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Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks
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® (Received 12 August 2018; published 28 September 2018)

Gauge invariance is one of the more important concepts in physics. We discuss this concept in connection with
the unitary evolution of discrete-time quantum walks in one and two spatial dimensions, when they include the
interaction with synthetic, external electromagnetic fields. One introduces this interaction as additional phases
that play the role of gauge fields. Here, we present a way to incorporate those phases, which differs from previous
works. Our proposal allows the discrete derivatives, that appear under a gauge transformation, to treat time and
space on the same footing, in a way which is similar to standard lattice gauge theories. By considering two steps
of the evolution, we define a density current which is gauge invariant and conserved. In the continuum limit,
the dynamics of the particle, under a suitable choice of the parameters, becomes the Dirac equation and the
conserved current satisfies the corresponding conservation equation.

DOI: 10.1103/PhysRevA.98.032333

I. INTRODUCTION

Since its introduction in the electromagnetic theory, gauge
invariance has been a paradigm in physics, and constitutes
one of the main properties of successful theories such as the
standard model of particle interactions [1]. On the one side,
the gauge principle can be used as a guiding principle to de-
fine new theories, where the development of the electroweak
interaction theory is just an example. On the other side,
the symmetry predicts the existence of a conserved current,
which constitutes a powerful tool in the analysis of dynamical
phenomena.

In this paper, we discuss the manifestation of U(1) gauge
invariance within the context of a discrete-time quantum walk
(DTQW) in a two-dimensional (2D) lattice, which could be
generalized to 3D lattices. The dynamics of such DTQWs
is driven by the action of unitary operators that act both on
the spatial and internal degrees of freedom [2]. A particular
interest in this gauge-invariant dynamical scheme arises from
the possibility of describing with it, artificially, i.e., by engi-
neering an appropriate space-time dependence of the walker’s
phase, the effect of a magnetic field, or even a combination
of electric and magnetic fields, on charged matter. By itself,
the magnetic field gives rise to interesting phenomena such
as localization or controlled spreading [3] and Landau levels
[4]. The magnetic field is also one of the main ingredients of
the quantum Hall effect, with associated topological effects
[5,6] and edge currents [7]. On the other hand, the combina-
tion of both a magnetic and an electric field exhibits richer
features, like Bloch oscillations and the E x B drift [8]. The
observation of these effects with discrete-time schemes as we
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study here may be available in the future using internal-state-
dependent transport of atoms in 2D optical lattices [9-11],
or of photons in 3D integrated-photonics circuits [12]. In
continuous-time schemes, atoms in optical lattices are also a
promising platform [13—16] to observe such effects.

In order to consistently describe these effects with
DTQWs, one needs to understand how U(1) gauge invariance
can be incorporated within this framework, which differs
notably from the electromagnetic theory in the continuum
(i.e., in continuous space-time). In fact, this is a general
(serious) problem in physics, since going from the continuum
to a lattice formulation is plagued with difficulties and new
features [17-19]. Moreover, the way of implementing gauge
invariance in lattice models is usually not unique, with dif-
ferent approaches leading to the same limit in the continuum.
Our proposal to achieve U(1) gauge invariance on the lattice
exhibits close analogies both with the method used in quantum
field theory [20] and with recent works exhibiting similar but
different U(1) lattice gauge invariances, in DTQWs [8,21,22]
or in reversible cellular automata [23]. We comment on the
similarities and differences with these recent works.

This paper is organized as follows. In Sec. II, we define
a family of DTQWs on a line, which satisfy a U(1) gauge
invariance on the (1+1)D lattice. The discrete derivatives
which intervene in this lattice gauge invariance treat time and
space on the same footing, and are very much like those used
in standard LGTs, in contrast with those of Refs. [8,22]. This
is achieved by applying the gauge-field exponentials either
before or after the spatial shift, depending on whether the
internal state of the walker is, say, up or down, respectively.
We formally compute the continuum limit of these DTQWs,
which concides, as desired and as in Refs. [21,22], with the
dynamics of a Dirac fermion in (1+1)D space-time, coupled
to a U(1), i.e., electro(magnetic) gauge field. In Sec. III,
we extend the previous results to 2D walks, constructed by
alternating 1D walks in the x and y directions of the spatial
lattice. The way we ensure the U(1) lattice gauge invariance

