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A discrete relativistic spacetime 
formalism for 1 + 1‑QED 
with continuum limits
Kevissen Sellapillay1,5*, Pablo Arrighi2,3,5 & Giuseppe Di Molfetta4,5*

We build a quantum cellular automaton (QCA) which coincides with 1+ 1 QED on its known continuum 
limits. It consists in a circuit of unitary gates driving the evolution of particles on a one dimensional 
lattice, and having them interact with the gauge field on the links. The particles are massive fermions, 
and the evolution is exactly U(1) gauge-invariant. We show that, in the continuous-time discrete-
space limit, the QCA converges to the Kogut–Susskind staggered version of 1+ 1 QED. We also show 
that, in the continuous spacetime limit and in the free one particle sector, it converges to the Dirac 
equation—a strong indication that the model remains accurate in the relativistic regime.

Quantum physical phenomena can always be modelled classically by means of matrices and vectors. But, as 
far as we know, the dimension of these vectors grows exponentially with the number of particles, making these 
models intractable for classical computers. To simulate quantum physical phenomena efficiently, it seems we 
have no choice but to harness the laws of quantum mechanics themselves, as Feynman first suggested1. Quan-
tum simulation could be applied to better understand condensed matter problems2, simulate molecules, find 
ground states of Hamiltonians, or even simulate the dynamics of quantum field theories (QFT)3–5. It is the latter 
application that motivates this paper.

Amongst QFT, gauge theories are of fundamental importance to Physics, as they capture the fundamental 
interactions. Some of them have been recast in discrete space. Lattice QCD6 is the most famous example as it 
is extensively used to obtain theoretical numerical values, to be compared against experimental values coming 
out of particle accelerators: this procedure is partly how physicists are searching for new physics. Simulation has 
therefore taken a central role in the scientific method of particle physics. But these techniques are computationally 
heavy: finding a way to simulate lattice gauge theories efficiently and accurately with a quantum simulation device 
would be a game changer. Lattice gauge theories are also key for condensed matter through their application in 
spin liquids, and for quantum error correction e.g. via Kitaev’s toric code7,8.

The 1+ 1 QED, also known as the Schwinger model9, is a good candidate for a first step towards the quantum 
simulation of the dynamics of a gauge theory. Indeed, it is based on the U(1) gauge group just like 3+ 1 QED. 
It captures many non trivial physical properties such as a mass gap, fermion confinement and chiral symmetry 
breaking10. It is exactly solvable in the massless limit9. These features explain why it is often used as a testbed for 
new techniques and ideas.

The standard ways to quantum simulate QFT are fundamentally non-relativistic, as they all begin by express-
ing the theory in continuous-time discrete-space Hamiltonian form, using Kogut–Susskind methods11,12. They 
then map the matter (fermions) and the gauge field (bosons) onto quantum systems on a lattice, whose interac-
tions will mimic those of the target Hamiltonian3. Sometimes these interactions are implemented as discrete-
time products of quantum gates, but even then these are obtained by approximating the target Hamiltonian 
via the Trotter formula, an approximation which remains valid only in the non-relativistic regime �t ≪ �x . 
This approach was recently realized experimentally on an ion trap architecture13. Numerical techniques exist 
that come to complement the standard approach, based on tensors networks. Those use compact, approximate 
descriptions of quantum states14 such as the Density Matrix Renormalization Group (DMRG)15,16, discarding 
unwanted information about the states as they evolve, so that their description remain of manageable size—whilst 
attempting to keep track of the interesting physical ingredients.

In order to achieve quantum simulation in the relativistic regime �x ≈ �t one must keep space and time on 
an equal footing, discretizing both at the same time. This is sometimes referred to as digital quantum simulation. 
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Digital simulation has indeed been very successful at describing relativistic particles in different fields17, but so 
far it has not been able to produce simulation scheme for interacting QFT in the sector of more than 2 particles.

A proposal was made in Ref.18. From a QCA simulating relativistic Dirac equation a U(1) gauge-invariant 
model was obtained. The convergence to the Schwinger model was not shown however and in fact, using the 
method presented in this paper, it can be shown that the Hamiltonian in the discrete space continuous time limit 
is not the correct one. We present here the circuit that gives the correct Hamiltonian in this limit.

