
HAL Id: hal-03594752
https://amu.hal.science/hal-03594752

Preprint submitted on 14 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Massless Dirac equation from Fibonacci discrete-time
quantum walk

Di Molfetta Giuseppe, Lauchlan Honter, Ben Luo, Tatsuaki Wada, Yutaka
Shikano

To cite this version:
Di Molfetta Giuseppe, Lauchlan Honter, Ben Luo, Tatsuaki Wada, Yutaka Shikano. Massless Dirac
equation from Fibonacci discrete-time quantum walk. 2024. �hal-03594752�

https://amu.hal.science/hal-03594752
https://hal.archives-ouvertes.fr


ar
X

iv
:1

41
0.

47
59

v1
  [

qu
an

t-
ph

] 
 1

7 
O

ct
 2

01
4

Massless Dirac Equation from Fibonacci Discrete-Time Quantum Walk

Giuseppe Di Molfetta,1, 2, ∗ Lauchlan Honter,1, 3, † Ben B. Luo,1, 3, † Tatsuaki Wada,4 and Yutaka Shikano1, 5, ‡

1Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science,
38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan.

2LERMA, UMR 8112, UPMC - Paris 6 and Observatoire de Paris,
61 Avenue de l’Observatoire, 75014 Paris, France.

3School of Physics, The University of Western Australia,
35 Stirling Hwy, Crawley, Perth WA 6009, Australia.
4Department of Electrical and Electronic Engineering,
Ibaraki University, Hitachi, Ibaraki 316-8511, Japan.
5Institute for Quantum Studies, Chapman University,
1 University Dr., Orange, California 92866, USA.

(Dated: March 24, 2022)

Discrete-time quantum walks can be regarded as quantum dynamical simulators since they can
simulate spatially discretized Schrödinger, massive Dirac, and Klein-Gordon equations. Here, two
different types of Fibonacci discrete-time quantum walks are studied analytically. The first is the
Fibonacci coin sequence with a generalized Hadamard coin and demonstrates six-step periodic dy-
namics. The other model is assumed to have three- or six-step periodic dynamics with the Fibonacci
sequence. We analytically show that these models have ballistic transportation properties and con-
tinuous limits identical to those of the massless Dirac equation with coin basis change.

PACS numbers: 05.45.Mt, 03.65.-w, 02.30.Jr

Discrete-time quantum walks (DTQWs) are defined
as quantum-mechanical analogues of classical random
walks. The concept of DTQWs was first considered by
Feynman [1] and then introduced in greater generality
by Refs. [2–4]. They have been realized experimentally
in Refs. [5–20] and are important in many fields, from
fundamental quantum physics [15, 21–23] to quantum al-
gorithm [24, 25] and condensed matter physics [26–30].
Previously, it has been shown that several DTQWs on a
line admit a continuous limit identical to the propagation
equations of a massive Dirac fermion [31–35] and those of
massless Dirac fermion equations [21, 32]. Furthermore,
the relationship between DTQWs and artificial electric
and gravitational fields has been shown [21, 36]. Thus,
DTQWs can be regarded as quantum dynamical simula-
tors [37]. Additionally, it is well known that the classical
random walk leads to a diffusive behavior characterized
by the time evolution of the standard deviation, with
σ(t) ∼ t1/2, while the standard DTQW leads to ballis-
tic behavior, as σ(t) ∼ t. Further, the standard DTQW
can be considerably enriched by generalizing the quan-
tum coin operator and arranging it along different se-
quences. It has already been shown that quasi-periodic
coin sequences induced by the Fibonacci sequence lead
to sub-ballistic behavior, whereas random sequences lead
to diffusive spreading [38]. Here, we consider two dif-
ferent Fibonacci DTQWs with periodic coin sequences.
The first model (FDTQW-I) considers a time-dependent
quantum coin following the Fibonacci sequence, while the
second model (FDTQW-II) considers a modified version
of the unitary operator first defined in Ref. [38], where
the Fibonacci sequence is applied to the step operator.
We show numerically and analytically that the contin-

uous limit of these models reduces to a massless Dirac
equation in (1 + 1) dimensions.
Let us consider the two dimensional spin state Ψm,j ∈

C
2, spanned by the orthonormal basis (bu, bd), and de-

fined by its discrete one dimensional position m ∈ Z and
discrete time j ∈ N0. The standard DTQW’s time evolu-
tion is given by the application of the quantum coin op-

erator (QCO) Ĉ on Ψm,j = um,jbu+ dm,jbd =

(

um,j

dm,j

)