©2018 American Physical Society
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of this 2D scheme is by requiring it for each one-dimensional
substep, in contrast with the gauge invariance of Ref. [8].
This ensures that time and space are still treated on the same
footing at the level of the discrete derivatives, up to the fact
that there are now, in 2D, two discrete derivatives in time, one
for the even discrete-time coordinates, corresponding to the
motion in the, say, x direction and another one for the odd
ones, corresponding to the motion in the y direction. In Sec.
IV, finally, we derive analytically a lattice continuity equation,
stating the conservation of a certain current on the lattice
which is computed exactly. We comment on the differences
between this continuity equation and that of Ref. [8].

II. NEW U(1) LATTICE GAUGE INVARIANCE
FOR THE DTQW ON THE LINE

A. Defining the 1D walk

The state |y;) of the walker at some arbitrary discrete
time j € N belongs to a Hilbert space H = Hcoin ® Hposition-
The Hilbert space Hposiion describes the external, spatial
degree of freedom of the walker and is spanned by the
basis states {|x = pe)},ecz, where € is the lattice spacing.
The two-dimensional Hilbert space Hcoin = span{|R), |L)}
describes the internal, so-called coin degree of freedom of the
walker, where “R” and “L” stand for “right” and “left.” The
projection of the walker’s state on the position state |[x = pe)
at time j is ¥; , = (x = pe|y;). We identify |R) = (1,0)"
and |L) = (0,1)", where T denotes matrix transposition.
The dynamics of the DTQW is defined by its one-time-step
evolution operator U, which is unitary and may depend on j,

i) =Ujn ;). (D

As usual for DTQWs, the dynamics alternates between (i)
rotations, C, of the coin degree of freedom and (ii) spatial
coin-state-dependent shifts, S:

U=S5C, 2

where, to lighten notations, the multiplication of C by the
identity tensor factor of the position Hilbert space has been,
and will be, in similar cases, omitted. We choose, for the coin
rotation, the following one:

. cos ¢ i sin
c(e)zel"l?:[ y 2 3)

1 SIn 2 COS 2

where o” is the nth Pauli matrix and 6 is some angle, constant
in time and uniform in position.

Now, one of the distinctive features of the present work is
the way we gauge our walk. In Refs. [8,21,22], gauging the
walk amounts to gauging the standard coin-state-dependent
shift, Sfee = e~17°K where K is the quasimomentum operator,
as Spee — €% Siee 196 where o, and &; , are lattice
counterparts of the temporal and spatial components of an
electric potential of the continuum, (A°, A'), with which
they coincide in the continuum limit of the DTQW. We have
used the notation ¢; : p = ¢; , for diagonal operators in the
position basis, such as «; and &;. In the present work, we
gauge the shift as follows: the relative order in which the shift
and the gauge-field exponentials are applied depend on the
coin state, that is,

o—iKpiEj—a)) 0
S(aj, §j) = 0 e—iGFa)) ik (4a)
=TePiAg+ePITIAL, (4b)

where 1 denotes Hermitian conjugation. We have introduced
the following objects: (i) the translation operator by one lattice
site to the right,

T =e¢', )
(ii) the two projectors associated to the coin space,
As=1s)(sl, s=R,L, (6)

and (iii) the difference and sum of £ and «,

=& —a, (7a)
By =§&+a. (7b)

The nongauged coin-state-dependent shift is of course
Stree = S(0, 0). We have chosen the superscripts R and L for,
respectively, the upper and lower components of the wave
function, because Sge shifts the upper one to the right and the
lower one to the left. To make notations clear, we introduce an
auxiliary notation U for the evolution operator, such that

Uj=U(a),£,0) (8a)

S(ej, £)C(O). (8b)

B. Continuum limit of the 1D walk

A first fact to mention is that this way of gauging the
walk does not change the continuum limit € — 0 obtained in
Refs. [8,21,22]. Indeed, the fact that ¢/~ and ¢'/P), where P is
the position operator and f an arbitrary function, do not com-
mute, does make an important difference between the gauge
procedure of the present work and that of Refs. [8,21,22] at the
level of the DTQW, i.e., for a finite space-time-lattice spacing.
However, this becomes irrelevant in the continuum limit, since
the latter is obtained by Taylor expanding all exponentials
in their argument, and keeping only the first-order terms: in
other words, at first order in their arguments, the exponentials
always commute.