In Refs.19,20 a quantum walk (i.e. the one particle sector of a QCA) was proposed which unifies non-relativistic 
analog quantum simulation with relativistic digital quantum simulation. Just by imposing �x = �1−α

t  and tuning 
the α , the operator is found to have well defined limits lattice fermions both in continuous-time discrete-space, 
and the relativistic Dirac equation in the continuous spacetime limit—a property referred to as plasticity.

The QCA presented in this paper is closely related to these last two models. It is again based upon a QCA that 
recovers the relativistic Dirac equation, extended to become natively discrete gauge-invariant as in Ref.18. But 
this time, the QCA is plastic, allowing us to prove its continuum limit towards 1+ 1 QED, in the regime where 
1+ 1 QED does have a limit, i.e. the non-relativistic regime. In other words, we recover the Hamiltonian of the 
Kogut–Susskind Schwinger model in the continuous-time discrete-space limit. In the continuous spacetime 
limit we show that the QCA yields the Dirac equation in the free one particle sector, allowing to make the bridge 
between the non-relativistic and the relativistic regimes. Altogether, the QCA coincides with 1+ 1 QED on its 
mathematical continuum limits, whenever these are defined.

The natively discrete digital circuit for staggered Schwinger model we propose is not seen in the literature. 
The QCA is staggered which is not usual in the QCA formalism21. One may wonder whether the approach, 
beyond the quantum simulation application, could be used to reframe QFT. Indeed, the fact that the QCA is 
gauge-invariant by construction, contains explicit relativistic and non-relativistic limits, is expressible by means 
of path integrals22,23, suggests that Quantum Computing point of view upon QFT may bring both rigour and 
pedagogy to the table—reviving the line of thought initiated by Feynman with his checkerboard propagator for 
1 + 1 Dirac equation24.

The paper is organized as follows. We first define the QCA model, that is the spacetime structure and the 
gates. Second we show the continuous-time and discrete-space limit towards the Kogut–Susskind version of the 
Schwinger model, by means of the Jordan–Wigner transformation from qubits to fermions. Third we show that 
in a continuous spacetime limit, we recover the Dirac equation for the free one particle sector. Finally, we prove 
that the model is gauge-invariant and conclude by giving some perspectives.

Model
The Kogut–Susskind staggered version of the Schwinger model.  The Schwinger model9 is a 
(1+ 1) D model invariant under the U(1) gauge group. It models spinless electrons and their antiparticles, posi-
trons, propagating on a 1D lattice and interacting with a U(1) gauge field. We briefly summarize it by giving its 
Hamiltonian, which can be written using a temporal gauge ( A0(x) = 0 , and A(x) = A1(x) ) as :

where E(x) is the electric field observable at x, and A(x) is its conjugate momentum, meaning

Here ψ(x) = (ψ1(x),ψ2(x))
T is a two components fermion field satisfying

We now describe the staggered Kogut–Susskind version of the Schwinger model. This Kogut–Susskind proce-
dure consists in putting fermion fields on the nodes of an infinite 1D lattice and bosonic gauge fields on the links 
between them, as depicted in Fig. 1. We can interpret occupied odd sites as electrons and unoccupied even sites 
as positrons, therefore particles and antiparticles are described by a single fermion field13 (staggered picture). 
This procedure allows to give a continuous time, discrete space formulation of a continuous spacetime model 
and is also a way to partly resolve the fermion doubling problem.

The Hamiltonian of this staggered version reads11,12:

(1)H =
∫

dx

(

ψ†(x)
[(

i∂x + igA(x)
)

σz +mσx
]

ψ(x)+
1

2
E2(x)

)

,

(2)[A(x),E(y)] = iδ(x − y).

(3){ψα(x),ψ
†
β(y)} = δαβδ(x − y).