,

followed by the chiral-dependent translation operator T̂ ,
which is defined as

(

um−1,j

dm+1,j

)

= T̂

(

um,j

dm,j

)

. (1)

Here, we introduce the simplest quantum coin, the gen-
eralized Hadamard coin, which is expressed as

Ĉ(θ) =

(

cos(θ) sin(θ)
sin(θ) − cos(θ)

)

, (2)

where θ ∈ [0, 2π]. The one-step discrete time evolution
is then given by

(

um,j+1

dm,j+1

)

= T̂ Ĉ(θ)

(

um,j

dm,j

)

. (3)

First, we consider FDTQW-I, which is the simplest
case as only the QCO is defined as a Fibonacci series.
Here,

Ûj = T̂ Ĉj , j ∈ N0 , Ĉj+1 = ĈjĈj−1 , (4)

with the initial conditions

Ĉ0 = Ĉ(α) , Ĉ1 = Ĉ(α)Ĉ(β), (5)

http://arxiv.org/abs/1410.4759v1


2

where j is the time step. On considering the DTQW
acted upon by the Fibonacci coin series, we analytically
find that the time evolution of the coin is cyclic with
period 6. These coin operators then reduce to

Ĉ0 =

(

cos(α) sin(α)
sin(α) − cos(α)

)

,

Ĉ1 =

(

cos(α− β) − sin(α − β)
sin(α− β) cos(α− β)

)

,

Ĉ2 =

(

cos(2α− β) sin(2α− β)
sin(2α− β) − cos(2α− β)

)

,

Ĉ3 =

(

cos(α) sin(α)
sin(α) − cos(α)

)

,

Ĉ4 =

(

cos(α− β) sin(α− β)
− sin(α− β) cos(α − β)

)

,

Ĉ5 =

(

cos(β) sin(β)
sin(β) − cos(β)

)

.

(6)

Here, the collection Wn
j = (Ψm,k)m∈Z,k=nj is defined for

j ∈ N and n ∈ {0, 1, 2, 3, 4, 5}, and represents the state
of the walk at time k = nj. For any given n we define
Sn = (Wn

j )j∈Z, where Sn represents the entire history
of the walk observed through a stroboscope of period n.
Successive application of the 6 unitary operators to an
initial state then gives the stroboscopic recursion equa-
tions for S6. The discrete-step equations for S6 read

um,j+6 =

3
∑

k=−3

(A2k(α, β)um+2k,j

+B2k(α, β)dm+2k,j), (7)

dm,j+6 =

3
∑

k=−3

(B−2k(−α,−β)um+2k,j

+A−2k(−α,−β)dm+2k,j). (8)

Here, the index k ∈ {−6,−4,−2, 0, 2, 4, 6} and the coef-

ficients Ak, Bk ∈ R are explicitly given as

A−6 = c2αcβc
2
α−βc2α−β (9)

A−4 = −1

4
cαc

2
α−β(cα−2β + 3c3α−2β − 5cα + c3α)

A−2 =
1

16
(−6c2(α−β) + 4c4(α−β) − c2(α+β) − c2(α−2β)

+ 2c4α−2β − c6α−2β + c6α−4β − 2c4α − 2c2β + 6)

A 0 =
1

4
c2α−β(−6c2(α−β) + c4α−2β − 2c2α + c4α + c2β + 5)

A 2 =
1

8
c2α−β(6c2(α−β) − 3c4α−2β − 2c2α + c4α + c2β − 3)

A 4 =
1

2
s2αsβc

2
α−βc2α−β

A 6 = 0

B−6 =
1

2
s2αcβc

2
α−βc2α−β (10)

B−4 =
1

8
(s2αsβ(sβ − s4α−3β) + cβ(3s2α−β − s4α−β+

3s4α−3β − s6α−3β))

B−2 =
1

8
((c2α − 3)s4α−4β − 2s4αc

2
α−β)

B 0 =
1

16
(−s2α−4β + 4s4α−4β + s6α−4β + 2cα(sα+2β−

sα−2β − 3s3α−2β + s5α−2β)− 2s2α + 2s4α)

B 2 = − 1

16
cα(s3α−4β + 3s5α−4β + 8s3αc2α−2β + 4sα − 2s3α)

B 4 = −c2αsβc
2
α−βc2α−β

B 6 = 0

with cθ := cos(θ) and sθ := sin(θ).