Let us now recall this continuum limit € — 0. Assume
that, for a given quantity Q defined on the space-time lattice,
Q;,p coincides with the value Q(t = je,x = pe) of some
continuous function Q of ¢ and x. First, rotate the coin state
by a small amount at each time step, that is, set

0 = —2¢,m, &)

with €, going to zero with €, which is the necessary condition
for the continuum limit to exist; now, when going to the con-
tinuum, we will actually choose €,, = € and the parameter m
will be identified as the mass of the walker. Second, consider
small gauge fields, that is, set

aj, = eaqAl (10a)

5P’
Ejp=€aqA] . (10b)
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with €4 going to zero with €, which is also a necessary
condition for the continuum limit to exist; again, when going
to the continuum, we will actually choose €4 = € and the
parameter g will be identified as the electromagnetic charge of
the walker. Assuming now that all Q’s are twice differentiable
in both ¢ and x, and Taylor expanding the dynamics of the
walker, Eq. (1), at first order in €, delivers (i) zeroth-order
terms that, by construction of our walk, cancel each other,
which is a necessary condition for the continuum limit to
exist, and (ii) first-order terms, which deliver a Hamiltonian
equation that can be identified as the Dirac equation in (1+1)D
space-time, with a coupling to a U(1) (and thus Abelian)
gauge field. This equation reads, in manifestly covariant form,

(ivjpDy —m)y =0, (11)

with u =0, 1, the covariant derivative D, =9, +iqA,,
where

Ag=A" A =-A" (12)

are the covariant components of the electric potential, and
with the following gamma matrices:

1

yloD =0, yllD =—io?. (13)

As announced, we obtain, in the limit of small coin-rotation
angles and small phases, the same continuum limit as if we
had used the gauge procedure of Refs. [8,21,22].

C. New U(1) lattice gauge invariance

Our DTQW, Eq. (1), exhibits a remarkable U(1) lattice
gauge invariance: it is invariant under local phase shifts of
the form v , — W},p = ¢'9%ire; ,, where x; , is an arbitrary
space- and time-dependent quantity, provided the gauge fields
become

(A;L)j-,p =(AwWj.p = @uX)jp, (14)
for u = 0, 1, with
1
do = —AoXy, (152)
€A
1
dy = —A X, (15b)
€A

where the ¥’s and A’s act on sequences Q; , of time and
space as

(16a)
(16b)

(E,U.Q)PM = Qp,d—l + Qm’
(A,uQ)pu = Qp,ﬂrl - pr

having introduced py = j and p; = p for a more compact
notation. The discrete derivatives, Egs. (15), treat time and
space on the same footing, on the contrary to those of
Refs. [8,22]. Morever, the X’s and A’s defined here are sums
and differences over one lattice spacing, or link between two
sites, while in Refs. [8,22] they were over two links. Notice
that the A’s are nothing but standard finite differences over
one link. The fact that, here, one has to apply the ¥’s in
addition to the A’s underlines that it may be appropriate that
the gauge variables, that is, both the gauge fields and the local
phase change, be defined on the links rather than on the sites,

as in standard LGTs. We leave this matter to future work.
Up to these extra X’s, the discrete derivatives involved in
Egs. (15) are the same as those used in standard LGTs, that
is, standard finite differences.

As done in Ref. [22] for the 1D case, Ref. [8] for the 2D
case, and Ref. [24] for the non-Abelian 1D case, one can
define a lattice counterpart to the electromagnetic tensor in
the continuum,

(F;w)j,p = (duAu)j,p - (dvAp.)j,py (17)

which is antisymmetric by construction. Since we are in
1D space, the only nonvanishing components are (Fo1);j,, =
—(F10)j,p, which encode a lattice counterpart to the electric
field, and there is no magnetic field. This quantity, (F},,);, p, is,
as in the continuum, gauge invariant by construction (on the
space-time lattice, obviously), since the d,,’s commute with
each other.