Figure 1.   Kogut–Susskind version of the Schwinger model. The gauge (boson) field is represented by the links 
in red. These links are states |l� where l takes value in Z . The operators acting on them are Lp and e±iθp . The 
matter (fermion) field φp , φ†

p are on the nodes in black. Even (odd) sites correspond to upper (lower) component 
of a spinor field. a is the lattice spacing.
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where a is the lattice spacing, g the strength of the interaction (the charge of the particles), m the mass and φ 
the fermion field. To construct the spinor �p̃ from the fermion fields, we group fields in pairs (p, p+ 1) , where 
p is even. In between the fermion fields at p and p+ 1 , there is a gauge field link which takes values in Z . The 
operators e±iθp raises or lowers the value of this link [p, p+ 1] such that :

and the electric field is given by Ep = gLp where

A quantum cellular automaton for 1 + 1 QED.  The model we propose consists in having one qubit per 
site p separated by �x and gauge fields located on the links between each sites, at half step, modeled by states 
taking values in Z18. This gauge field could be experimentally represented by qudits or harmonic oscillators. We 
choose the evolution operator of the QCA to be :

where

corresponds to the fermions dynamics and the exponential applied before each Wp codes the interaction with the 
bosons field at the same position. In particular, as depicted in Fig. 2, the gate Wp and the gate W∗

p  are located in 
the space-time grid in between the qubit at position (p, p+ 1) respectively for odd and even p. Each gate W and 
its conjugate acts on the local gauge field. Moreover, in order to avoid the fermion doubling problem we choose 
to work with a staggered QCA, in which occupied odd sites are interpreted as electrons and unoccupied even 
sites as positrons. This is consistent with the same interpretation that Kogut and Susskind gave of the Schwinger 
model. From a dynamical point of view, the matrix Wp can be interpreted as follows: diagonal terms correspond 
to staying on the same site, eventually picking up a phase related to the mass. The non diagonal part correspond 
to hopping terms: a right-moving |1� will decrease the gauge field it passes through, a left-moving one will increase 
it. The gauge field operators read:

(4)HS =
i

2a

∑

p

(φ
†
p+1e

−iθpφp − h.c.)+m
∑

p

(−1)pφ†
pφp +

ag2

2

∑

p

L2p ,

(5)e±iθp |l�p = |l ± 1�p

(6)Lp|l�p = l|l�p.

(7)G = ⊗
p′ even

W∗
p′e

− i
2
�x�tg2L2 ⊗

p odd
Wpe

− i
2
�x�tg2L2 ,

(8)Wp =











I 0 0 0

0 e−iζ sin θI cos θVp+ 1
2

0

0 − cos θV†

p+ 1
2

eiζ sin θI 0

0 0 0 I











(9)Vp+ 1
2
|l�p+ 1

2
= |l − 1�p+ 1

2
,

Figure 2.   QCA structure. One application of G, the evolution operator, corresponds to two rows, first a row of 
W and then of W∗ gates. Black wires represent the fermionic fields, green wires represent the gauge field. The 
qubits are separated in space by �x and the gates are separated in time by �t.
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and

The identities I means that the gauge link is left invariant. The operator L in the exponentials of Eq. (7) acts 
on the states of the gauge field |l�p+ 1

2
 in the following way:

for l ∈ Z.
Now, in order to map the above automaton with the Schwinger model we move to the second quantization 

formalism. Let us start with the gate Wp (8), which acts on a pair of qubits (p, p+ 1) and a gauge link [p, p+ 1] . It is 
useful to introduce W̃p = I<p ⊗Wp ⊗ I>p . Each Wp can be written in terms of single qubit operators Eij = |i��j| . 
Using the order (0p0p+1, 0p1p+1, 1p0p+1, 1p1p+1) and omitting identities on the gauge link for clarity, we have :

Thus, we ought to transform qubit operators to fermionic operators, via the the standard Jordan–Wigner 
transformations, and finally introduce the following annihilation and creation operators:

with {φp,φ†
p′ } = δp,p′ I and {φp,φp′ } = 0 . Notice that the σz to the right are specifically there to ensure the cor-

rect anti-commutation relation (Supplementary Information 1), together they form the string operator of the 
Jordan–Wigner transformation. Looking at these operators, we see that creating or annihilating a fermion on a 
qubit lattice is very much a non-local operation and we could be worried that the resulting dynamics using such 
operators would be non-local and unphysical. However, the terms involving these operators in the Hamiltonian 
are quadratic, therefore they become perfectly local and physical. This can already be seen at the level of the gates 
written in this formalism. In fact, for W̃p we have:

Putting together these transformed gates, the global evolution reads:

Methods
Continuous limits.  In order to prove that the above staggered QCA, reformulated in terms of fermionic 
operators, converges to the Schwinger Hamiltonian, we introduce the following parametrization:

where the case α = 1 and α = 0 correspond respectively to the continuous time and discrete space limit and the 
continuous spacetime limit.