Let us define the time and space variables, tj = j∆t
and xm = m∆x, where ∆t and ∆x are the time and
space steps, respectively. As ∆t and ∆x tend to zero,
this allows us to take a Taylor expansion of the recur-
sion relations for the DTQW and, hence, derive a pair of
partial differential equations (PDEs). To take the con-
tinuous limit, we define

∆t = ǫ ,

∆x = ǫγ ,
(11)

where ǫ is an infinitesimal and γ > 0 is a scaling pa-
rameter. The difference between the two expressions is
to account for the fact that ∆t and ∆x may tend to 0
differently. Then, taking a Taylor expansion about ǫ up
to the leading orders of Eqs (7) and (8), we obtain the
following

u(x, t) + 6ǫ∂tu(x, t) = u(x, t)+

+ ǫγ(p1∂xu(x, t) + p2∂xd(x, t)) +O(ǫ2), (12)

d(x, t) + 6ǫ∂td(x, t) = d(x, t)+

+ ǫγ(p2∂xu(x, t)− p1∂xd(x, t)) +O(ǫ2), (13)
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where

p1 =
3

∑

k=−3

2k

6
A2k(α, β) = −1

6
(c4α−2β + 2c2α + c2β + 2),

(14)

p2 =
3

∑

k=−3

2k

6
B2k(α, β) = −2

3
(s2αc

2
α−β). (15)

Choosing scaling of γ = 1 and then taking the limit as
ǫ → 0, we obtain the following pair of PDEs:

∂tu(x, t) = p1∂xd(x, t) + p2∂xu(x, t) ,

∂td(x, t) = p2∂xd(x, t)− p1∂xu(x, t).
(16)

This set of equations can be then be recast, such that

I∂tΨ+P∂xΨ = 0 , P =

(

p1 p2
p2 −p1

)

, (17)

where I is the 2 × 2 identity matrix. To diagonalize the
operator acting on Ψ, we perform a change of basis from
(bu,bd) to the new basis, (bu, bd), with Ψ = ubu + dbd.
The new basis components are

bu =
1

Z

(

p2
ω − p1

bu + bd

)

, (18)

bd =
1

Z

(

−
p2

ω + p1
bu + bd

)

, (19)

with ω =
√

p21 + p22 and Z a normalized constant. Hence,
equation (17) in the new basis reads

I∂tΨ+ v(α, β)σz∂xΨ = 0, (20)

where

v1(α, β) =

√

8c2αc2α−2β + c4α−4β + 4c2α + 5

3
√
2

, (21)

can be seen as the propagation velocity of the continu-
ous limit distribution and σz is the third Pauli matrix.
We may also evaluate the standard deviation σj of the
probability distribution depicted in Fig. 1 as a function of
time, by considering the exponent η(α, β) in σj ∼ jη(α,β).
For the FDTQW-I case, we observe ballistic behavior for
general (α, β), that is, η(α, β) = 1.
Now consider Eq. (20) in the covariant form, which is

expressed as

i(γ0∂0 + γ1∂1)Ψ = 0, (22)

where γ0 = σx and γ1 = −iσy are the usual gamma ma-
trices, ∂0 = ∂s, ∂1 = ∂x̃, and the rescaled coordinate x̃
= x/v1(α, β). This equation can now be interpreted as
the massless Dirac equation in the 1+1 space-time di-
mension. In Fig. 2, we observe the density profile of
the FDTQW-I case at a time step of j = 800, with a
symmetric Gaussian initial condition that is sufficiently
regular and large with respect to the lattice interval ∆x.

FIG. 1. Velocity contour plot for the Fibonacci sequence on
the QCO, with α and β ∈ [0, π

2
].

FIG. 2. Density profile of FDTQW-I at time step, j = 800,
ρ(j) =| Ψm,j |2, versus space step, m. The resolution (i.e.
ǫ value) is n = 211. The dashed red line indicates α = π/2
and β = π/4; the dashed yellow line is for α = π/3 and β =
π/6; the dashed green line represents α = π/4 and β = π/8;
the dashed blue line indicates α = π/8 and β = π/16; and
the dashed pink line represents α = π/12 and β = π/24. The

initial condition is Ψ(0, x) =
√

N0(x)(bu + Ibd), where N0(x)
is a Gaussian function of width 20∆x and ∆x = 2 π/n.