In the continuum limit, d,, tends towards the partial deriva-
tive d,, the gauge transformation of Eq. (15) becomes the
standard one of the continuum, and the lattice counterpart
to the electro(magnetic) tensor, Eq. (17), becomes that elec-
tro(magnetic) tensor.

III. 2D GENERALIZATION BY ALTERNATING 1D WALKS
ALONG THE x AND y DIRECTIONS

A. Defining the 2D walk

The walker can now move on a 2D lattice, and has spatial
coordinates x = pe and y = g€, where p,q € Z. We will
also use the notation p = p; and g = p,. Now, the 1D walk
defined in the previous section admits a 2D generalization via
a walk which alternates 1D walks in the x and y directions of
the 2D lattice. This generalization reads

Vo) = Uy 1) . (18a)
W1} = Usly 1) (18b)
with [ € N and where, fori = 1, 2,
U =09 (e, 8. 0") (19a)
= 5V (5a;.8)C(0") (19b)
and
SO (Sa;, &1) = T B Ag + e BT AL (20)
where

T =e 'k, (1)

IC; being the quasimomentum operator along direction i, and

B jpg =€ pg — 3 (22a)

B)jpg =& g + 3 pg- (22b)

When the gauge fields, o, & }, and EJZ, vanish, the alternate
walk is translationally invariant in both time and space every
two time steps. We will thus sometimes use the wording
“substep” for the time evolutions 2/ — 1 — 2/ and 2/ —
2l + 1, and the wording “step” for 2/ — 1 — 2/ + 1. We also
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introduce the two-substep walk,
Ware1) = U35, [Vaci) (23)
where

2) .0
Uz, = Uz(zlle(z)' (24)

B. Continuum limit for the 2D walk

We perform the continuum limit of the two-substep walk.
Adapting the 1D-case procedure, we write

Qjpg = eAqA(j)-’p,q, (25a)
Ejl‘,p,q = eAquj,p,q’ (25b)
fori = 1, 2. Moreover, we choose
.
0 = — —¢,m, (26a)
2
62 = —% — ey (26b)

Assume now that, for a quantity defined on the space-
time lattice, Q;, , 4 coincides with the value Q(t = je/2,x =
pe,y = ge) of some continuous function Q(¢, x, y). The
factor 1/2 in the time variable is necessary to make the
continuum limit of this two-substep DTQW match with the
standard form of the Dirac equation. Taking the continuum
limit, ¢ — 0, of Eq. (18), with €4 = ¢,, = €, we obtain

(iy"D, —m)y =0, 27
with

Y=o, yl=-io?, y?=—io% (28)

C. Two-substep U(1) lattice gauge invariance

By construction from 1D gauge-invariant walks, the 2D
walk we have introduced, Eq. (18), is invariant under the
local phase shift v, ,, — ¥}, = €%y, provided
the gauge fields become

(A0)j.pg — (d3X) for j even,
(AD)jpg = > T ) (292)
(A0)jpg — (dox)j,,,,q for j odd,
(ADjpg = (ADjpq — @ix)jpgs (29b)
fori =1, 2, with
« 1
dy = —AoZg, (30a)
€A
1
di = —A;%. (30b)
€A

A first comment to make is that this 2D U(1) lattice gauge
invariance differs from that of Ref. [8] in the following:
we have required, here, the gauge invariance for each one-
dimensional substep; we thus call this 2D U(1) lattice gauge
invariance a two-substep gauge invariance. In such a two-
substep gauge invariance, A transforms, by construction, dif-
ferently at even and odd times: indeed, we have two different
difference operators in time, d(} for even times, and dg for odd
times, which manifests the alternate construction of the walk.

Apart from this, the difference operators of Eq. (30) are a
straightforward generalization of those used above in the 1D
case, Eq. (15). As in the 1D case, the difference operators
of Eq. (30) treat space and time on the same footing (up
to the two discrete derivatives in time), in constrast with
Ref. [8]. Additionally, in the present 2D case, these difference
operators also treat the two directions of the lattice on the
same footing, which is also in contrast with Ref. [8].

