	Smith, 2013
Negaprion brevirostris	Neodymium (Nd) metal	Lab	no	McCutcheon and Kajiura, 2013
Sphyrna tiburo – group	Neodymium (Nd) metal	Lab	no	McCutcheon and Kajiura, 2013
Sphyrna tiburo – individual	Neodymium (Nd) metal	Lab	no	McCutcheon and Kajiura, 2013
Prionace glauca	Electropositive metal	Field	no	Godin Cosandey et al., 2013
Isurus oxyrinchus	Electropositive metal	Field	no	Godin Cosandey et al., 2013
Lamna nasus	Electropositive metal	Field	no	Godin Cosandey et al., 2013 Godin Cosandey et al., 2013
Sphyrna lewini	PrNdA	Field	yes	Hutchinson et al., 2012
Carcharhinus plumbeus	PrNdA	Field	no	Hutchinson et al., 2012
Prionace glauca	PrNdA	Field	no	Hutchinson et al., 2012
Isurus oxyrinchus	PrNdA	Field	no	Hutchinson et al., 2012
· · · · · · · · · · · · · · · · · · ·	Nd2Fe14B	Field		O'Connell et al., 2011a
Rhizoprionodon terraenovae Carcharhinus limbatus	Nd2Fe14B	Field	yes	O'Connell et al., 2011a
Carcharhinus limbatus	BaFe12O19	Field	no	O'Connell et al., 2011a
Carcharhinus plumbeus	BaFe12O19	Field	yes no	O'Connell et al., 2011a
Negaprion brevirostris	BaFe12O19	Field		O'Connell et al., 2011a
Carcharhinus acronotus	BaFe12O19	Field	yes	O'Connell et al., 2011a
	Nd2Fe14B	Field	no	O'Connell et al., 2011a
Rhizoprionodon terraenovae Mustelus canis	Nd2Fe14B	Field	yes	O'Connell et al., 2011a
	Nd2Fe14B	Field	yes	
Squalus acanthias			no	O'Connell et al., 2011a O'Connell et al., 2011a
Dasyatis americana	BaFe12O19	Field	yes	
Dasyatis americana	Nd2Fe14B	Field	no	O'Connell et al., 2011a
Raja eglanteria	Nd2Fe14B	Field	no	O'Connell et al., 2011a
Carcharhinus plumbeus	Nd2Fe14B	Field	no	O'Connell et al., 2011a
Carcharhinus limbatus	Nd2Fe14B	Field	yes	O'Connell et al., 2011a
Negaprion brevirostris	BaFe12O19	Lab	yes	O'Connell et al., 2011b
Mustelus canis – group	Neodymium (Nd) metal	Lab	no	Jordan et al., 2011
Mustelus canis – individual	Neodymium (Nd) metal	Lab	yes	Jordan et al., 2011
Dasyatis Americana	BaFe12O19	Lab	yes	O'Connell et al., 2010
Ginglymostoma cirratum	BaFe12O19	Lab	yes	O'Connell et al., 2010
Carcharhinus plumbeus	Electropositive metal	Lab	yes	Brill et al., 2009
Squalus acanthias	Electropositive metal	Lab	partial	Tallack and Mandelman, 2009
Squalus acanthias	Electropositive metal	Field	partial	Tallack and Mandelman, 2009
Sphyrna lewini	Ferrite magnet	Lab	yes	Rigg et al., 2009
Carcharhinus tilstoni	Ferrite magnet	Lab	yes	Rigg et al., 2009
Carcharhinus amblyrhynchos	Ferrite magnet	Lab	yes	Rigg et al., 2009
Rhizoprionodon acutus	Ferrite magnet	Lab	yes	Rigg et al., 2009
Glyphis glyphis	Ferrite magnet	Lab	no	Rigg et al., 2009
Squalus acanthius	Nd2Fe14B	Lab	no	Stoner and Kaimmer, 2008
Squalus acanthius	Electropositive metal	Lab	no	Stoner and Kaimmer, 2008

Squalus acanthias	Neodymium (Nd) metal	Lab	yes	Jordan et al., 2008
Mustelus canis	Neodymium (Nd) metal	Lab	yes	Jordan et al., 2008
Carcharhinus galapagensis	Electropositive metal	Field	yes	Wang et al., 2008
Carcharhinus plumbeus	Electropositive metal	Field	yes	Wang et al., 2008
Negaprion brevirostris	Electropositive metal	Field	yes	Rice, 2008
Carcharhinus galapagensis	Neodymium (Nd) metal	Field	no	Robbins et al., 2008
Carcharhinus galapagensis	PrNdA	Field	no	Robbins et al., 2008