In the non relativistic limit, the evolution is continuous in time and discrete in space. The dynamics is driven 
by a Hamiltonian, which is recovered looking at the first order of the global evolution operator of the QCA, as 
follows:

We then take the limit ǫ → 0 on G, using the parametrisation (16), for α = 1 . Finally we get :

(10)V†

p+ 1
2

|l�p+ 1
2
= |l + 1�p+ 1

2
.

(11)L|l�p+ 1
2
= l|l�p+ 1

2
,

(12)

Wp = (E00)p ⊗ (E00)p+1 + e−iζ sin θ(E00)p ⊗ (E11)p+1

+ eiζ sin θ(E11)p ⊗ (E00)p+1 + cos θVp+ 1
2
(E01)p ⊗ (E10)p+1

− cos θV†

p+ 1
2

(E10)p ⊗ (E01)p+1 + (E11)p ⊗ (E11)p+1.

(13)
φp = I<p ⊗ (E01)p ⊗ (σz)p+1 ⊗ (σz)p+2 . . .

φ†
p = I<p ⊗ (E10)p ⊗ (σz)p+1 ⊗ (σz)p+2 . . . ,

(14)
W̃p = φpφ

†
pφp+1φ

†
p+1 + e−iζ sin θφpφ

†
pφ

†
p+1φp+1 + eiζ sin θφ†

pφpφp+1φ
†
p+1

− cos θVp+ 1
2
φpφ

†
p+1 − cos θV†

p+ 1
2

φ†
pφp+1 + φ†

pφpφ
†
p+1φp+1.

(15)G =
∏

p′ even

W̃∗
p′e

− i
2
�x�tg2L2

∏

p odd

W̃pe
− i

2
�x�tg2L2 .

(16)

�t =ǫ

�x =ǫ1−α

κ =ǫα

θ = arccos(cκ)

ζ =m
(−1)κǫ

sin(θ)
,

(17)G = e−2iHQCA�t ≃ 1− 2i�tHQCA.
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We can rewrite the mass term:

Finally we have

and the interaction with the gauge field can be developped as

Combining everything, we get for G :

A straightforward calculation leads us to the leading order of the series:

Notice that the mass term can be rewritten as: −2im(φ
†
2pφ2p − φ

†
2p+1φ2p+1) Moreover the four hopping terms 

simplify because each pair of two terms is separated by one step:

Finally, we identify Vp+ 1
2
 to e−iθp and V†

p+ 1
2

 to eiθp . Identifying the Hamiltonian in (22) using G ≃ 1− 2iǫHQCA , 
we find the Hamiltonian of the QCA to be :

The above one coincides with the Kogut–Susskind Hamiltonian of the Schwinger model HS with a = 1 . We 
have thus identified a QCA-based quantum simulator for a QED toy model, namely a theory for both spinless 
electrons and positrons and their interaction with a dynamical gauge field.

We ought to be sure that in the relativistic limit our simulator reproduces the right dynamics. Here, we give 
a proof of that in the simplest scenario, the non-interacting case. Starting from the the one particle sector of the 
staggered QCA, we take the α = 0 relativistic limit, namely for �t = �x = ǫ → 0 (16). The local gate which 
drives the automaton simplifies as follow

and the global evolution operator reads:

(18)

W̃p ≃ φpφ
†
pφp+1φ

†
p+1 + (1− imǫ)φpφ

†
pφ

†
p+1φp+1 + (1+ imǫ)φ†

pφpφp+1φ
†
p+1

− ǫVp+ 1
2
φpφ

†
p+1 − ǫV†

p+ 1
2

φ†
pφp+1 + φ†

pφpφ
†
p+1φp+1

= 1+ ǫ

[

φ
†
p+1φpVp+ 1

2
− V†

p+ 1
2

φ†
pφp+1 + im(φ†

pφpφp+1φ
†
p+1 − φpφ

†
pφ

†
p+1φp+1)

]

.