Finally, one can define a lattice counterpart to the elec-
tromagnetic tensor, by generalizing the 1D lattice tensor,
Eq. (17), to the present 2D setting. Notice that one has to
use the discrete temporal derivative df, in the definition of
Fyi, so that Fy; and Fy, involve different discrete temporal
derivatives. This 2D lattice tensor has by construction the
same properties of antisymmetry and of U(1) lattice gauge
invariance as in the 1D case, and contains, additionally, a
“lattice magnetic field” orthogonal to the 2D plane, namely,
(F12), p,q» for which there is no room in the 1D case.

In Ref. [25], a three-substep U(1) lattice gauge invariance
is suggested for a 2D DTQW on an equilateral triangular
lattice, which is likely to be generalizable to the other DTQW:s
presented in this reference (isosceles triangular and honey-
comb lattices). There are two main differences between this
work and the present one. First, the correspondence between
the spatial components of the lattice gauge field and those
of the continuum is, in Ref. [25], not one to one: three
such components are needed on the lattice—one for each
substep—while, the scheme being in 2D space, only two
such components are needed in the continuum, which can be
expressed as linear combinations of the three former ones; see
Egs. (18) of that reference. In the present work, in contrast,
the spatial components of the lattice gauge field match exactly
those of the continuum. This difference between Ref. [25] and
the present work reflects the connectivity of the lattice, and
calls for an understanding, in arbitrary nD lattices, n € N, of
the coupling of DTQW:s to lattice counterparts of the electric
and magnetic fields of the nD continuum. Reference [26]
opens the way to such an understanding.

The second main difference between Ref. [25] and the
present work is that, in the former, the relative order in
which one applies the gauge field and the shift is not coin-
state dependent, in contrast with ours. As a consequence, the
difference operators appearing in Ref. [25] do not treat time
and space on the same footing as we do. More precisely,
the temporal difference operator of Ref. [25], see, e.g., the
first equation of Eqgs. (17) of that reference, is the same as
that of the earlier work already mentioned previously, namely,
Ref. [8] (see Ref. [27]), and we already mentioned above that,
in that earlier work, time and space are not treated on the same
footing at the level of the difference operators, in contrast with
the present work.

Eventually, notice the two following facts. If one tries
to impose to the 2D walk of Ref. [8] a U(1) lattice gauge
invariance for each one-dimensional substep, one needs at
least to choose, for the corresponding gauge fields, linear
combinations of those introduced in that reference—for the
no-substep gauge invariance—but at different space-time-
lattice sites. The same thing happens when trying to impose,
conversely, a no-substep U(1) lattice gauge invariance to the
present 2D walk.
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IV. CONTINUITY EQUATION AND CONSERVED
CURRENT FOR THE 2D WALK

In this section, we derive a lattice continuity equation from
the dynamics of the DTQW, allowing us to introduce a current
density which is both conserved and gauge invariant. In the
whole section, we work on the space-time lattice, and use
the notations t = je, x = pe, and y = ge, already introduced
previously. By construction, the probability density at time ¢
and point (x, y) is

T, x, y) = (Wil Axy 1Y) (31)

where A, , = |x, y)(x, y| is the projector on state |x, y).

Now, another distinctive feature of the present work with
respect to Ref. [8], apart from the way we gauge our walk,
discussed in the previous sections, is that we are going to
derive our continuity equation and define the current density
over two time steps, i.e., 2¢, of evolution (23), i.e., four
integers steps in the discrete-time variable j, since t = je/2,
while Ref. [8] considers a single time step of this evolution to
define the current density. As the reader shall see, this—i.e.,
considering two time steps to derive the continuity equation,
instead of a single one—will lead to the appearance of the
standard (symmetric) finite difference as discrete derivatives,
both in time and space, while the discrete derivatives of
Ref. [8] are more complicated, in particular the temporal one.