429	Figure legends
430	
431	Figure 1. Map of the marine area (northeastern Atlantic) and location of the fishing zone
432	(black oval) where magnet experiments were conducted.
433	
434	Figure 2. a. Position of the magnet model 2 with a hook under real fishing conditions.
435	Photo: Sebastián Biton Porsmoguer. b. Position of magnet model 2 on a hook measured
436	for magnetic field in laboratory. Photo: Christophe Almarcha.
437	
420	Figure 2. Desiring of health with manual models 1, 2, and control health in the

- Figure 3. Position of hooks with magnet models 1, 2 and control hooks in the testedzones 1, 2 and 3. The rest of the longline was the zone 4.
- Figure 4. Measurement of the maximum magnetic field B in tesla (T) along the distance X in cm for a hook filled with, respectively, big magnet for model 1 (big black circles), small magnet for model 2 (small grey circles), a hook alone after contact with big magnet model 1, a hook alone after contact with small magnet model 2 and a hook alone which was never in contact with a magnets (white circles), in a log-log scale.
- Figure 5. A blue shark *Prionace glauca* caught by the longline vessel during the fishing
 campaign. Photo: Sebastián Biton Porsmoguer.
- Figure 6. Comparison of the CPUE (catch per unit of effort) with mean values for blue shark (*Prionace glauca*) between the two model of magnets (M1 = model 1, M2 = model 2) and the control hooks inside the tested zones.

Figure 1.478

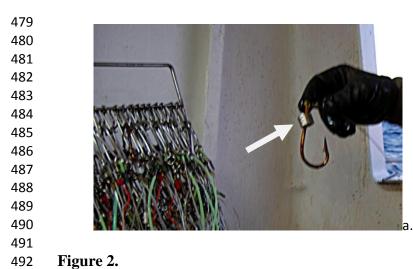
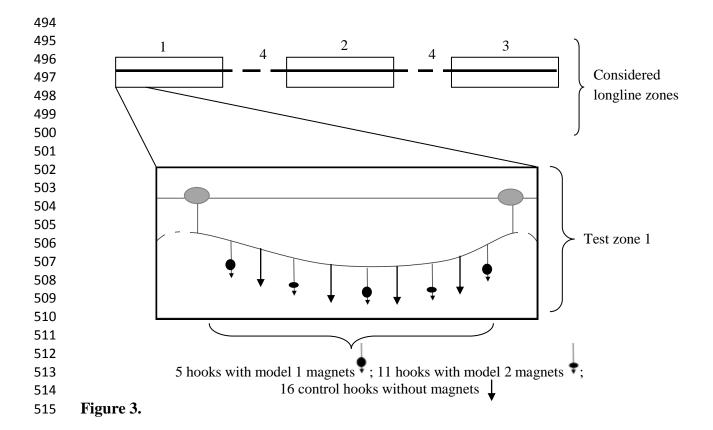



Figure 2.

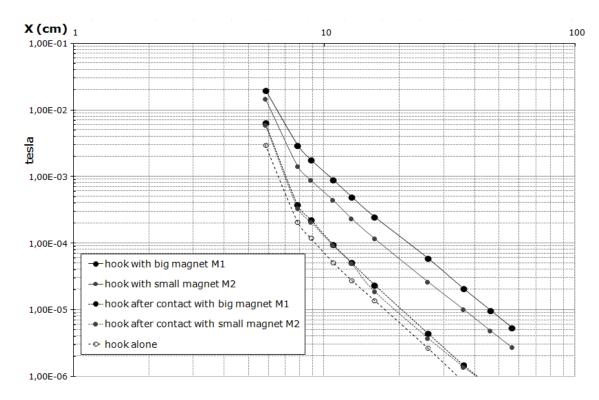
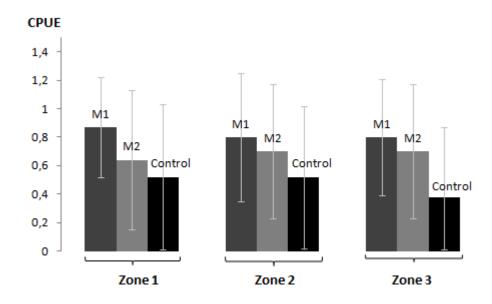



Figure 4.

Figure 5.

526527528 Figure 6.