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1Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, 13000, France
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We provide first evidence that under certain conditions, 1=2-spin fermions may naturally behave like a
Grover search, looking for topological defects in a material. The theoretical framework is that of discrete-
time quantum walks (QWs), i.e., local unitary matrices that drive the evolution of a single particle on the
lattice. Some QWs are well known to recover the (2þ 1)–dimensional Dirac equation in continuum limit,
i.e., the free propagation of the 1=2-spin fermion. We study two such Dirac QWs, one on the square grid
and the other on a triangular grid reminiscent of graphenelike materials. The numerical simulations show

that the walker localizes around the defects in Oð ffiffiffiffi
N

p Þ steps with probability Oð1= logNÞ, in line with
previous QW search on the grid. The main advantage brought by those of this Letter is that they could be
implemented as “naturally occurring” freely propagating particles over a surface featuring topological
defects—without the need for a specific oracle step. From a quantum computing perspective, however, this
hints at novel applications of QW search: instead of using them to look for “good” solutions within the
configuration space of a problem, we could use them to look for topological properties of the entire
configuration space.

DOI: 10.1103/PhysRevLett.124.180501

Quantum computing has three main fields of applications:
quantum cryptography, quantum simulation, and quantum
algorithmics (e.g., Grover, Shor, etc.). Some quantum
cryptographic devices are already commercialized, and we
may hope that some quantum simulation devices will also
reach this stagewithin the next decade. Quantum algorithms,
however, are generally considered to be a long-term appli-
cation. This is because of the common understanding that we
will need to build scalable implementations of universal
quantum gate sets with fidelity 10−3 first, and implement
quantum error corrections then, in order to finally be able to
run our preferred quantum algorithm on the thereby obtained
universal quantum computer. This seems feasible, yet there
is a long way to go.
In this Letter we argue that this may be a pessimistic

view. Scientists may get luckier than this and find out that
nature actually implements some of these quantum algo-
rithms “spontaneously.” Indeed, the hereby presented
research suggests that the Grover search may in fact be
a naturally occurring phenomenon, e.g., when fermions
propagate in crystalline materials under certain conditions.
Among all quantum algorithms, the reasons to focus on

the Grover search [1] are many. First of all, because of its
remarkable generality, as it speeds up any brute forceOðNÞ
problem into a Oð ffiffiffiffi

N
p Þ problem. Having just this quantum

algorithm would already be extremely useful. Second of all,
because of its remarkable robustness: the algorithm comes
in many variants and has been rephrased in many ways,

including in terms of resonance effects [2] and quantum
walks (QWs) [3].
Remember that quantum walks are essentially local

unitary gates that drive the evolution of a particle on a
lattice. They have been used as a mathematical framework
to express many quantum algorithms, see, e.g., Refs. [4,5],
but also many quantum simulation schemes, see, e.g.,
Refs. [6–8]. This is where things get interesting. Indeed,
it has been shown that many of these QWs admit, as their
continuum limit, the Dirac equation [9–12], providing
“quantum simulation schemes,” for the future quantum
computers, to simulate all free spin-1=2 fermions.
Recall that the Grover search is the alternation of a

diffusion step, with an oracle step. Here we provide
evidence that (1) these Dirac QWs, in (2þ 1) dimensions,
work fine to implement the diffusion step of the Grover
search and (2) topological defects also work fine to
implement the oracle step of the Grover search.
The second point is, on the practical side, probably more

important than the first. Indeed, while there are several
experimental realizations of QWs, including 2D QWs
[13,14], these have not been considered as scalable sub-
strates for implementing the Grover search so far—prob-
ably due to the lack of an easy way of implementing the
oracle step.
From a theoretical perspective, that point is strongly

suggestive also. Indeed, recall that many quantum algo-
rithms are formulated as a QW search on a graph, whose
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nodes represent elements of the configuration space of a
problem, and whose edges represent the existence of a local
transformation between two configurations—see Ref. [15]
for a recent example of that. So far, the QW search has only
been used to look for “marked nodes,” i.e., good configu-
rations within the configuration space, as specified by an
oracle. Here, in contrast, the QW search is used to look for
topological defects, which are properties of the configura-
tion space itself. This suggests aiming beyond recognizing
simple hole defects in 2D crystals, as shown in Fig. 1, to
target more general topological classification problems—
e.g., seeking to characterize homotopy equivalence over
configuration spaces that represent manifolds as CW
complexes [16,17].
Dirac quantum walks.—We consider QWs over both the