So, from this evolution over two time steps, one can easily
derive a formula for the difference JO(t + ¢, x, y) — JO(r —
€, x, y), which can be written as

[AF"I0)(t, x, v)
= WU A U = UBAGUR )W), (32)
where note that we have used the following notation
of the Hermitian conjugate for the backwards evolu-
tion: UP!__ = U(”Lg/z U®], and where [AZ" £1(t, x, y) =
%[f(t +e€,x,y)— f(t — €, x,y)], which defines a symmet-
ric finite difference in time. We compute this quantity in
Appendix A, and the result is given by Eq. (A6). We can then
recast Eq. (A6), i.e., Eq. (32), as
AN =0, 33)
with implicit sum over u = 0, 1, 2, and where we have intro-
duced the symmetric finite differences in the x and y direc-
tions, [AY"f1(t,x,y) = 3[f(t,x + € y) = f(t,.x =€ y)]
and  [AT"f1(t,x,y) = 5[t x,y+€)— ft,x,y =€)l
Equation (33) has the form of a continuity equation on the
lattice. J' = J* and J? = J¥, appearing naturally as the
current densities along the x and y directions, respectively,
are defined by

Tt %, y) = (Y| A [P 5 ePrxy=e p, (D
+ efiﬂi(t,x,yfe)efiﬂi(t,x,y)D;MJEZ)
+ Ay e MO + Ay e MO ] 190) (34)

and
TVt x,y) = (Y] A, [eFHFEen B0 men py gD

TIPS iP5 g )

F A MO + A MP] W), (35)

where we have used the following notations:

gL =py, BL=p2, (36a)
S, =8V, 5, =89 (36b)
C,=C@®Y, C,=C®. (36¢)

The rest of the notations we have introduced are defined in
Appendix A.

Both the time and space differences are symmetric, which
implies that they can be used to approximate true derivatives
with a truncation error O(e?), in contrast with the difference
schemes over one time step, as that in Ref. [8], where the
error is O(e?). There is a price to pay for this at the level
of the discrete-space-time scheme: the current is only defined
at times ¢ which are even multiples of the time step A¢, while
the walk is defined at all times—Iless importantly, one needs
in practice, in order to compute the current dynamics over a
given area on a finite-size 2D lattice, more sites on the edges
of that area with a two-step current than with a single-step
one.

In terms of formal simplicity and connection to standard
lattice gauge theories, notable advantages of the present con-
tinuity equation, Eq. (33), with respect to that of Ref. [8], is
that the difference operators involved in it, i.e., the AY™’s,
not only (i) treat all three space-time coordinates on the same
footing (while all three are treated differently in Ref. [8]),
but (ii) correspond, in addition, to standard symmetric finite
differences, while more complicated operators are used in
Ref. [8]. As in Ref. [8], however, the present difference oper-
ators intervening in the continuity equation are still different
from those intervening in the gauge invariance.

It is easy to check (i) that the current densities de-
fined above are gauge invariant under the transformations of
Eq. (29), and (ii) that Eq. (33) ensures the conservation of the
tptal probability, i.e., Zw JOt, x, y) does not change with
time.

Eventually, we notice the following. On the one hand, one
can check that the present 2D DTQW, defined by Egs. (18),
satisfies, in addition to the present two-step lattice continuity
equation, a single-step one—obtained by comparing the prob-
ability densities between two consecutive instants—which
has the same structure as that of Ref. [8], and involves, in
particular, the same discrete derivatives—the corresponding
current is gauge invariant under the gauge transformations
defined in the present work. On the other hand, one can also
check that the 2D DTQW defined in Ref. [8] satisfies, in ad-
dition to the single-step lattice continuity equation presented
in that reference, a two-step one, which has the same struc-
ture as that of the present work, and involves, in particular,
also symmetric finite differences as discrete derivatives—the
corresponding current is gauge invariant under the gauge
invariance of Ref. [8], which, we recall, is different from
the present one. These two combined results indicate that the
“symmetrization” of the discrete derivatives when going from
single-step to two-step continuity equations is independent
from the way one gauges the walk and is solely due to the
alternate construction of the 2D walk.
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V. CONCLUSION

In this paper we have discussed some of the subtleties
related to gauge invariance on discrete-time quantum walks
that include the interaction with external, synthetic electro-
magnetic fields, appearing as additional phases related to
those fields. As in standard lattice gauge theories, the way
to introduce such interactions is not unique and can lead to
interesting new features. We introduce these additional phases
in a way that differs from previous works in the literature.
We have first described how this definition works for one-
dimensional discrete-time quantum walks. This procedure has
the advantage that the discrete derivatives which intervene in
this lattice gauge invariance treat time and space on the same
footing, and are very much like those used in standard LGTs,
in contrast with those of Refs. [8,22].