φ†
pφpφp+1φ

†
p+1 − φpφ

†
pφ

†
p+1φp+1 = φ†

pφpφp+1φ
†
p+1 − (1− φ†

pφp)φ
†
p+1φp+1

φ†
pφp(φp+1φ

†
p+1 + φ

†
p+1φp+1)− φ

†
p+1φp+1 = φ†

pφp − φ
†
p+1φp+1.

(19)W̃p ≃ 1+ ǫ

[

φ
†
p+1φpVp+ 1

2
− V†

p+ 1
2

φ†
pφp+1 + im(φ†

pφp − φ
†
p+1φp+1)

]

,

(20)e−
i
2
�x�tg2L2 ≃ 1−

i

2
ǫg2

∑

i

L2i .

(21)

G =
∏

p′ even

W̃∗
p′e

− i
2
�x�tg2L2

∏

p odd

W̃pe
− i

2
�x�tg2L2

=
∏

p′
(1+ ǫ[φ†

2p′+1
φ2p′V2p′+ 1

2
− φ

†
2p′φ2p′+1V

†

2p′+ 1
2

− im(φ
†
2p′φ2p′ − φ

†
2p′+1

φ2p′+1)])

(1−
i

2
ǫg2

∑

i

L2i )
∏

p

(1+ ǫ[φ†
2p+2φ2p+1V2p+ 3

2
− φ

†
2p+1φ2p+2V

†

2p+ 3
2

+ im(φ
†
2p+1φ2p+1 − φ

†
2p+2φ2p+2)])(1−

i

2
ǫg2

∑

i

L2i ).

(22)
G ≃ 1+ ǫ

∑

p

[φ†
2p+1φ2pV2p+ 1

2
− φ

†
2pφ2p+1V

†

2p+ 1
2

+ φ
†
2p+2φ2p+1V2p+ 3

2
− φ

†
2p+1φ2p+2V

†

2p+ 3
2

− ig2L2p − im(φ
†
2pφ2p − 2φ

†
2p+1φ2p+1 + φ

†
2p+2φ2p+2)].

(23)
∑

p

φ
†
p+1φpVp+ 1

2
− h.c.

(24)HQCA =
∑

p

[
i

2
(φ

†
p+1φpe

−iθp − h.c)+m(−1)pφ†
pφp +

g2

2
L2p] .

(25)W ′
p =







1 0 0 0

0 e−iζ sin θ cos θ 0

0 − cos θ eiζ sin θ 0

0 0 0 1






,
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Let’s start with a general 1 particle state: |�(t)� =
∑

x
ψ(t, x)|1�x and separate the one particle state into pairs 

of even and odd sites:

After one time step evolution of the automaton, the recurrence relations on the amplitudes s ≡ (ψ l ,ψ r) which 
governs the single fermion, reads:

Taking the limit ǫ → 0 , we find the following differential equation:

where the operators P and Q are represented in the computational basis:

and

The operator P is self-adoint and its eigenvalues are ±c . Two eigenvectors associated to these eigenvalues are:

The family (b−, b+) forms an orthonormal basis of the two dimensional spin Hilbert space. Let us now rewrite 
Eq. (30) in this new orthonormal basis. A straightforward computation leads to:

where γ 0 = σx , ∂0 = ∂t , γ 1 = σxσz and ∂0 = c∂x.