square and the triangular grid. More precisely, we consider
periodic tilings of the plane, where the tiles are either
squares or equilateral triangles, of alternating gray and white
colors, as in Fig. 2. Thewalker lives over themiddle points of
each side (facet) of each tile. For the square grid we can label
these points by their positions in Z2; for the triangular grid
this would be a subset ofZ2. To any such point xwe assign a
complex number representing the amplitude of the walker
being there, which we denote by ψþðxÞ [ψ−ðxÞ] if the tile is
white [gray]. Of course, wherever two facets are glued, so are
their middle points, and so the two complex numbers form a
spinor ψðxÞ ¼ ðψþðxÞψ−ðxÞÞ⊤ in H2. Letting jvþi ¼
ð 1 0 Þ⊤ and jv−i ¼ ð 0 1 Þ⊤, we may then write
ψðxÞ ¼ ψþðxÞjvþi þ ψ−ðxÞjv−i. This degree of freedom
at a single point is referred to as thewalker’s “coin” or “spin.”
For the full square grid, the overall state of the walker
therefore lies in the composite Hilbert space H2 ⊗ HZ2

and can be written as jψi ¼ P
x ψ

−ðxÞjv−i ⊗ jxiþ
ψþðxÞjvþi ⊗ jxi. For the full triangular grid the amplitude
of one in every two position needs be zero. For a grid with a
missing white [gray] tile, the corresponding ψþðxÞ [ψ−ðxÞ]
for x on a side of the tile needs be zero.
The class of evolution operators that we consider in this

Letter are QWs of the form:

jψðtþ ε=lÞi ¼ WRjψðtÞi;

with l ¼ 2 for the square grid and l ¼ 3 for the triangular
grid. Here, R stands for the synchronous anticlockwise
rotation of all tiles. Note that, wherever there is no missing
tile, the simultaneous rotations of the two tiles glued at x
precisely coincides with the implementation of a partial
shift Tk;ε along a direction uk:

Tk;ε

�
ψþðxÞ
ψ−ðxÞ

�
¼

�
ψþðxþ ukεÞ
ψ−ðx − ukεÞ

�
:

Moreover, W stands for the synchronous application of a
2 × 2 unitaryWðxÞ on the spins ψðxÞ. This unitary depends
on x only in a very simple way, which we now clarify. First
of all, if it so happens that a tile is missing at x, then the
spinor ψðxÞ is incomplete, and soWðxÞ ¼ I. Second of all,
if there is no missing tile, then WðxÞ ¼ Wk, where the k is
that corresponding to the partial translation direction uk
occurring at x.
It follows that, in the case of a full grid, any given walker

will undergo Tk;ε and then Wk for k ¼ 0…l − 1 succes-
sively, amounting to

jψðtþ εÞi ¼ Wl−1T l−1;ε…W0T0;εjψðtÞi
¼ ΠkWkTk;εjψðtÞi:

The way we choose these Wk is so that the QW is a Dirac
QW, meaning that

ΠkWkTk;ε ≈ expðiεHDÞ;

as we neglect the second order terms in ε, with HD the
Dirac Hamiltonian in natural ℏ ¼ c ¼ 1 units; i.e.,

FIG. 1. Defects in triangular (left) and square (right) lattices.

FIG. 2. Quantum walks scheme on triangular (left) and square
(right) lattice. On the triangular grid, an anticlockwise rotation R
is implemented by a partial shift T0;ε (blue) along a direction u0,
T1;ε (red) along a direction u1, and T2;ε (green) along a direction
u2. On the square grid, an anticlockwise rotation R is imple-
mented by only two partial shifts Tx;ε (blue) along a direction ux,
Ty;ε (red) along a direction uy.
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HD ¼ pxσx þ pyσy þmσz:

Therefore, on the full grid, these QWs simulate the Dirac
equation, more and more closely as ε goes to zero.
Square grid.—Let us consider the unit vectors along the

x axis and y axis, namely, fux;uyg, and use them to specify
the directions of the translations Tx;ε and Ty;ε. Equation (2)
then reads:

U ¼ WþTy;εW−Tx;ε;

whereW� ¼ expðiσxθ�Þwith θ� ¼ �ð½π=4� � εmÞ and m
a is real constant, namely the mass. In the formal limit for
ε → 0, Eq. (3) recovers the Dirac Hamiltonian in (2þ 1)
spacetime. Iterations of the walk observationally converge
toward solutions of the Dirac equation, as was proven in
full rigor in Ref. [18], which motivated the above choice of
U on the square grid in the following.
Triangular grid.— For the triangular grid let us consider

the unit vectors fu0;u1;u2g, as in Fig. 2 and defined by

uk ¼ cos

�
2kπ
3

�
ux þ sin

�
2kπ
3

�
uy for k ¼ 0; 1; 2;

and use them to specify the directions of the translations
Ti;ε. Equation (2) then reads:

e−iεHD ¼ WT2;εWT1;εWT0;ε;

with W ¼ eiðπ=3Þe−iðα=2Þσye−iðπ=3Þσzeiðα=2Þσye−iεð3=
ffiffi
5

p Þmσz the
coin operator, which turns out not to depend on the
direction uk. In Ref. [19] it has been proved in detail by
some of the authors how this particular choice also leads, in
the continuum limit, to the Dirac Hamiltonian in (2þ 1)
spacetime, which again motivated us to adopt the above W
on the triangular grid in the presence of defects.
Defects.—A sector of a crystal lattice may be inacces-

sible, e.g., due to surface defects such as the vacancy of an
atom (e.g., Schottky point defect) and others. These affect
the physical and chemical properties of the material,
including electrical resistivity or conductivity [20]. Here
we model these defects in the simplest possible way:
locally, a small number of squares or triangles are missing,
thereby breaking the translational invariance of the lattice.
In other words, the walker is forbidden access to a ball B of
unit radius, as in Fig. 1. This is done by reflecting those
signals that reach the boundary ∂B of the ball, simply by
letting W ¼ I on the facets around ∂B.
Note that, wherever we replace the coin W by identity,

both Dirac walks reduce to just anticlockwise rotation R as
in Eq. (1); see Fig. 1. Still, the operators (3) and (4) may
have different topological properties around ∂B. For
instance, the square grid QW has vanishing Chern number
and trivial topological properties [21] for vanishing m,
which can still become nontrivial from m > 0 [22]. The

triangular walk, on the other hand, is always topologically
nontrivial and has Chern number equal to one [23]. In the
triangular case the positive and negative component
decouple, respectively, in the gray and the white triangles,
and may be thought of as inducing polarized local
topological currents of spin, called edge states [24].
According to Ref. [24], this phenomenon will be observed
whenever initial states have an overlap with ∂B, elsewhere
the walker does not localize and explores the lattice with
ballistic speed. Thus, we expect these topological effects to
become significant in the triangular case, and it is indeed
the case.
Our conjecture is that, starting from a uniformly super-

posed wave function, the walker will, in finite time, localize
around the defect in Oð ffiffiffiffi

N
p Þ steps, with probability in

Oð1= logNÞ, with N the total number of squares or
triangles. In the following we discuss the numerical
evidence we have for such a conjecture.
Grover search.—Our numerical simulations over the

square and triangular grids are exactly in line with a series
of results [3,25,26] showing that 2D spatial search can be
performed in Oð ffiffiffiffi

N
p Þ steps with a probability of success in

Oð1= logNÞ. With OðlogNÞ repetitions of the experiment
one makes the success probability an Oð1Þ, yielding an
overall complexity of Oð ffiffiffiffi

N
p

logNÞ. Making use of quan-
tum amplitude amplification [27], however, one just needs
Oð ffiffiffiffiffiffiffiffiffiffiffi

logN
p Þ repetitions of the experiment in order to make

the probability an Oð1Þ, yielding an overall complexity of
Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N logN
p Þ. This bound is unlikely to be improved,

given the strong arguments given by Refs. [28–30].
These works were not using Dirac QWs, nor defects. Our

aim here is demonstrate that QWs which recover the Dirac
equation also perform a Grover search, as they propagate
over the discrete surface and localize around its defects.
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FIG. 3. Square grid periodic localization. Probability of being
localized around the center of the defect versus time, for m ¼ 0
and N ¼ 2500.
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More concretely, we proceed as follows. (i) Prepare, as the
initial state thewave function which is uniformly superposed
over every square or triangle, and whose coin degree of
freedom is also the uniformly superposed ðjvþiþjv−iÞ= ffiffiffi