We extended the above dynamics to 2D lattices, by alter-
nating 1D walks in the x and y directions of the spatial lattice,
where we ensure the U(1) lattice gauge invariance of this 2D
scheme by requiring it for each one-dimensional substep, in
contrast with the gauge invariance of Ref. [8]. Also, here,
time and space are treated on the same footing at the level
of the discrete derivatives—up to the fact that there are now,
in 2D space, two discrete derivatives in time, one for the
even discrete-time coordinates, corresponding to the motion
in the, say, x direction, and another one for the odd ones,
corresponding to the motion in the y direction.

By taking two time steps of the alternate walk, we intro-
duced a density current which is both conserved and gauge
invariant. Both in the 1D and in the 2D cases, we have com-
puted the continuum limit of these DTQWSs. They coincide,
as desired and as in Refs. [21,22] and [8,22], respectively,
with the dynamics of a Dirac fermion in (1+1)D and (1+2)D
space-time, respectively, coupled to a U(1), i.e., electromag-
netic gauge field. We also showed that, in two dimensions,
the current conservation reproduces, in the continuum, that
corresponding to the Dirac field. The procedure discussed here
could be easily extended to the case of 3D lattices.

In our opinion, this work represents a sensible step on the
way to quantum simulating the dynamics of a Dirac particle
coupled to an external electromagnetic field. In addition to
this, the quantum walk, as a dynamical process taking place on
alattice, introduces by itself interesting phenomena, which are
still to be fully explored even in the case of two-dimensional
lattices, which is the minimum dimensionality allowing for
the description of both an electric and a magnetic field.

Let us finally mention that a recent work [28] presents
a unified framework to understand U(1) gauge invariance in
discrete-time quantum walks on lattices and with coin spaces
of arbitrary dimensions. This work should at the very least
enlighten this field.
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APPENDIX A: DERIVATION OF THE CONTINUITY
EQUATION

We start from Eq. (32), with the purpose of obtaining the
continuity equation, Eq. (33). First, we work out the term

2D D f
Ut,EAx,ysze
— (Tveiﬂf(l,x,y)MRy + e—iﬁ;‘;(t.x,WT;fMLv)
x (TP =550 My 4 e L0550 Ti N, YA,
x (e PN TIME 4 TP v p] )
« (efiﬂl(t,x,y)T;(M};y + Tyeiﬂi(l,x,y)MZv)’ (Al)
having used the notations
T, =T,
M_yi == Asciv

Ty = T27
s=R,L,

(A2a)

i=x,y. (A2b)

After some tedious algebra, we arrive at

U AU
= AvseyreMp, Mg, Mp, Mjey
+ eiﬂi(t,x+e,y)ei/3ﬁ;(t,x+e,yfe)Ax+é DzM,EU
+ AseeyreMp, My M} M}
_ eiﬁ{(fJC—&y)eiﬂi(lgx—ﬂy—é)Ax_E DZM)(CI)
+ e—iﬂi(t,x+e,y—e)e—iﬂf(t,)H-s,y)Ax_‘rE D;M)(CZ)
+ Axtey—c MLy Mg, Mjex M}:‘.
_ e—iﬂ_{(t,x—e,y—e)e—iﬁi(t,x—e,y)Ax7ED;MiZ)
+ Axey ML, ML M| M] . (A3)

Similarly, the Hermitian conjugate is given by

U AU
= Arey-e M}, M}% Mg, M,
+ e—iﬁf(H—%,x—e,y—e)e—iﬂfr(l-‘r%,x,y—e)D}LAy_eM}(]Z)
+ Aoy My, sz My, Mg,
_ e—iﬁf(t-k%,x—e,y+e)e—i,8§r(t+§,x,y+E)DJl(Ay+EM;Z)
+ eiﬁi(’““%’x”"E)eiﬁi(’*%*"‘”"”DlAy,eM)‘,”
+ Arey-cM) My Mg My,