Remark.  Let us shortly discuss the last term of operator W(p). In general, when two creation operators get 
exchanged, a minus sign is produced so as to respect the anti-commutation of their creation operators. The 
abrupt minus appearance of minus signs makes it harder to compute quantities about fermions—an issue which 
is sometimes referred to as the ‘sign problem’. Here, when �t ≈ �x , we must indeed put a −1 in the bottom 
right coefficient of the gate, since two creation operators are crossing during the lapse of one W gate, as was 
shown in detail18. However, when �t ≪ �x we should not. Physically, this is because the two fermions now 
hardly have time to cross in the lapse of one gate. Mathematically, this shows through the fact that placing a −1 
at this position forbids the development of the gate around identity, ruining any effort to obtain a non-relativistic 
continuous-time discrete-space limit towards the Kogut–Susskind Hamiltonian, or any other Hamiltonian for 
that matter. To get the best of both worlds, we use scaling factor ei(

�t
�x )

2π = eiǫ
2απ , making the coefficient go to 

1 in the non-relativistic parametrization ( α = 1 ) and to −1 in the relativistic parametrization ( α = 0 ). This is 
compatible with unitarity, plasticity, and fermionic computation.

It is the choice that yields the Kogut–Susskind Hamiltonian in the non-relativistic regime. In the relativistic 
regime, however, α = 0 and so at order 0, we see that :

Since this is a control-Z on the 2 qubits, the order 0 of G cannot be the identity. As expected, we cannot recover 
a many-body interacting Hamiltonian in this regime.

(26)G = ⊗
p′ even

W∗
p′ ⊗

p odd
Wp.

(27)|�(t)� =
∑

x even
ψ l(t, x)|1�x + ψ r(t, x + ǫ)|1�x+ǫ .

(28)s(t + 2ǫ, x) =
(

0 − cos θe−iζ sin θ

0 cos2 θ

)

s(t, x − 2ǫ)+
(

e−2iζ sin2 θ cos θeiζ sin θ
− cos θe−iζ sin θ e2iζ sin2 θ

)

s(t, x)

(29)+
(

cos2 θ 0

cos θeiζ sin θ 0

)

s(t, x + 2ε).

(30)∂ts(t, x) = P∂xs(t, x)+ Qs(t, x),

(31)P =
(

c2 c
√
1− c2

c
√
1− c2 − c2

)

(32)Q =
(

im
√
1− c2 − cim

−cim − im
√
1− c2

)

.

(33)b− = −
√

1− c

2
b0 +

√

1+ c

2
b1 b+ =

√

1+ c

2
b0 +

√

1− c

2
b1.

(34)iγ 0∂0s̃(t, x)+ iγ 1∂1s̃(t, x)−ms̃(t, x) = 0,

(35)W ′′
p =











1 0 0 0

0 sin θ − cos θVp+ 1
2

0

0 cos θV†

p+ 1
2

sin θ 0

0 0 0 eiǫ
2απ











.

(36)
W̃p ≃ φpφ

†
pφp+1φ

†
p+1 + φpφ

†
pφ

†
p+1φp+1 + φ†

pφpφp+1φ
†
p+1 − φ†

pφpφ
†
p+1φp+1

= 1− 2φ†
pφpφ

†
p+1φp+1.
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The staggered QCA is gauge invariant
In this section, we show that our QCA-based quantum simulator is gauge invariant at finite scale. We define the 
gauge transformation in Fig. 3, where the gates are defined as follows:

where Rϕ(p) acts on the qubit at site p such that:

and Tϕ(p) acts on the gauge field states such that:

From definition (37), we see that a gauge field at a given site p+ 1
2
 will be acted upon twice, once by −ϕ(p) 

and once by +ϕ(p+ 1) . Is our QCA invariant under the above gauge transformation, or namely:

Equation (41) means that whatever the field ϕ(p) is, the evolution operator should give the same result if we 
apply it after the gauge transformation or before the gauge transformation, in other words, the dynamics should 
not be changed by this gauge field, the latter should have no physical consequences. However if we impose this 
U(1) local phase, invariance is only possible if we introduce some interaction between qubits and the gauge fields 
, which is done through the V and V† operators, that will compensate the missing pieces of phase appearing dur-
ing the particle movement, as done in18. To show the gauge invariance (41), we start from a ket |1� at a given site 
(odd or even), with only gauge field values given in the rest of the space. We compute explicitly the results after 
applying first Pϕ then G and the other way around, and show that the result are exactly the same, therefore the 
gauge transformation Pϕ has no physical consequences on the dynamics G. The model is thus gauge invariant 
(Supplementary Information 2).