2
p

.
Note that amplitude inside the defect is zero. (ii) Let the
walker evolve with time. (iii) Quantify the number of steps
tðNÞ before the walker reaches its probability peak pðNÞ of
being localized in a ball of radius 2 around the center of the
defect, namely the peak recurrence time, and estimate this
probability peak, at fixed N. (iv) Characterize tðNÞ and
pðNÞ, i.e., the way the peak recurrence time and the
probability peak depend upon the total number of squares
or triangles N.
We indeed observe that the probability of being found

around the defect has a periodic behavior; see in Fig. 3 for
the case of the square lattice: for instance, with N ¼ 2500

sites, for m ¼ 0, the peak recurrence time is at t ∼ 25, with
maximum probability p ≃ 10−1. The dependencies in N
were interpolated from the dataset, as shown in Fig. 4(a).
We observe that tðNÞ ¼ ffiffiffiffi

N
p

and pðNÞ ≃ 1= logN asymp-
totically, with a prefactor that depends on m. In this
massless case the interpolation pðNÞ ≃ 1= logN works
right away, but when the mass gets larger, the curve
remains longer along a pðNÞ ≃ 1=N trajectory, before it
eventually enters its asymptotic pðNÞ ≃ 1= logN regime.
Moreover, as shown in Fig. 4(b), in the presence of more
than one topological defect, the way the peak recurrence
time and the probability depend upon N is the same. Notice
that the prefactors do not depend on the number of defects
but only depend on m, as shown in Fig. 4(a).
Clearly, repeating the experiment an OðlogNÞ number of

times will make the probability of finding the defect as close
to 1 as desired, leading to an overall time complexity in
Oð ffiffiffiffi

N
p

logNÞ. Again we could, instead, propose to use
quantum amplitude amplification [27] in order to bring the
needed number of repetitionsdownanOð ffiffiffiffiffiffiffiffiffiffiffi

logN
p Þ, leading to

an overall time complexity inOð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N logN

p Þ. But it seems that
this would defeat the purpose of this Letter to some extent:
since our aim is to show that there is a “natural implementa-
tion” of the Grover search, we must not rely on higher-level
routines such as quantum amplitude amplification.
Over the triangular grid the Grover search is again at

play. Indeed, the dataset of Fig. 5 confirms the results
obtained over the square grid: the peak recurrence time is
again tðNÞ ≃Oð ffiffiffiffi

N
p Þ, and its corresponding probability

peak is again pðNÞ ≃Oð1= logNÞ for large N, again with a
prefactor that depends on the mass. Again this leads to an
overall complexity of Oð ffiffiffiffi

N
p

logNÞ, or Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N logN

p Þ
using amplitude amplification.
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FIG. 4. Square grid scalings. Top: Probability peak of being
localized around one defect versus the number of squares in the
grid for different value of the mass m. Bottom: Probability peak
of being localized around two, three, and four defects, respec-
tively, versus the number of squares in the grid for m ¼ 0. The
inset shows the peak recurrence time.
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FIG. 5. Triangular grid scalings. Recurring probability peak of
being localized around the defect versus the number of triangles
in the grid. The inset shows the peak recurrence time.
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Conclusion.—It is now common knowledge that quan-
tum walks implement the Grover search, and that some
QWs mimic the propagation of the free 1=2-spin fermion.
Yet, could this mean that these particles naturally imple-
ment the Grover search? Answering this question positively
may be the path to a serious technological leap, whereby
experimentalist would bypass the need for a full-fledged
scalable and error-correcting quantum computer, and take
the shortcut of looking for “natural occurrences” of the
Grover search instead. So far, however, this idea has
remained unexplored. The QWs used to implement the
Grover diffusion step were unrelated to the Dirac QWs used
to simulate the 1=2-spin fermion, with the noticeable
exception of Ref. [29]. More crucially, the Grover oracle
step seemed like a rather artificial, involved controlled
phase, far from something that could occur in nature. This
contribution begins to remedy both these objections.
We used Dirac QWs over both the triangular and the

square grid as the Grover diffusion step and, instead of
alternating this with an extrinsic oracle step, we coded for
the solution directly inside the grid, by introducing a
topological defect. We obtained strong numerical evidence
showing that the Dirac QWs localize around the defect in
Oð ffiffiffiffi

N
p Þ steps with probability Oð1= logNÞ, just like

previous QW search would. Our next step is to use
QWs to locate not just a hole defect, but a particular
Quick-Reponse-code (QR-code) like defect, among many
possible others that could be present on the lattice. This
would bring us one step closer to a natural implementation
of an unstructured database Grover search. Replacing the
Grover oracle step by surface defects seems much more
practical in terms of experimental realizations, whatever the
substrate, possibly even in a biological setting [31]. At a
more abstract level, this suggests using QWs to search, not
just for “good” configurations within a space, but rather for
topological properties of the configuration space itself.
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