— Pt syt tuts o A L gD

+ AvreyreM] M} My M. (A4)
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In the above equations, we have introduced the projectors

Ay = |x)x|, Ay = |yXyl, the operators D; = |x + €){x — €],
=ly+e)y —€l,and

M = Mg, Mg M} M] (AS5a)

M® = My Mg M}, M}, , (A5b)

|

2[Ag" It x, y) =

_ipx [ _iB* € —
o iBLUt 5 x—€y—€) ,—ifi(1+5.xy E)Ay—e _

+ (eiﬂ{(r,xfe,y)eiﬁj;(t,xfe,yfe)AX76 o
(e—iﬂ;f_(t,x—s,y—e)e—iﬂf(t,x—e,y)Ax7€

having introduced

M = M] M*’ Mg My, — My Mg My M} . (ATa)
MY = M} M} My My, — Mg Mg M}, MT ., (A7b)
MY = M}, MT My Mg, — My, My M} M} . (ATc)
MY = M}, M} My Mg, — Mg, M M}, M;“. (A7d)

Now, one can check that the following relations hold:

MY =M - M, (A8a)
MP = —MO - M®, (A8b)
MY =M 4+ M, (A8c)
having introduced
M® = A CyARCIAL, (A9a)
M)(c4) = ARCyARC;L,AR - ClALC)m (A9b)
M® = CTALCIARCyALC, (A9%)
M® = CIARCIARCyARC, — Ay, (A9d)

so that the above continuity equation, Eq. (A6), can be recast
as Eq. (33).

APPENDIX B: CONTINUUM LIMIT OF THE CURRENT

Let us check that the lattice continuity (or current-
conservation) equation, Eq. (A6), tends, in the continuum
limit, towards the standard continuity equation involving the
Dirac current j* = iy*y. Taylor expanding the following

M = M} M;y Mg, Mgy, (A5¢)

M® = M}, M} Mg M. (A5d)

Performing in Eq. (32) the substraction UZL. Ay LU —

U A, U™ with the expressions obtained just above
yields

2 4 1 3
x+e,y+eM/(\) + Ax—e,y+6M§\) + Ax-&-s,y—ij\) + Ax—e.y—eM/(\)
+ (eiﬂfr(z-&-%,x,y—e)eiﬁf(t+§,x—e,y—e)Ay_

. — eiﬁj(z-&-%,x,y+e)eiﬁf(t+§,x—e,y+e)Ay+E)DlM)(}l)
e—iﬁj(t+§,x—e,y+é)e—iﬁj‘r(t+§,x,_\'+e)Ay+€)DIM;Z)

eiﬁi(t,x+e,y)eiﬂi(t,x+e,yfe)Ax+€)DZM)E[)

_ e—iﬁ_’r_(t,x-‘ré.y—é)e—iﬁi(I,X+E,}')Ax+e)D;M)(CZ)’ (A6)

(

quantities at first order in € yields

Jo(t +€,x,y) = Jo(t —€,x,y) =2€d,Jo(t, x,y), (Bla)

(Ax—e — Ax+e) = —2€0, Ay, (Blb)
(Ay—e — Ayye) = —2€0,Ay. (Blc)

Making use of Egs. (34) and (35), one arrives at

9, Jo(t, x,y)
= =0 (Yl Ay (MDD + MP + MO + MP) )
— 3y (Y| Ay (MDD + MP + MO + MD)|yr). (B2)

In our particular case, the coin matrices are, at zeroth order in

1 i 1 —i
1 1
€,C, = ﬁ|:i 1:| and Cy = ﬁ|:—i 1 ],sothat

0 i
Mil) + M}E2) + M)E3) + MJE4) — |:_l Oi| = J/O)/], (B3a)
1 0
(1 2) 3) 4) _ _ .02
MO+ MO 4 MO 4 u® [O _1] = %% (B3b)

Finally, the continuum limit of our continuity equation
reads

dJo(t, x,y) = =8 (Wi | Ay ¥ ¥ 1)

— O (Y| Ay Y ¥ ). (B4)

This equation can be recast as 9, (¥ y*y) = 0, the expected
current-conservation equation.
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