Conclusion
We have described a quantum cellular automaton (QCA) that simulates 1+ 1 QED. It consists in a lattice of 
qubits encoding whether a fermion is present at a given site. These interact with the gauge field that lives on the 
links between those sites. The QCA was shown to coincide with the Kogut–Susskind version of the Schwinger 
model in the continuous-time discrete-space limit, and with the Dirac equation in the continuous spacetime 
limit in the one-particle sector. We go from one limit to the other just by imposing �x = �1−α

t  and tuning the α.
We still cannot ascertain the QCA recovers the Schwinger model in the interactive regime of the continuous 

spacetime limit, but then again it is not even clear that the lattice QFT has such a limit in the first place. The QCA 
coincides with the Schwinger model wherever it has a known, mathematically defined limit.

It coincides in the story it tells; of fermions propagating relativistically updating the gauge field, which in turn 
simply triggers a phase—thereby turning on the interaction.

Finally, it coincides in terms of its construction: the QCA retains the fundamental U(1) gauge-invariance of 
QED, even in discrete spacetime. This gauge-invariance construction was originally proposed in Ref.18 for QCA, 
and in25 for Reversible CA. Both drew inspirations from gauge-invariant Quantum Walks17,26,27. The question 
of extending these constructions to non-abelian gauge theories has been treated for Quantum Walks28,29 and 
for Reversible CA30. Lifting this to obtain U(N) gauge-invariant QCA is no doubt one of the next steps lying 
ahead towards digital quantum simulation schemes for Yang Mills theories, such as QCD. An observation was 

(37)Pϕ = ⊗
p
Pϕ(p) = ⊗

p

(

Tϕ(p) ⊗ Rϕ(p) ⊗ T−ϕ(p)

)

,

(38)Rϕ(p) :|0� → |0�

(39)|1� → eiϕ(p)|1�,

(40)Tϕ(p)|l� = eilϕ(p)|l�.

(41)PϕG
?=GPϕ .

Figure 3.   The gauge transformation. Black dots are the fermions sites. Green dots in between sites represent 
the gauge field values. At a single site p, the gauge transformation will apply a gate Rϕ(p) that gives a phase when 
the qubit there is in state |1� and apply gates Tϕ(p) on the left and right gauge field points that produce phases 
according to the values of the gauge field. This transformation is applied on every sites, therefore a single gauge 
field is acted upon twice.
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made in31 that the path integral of such a theory can be written as a real-time transfer operator which is itself a 
finite-depth local quantum circuit.

Another obvious next step is the extension to 2+ 1 and 3+ 1 dimensions. Of particular concern is the 
fact that we relied upon the Jordan Wigner mapping to encode fermions into qubits. This transformation is 
known to suffer locality issues32–34, which did not affect us because our terms were quadratic, cancelling out all 
non-local effects. In further dimensions we may not be so lucky however, and will have to rely on alternative 
transformations35–37. A possible route of investigation could be to use formulations of QED in 2 + 1D or 3 + 1 
dimensions where the Hilbert space dimension is reduced by either approximating the gauge group38 or by going 
in a rotating frame39 which decouples the matter to the gauge field and keeps only local constraints on the latter.

The problem of preparing the ground state of such QCA is puzzling as was pointed out in Ref.18. We do not 
solve the problem but by recovering a Hamiltonian in the continuous-time discrete-space limit, we make the 
problem well-defined.

QCA are closely related to path integrals22. Lately a formalism was developed for dealing with interactions in 
a perturbative manner23, within the QCA framework—which would be an interesting application here. Another 
vast topic for exploration is trying to understand the link between renormalization theory, and the way the 
parameters of the unitary gates must be made to vary with the lattice as we take our limits.

The plastic Quantum Walk19 upon which this plastic QCA is built is deformable to the point that a curved 
spacetime limit can been obtained just by putting a spacetime dependence in the parameter c. A fair question to 
ask is whether allowing for the same spacetime dependence here, would yield the Schwinger model on a curved 
background40.
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