A truly ballistic propagation can be noted, as the contin-
uous limit suggests. This result confirms that FDTQW-I
can be used to simulate massless Dirac dynamics.
The FDTQW-II previously defined in Refs. [38, 39]

can be expressed in the most general case as a unitary
evolution, and the unitary evolution operator can then
be defined using the following Fibonacci sequence

Ûj = Ûj−1Ûj−2 , (23)
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with the initial conditions

Û0 = T̂ Ĉ(α), Û1 = T̂ Ĉ(α)T̂ Ĉ(β). (24)

Since each step operator contains increasing numbers
of translation operators, the boundary size increases
at an exponential rate. To account for this, we now
parametrize time using the number of translation op-
erators that have thus far been applied. It can then
be noted that this DTQW has a quasi-periodic coin se-
quence. Thus, we define a new parameter for time r, such
that sr = r∆t, where r =

∑j−1
n=0 F (n) and F (n) is the

Fibonacci sequence with initial conditions, F (0) = 1 and
F (1) = 2. This means how many translation operators
a quantum walker is operated. This allows us to easily
study the continuous limits of Eq (3) for the operator
expressed in Eq (23). For the continuous limit to exist,
we first require that Ψ(sr + τ∆t) → Ψ(sr). It can be
shown that this is true only when τ ∈ 6N0, that is, when
τ is any positive integer multiple of 6, as the sequence of
unitary operators then reduces to the identity operator.
We assume the simplest periodic case, for which τ = 6,
and the discrete-time equations read

um,r+6 =
3

∑

k=−3

(A2k(α, β)um+2k,r

+B2k(α, β)dm+2k,r), (25)

dm,r+6 =

3
∑

k=−3

(B−2k(−α,−β)um+2k,r

+A−2k(−α,−β)dm+2k,r), (26)

where Ak ∈ R and Bk ∈ R are

A−6 = c4αc
2
β (27)

A−4 = c2αsα(c
2
βsα + 2cαs2β)

A−2 = −
1

8
s2α(−2s2α + s2(α−β) + 5s2(α+β))

A 0 = −
1

8
(3 + c4α − (1 + 3c4α)c2β − 16cαs

3
αs2β)

A 2 = c2βs
4
α − 2c3αcβsαsβ + cαs

3
αs2β

A 4 = c2αc
2
βs

2
α

A 6 = 0

B−6 = c3αc
2
βsα (28)

B−4 = cαcβ(s
3
αcβ + cα(1− 2c2α)sβ)

B−2 =
1

8
(s4α(3c2β − 1)− 4s2α(2c2α + 1)s2β)

B 0 =
1

8
(4s2α(2c2α + 1)s2β + s4α(1 − 3c2β))

B 2 = cαcβ(cα(2c2α − 1)sβ − s3αcβ)

B 4 = −sαc
3
αc

2
β

B 6 = 0.

Taking the continuous limit of S6 about ǫ (as in the
previous section) and noting that the zeroth order terms
cancel, we arrive at the first order term expressions for
this system

∂su(x, s) = p1∂xd(x, s) + p2∂xu(x, s),

∂sd(x, s) = p2∂xd(x, s) − p1∂xu(x, s),
(29)

and

p′1 =
3

∑

k=−3

2k

6
A2k(α, β) = −

1

3
(c22α−β + 2cβc2α−β) (30)

p′2 =

3
∑

k=−3

2k

6
B2k(α, β) =

1

3
s2α−β(c2α−β + 2cβ). (31)

As in the previous case, we can rewrite these equations
in matrix form, such that

∂sΨ+ P∂xΨ = 0,

P =

(

p′1 p′2
p′2 −p′1

)

,
(32)

Again, we diagonalize the differential operator acting on
Ψ, which spans Ψ itself on the new basis, (b′u, b

′
d). The

new basis components read

b′u =
1

Z ′

(

p′2
ω′ − p′1

bu + bd

)

, (33)

b′d =
1

Z ′

(

−
p′2

ω′ + p′1
bu + bd

)

, (34)

with ω′ =
√

p′1
2 + p′2

2 and Z ′ a normalized constant. Eq

(32), expressed in terms of Ψ, then becomes

∂sΨ+ v(α, β)σz∂xΨ = 0 ,

v2(α, β) =
1

3
|(c2α−β + 2cβ | ..

(35)

This PDE implies ballistic propagation of the quantum
walker for fixed α and β. Similar results are obtained
when other periodic sequences of finite length are con-
sidered, with each result yielding a similar differential
equation, albeit with varying functions for v, as seen in
Fig. 3. As in the previous section, the latter equation
can be reformulated in the following covariant form

i(γ0∂0 + γ1∂1)Ψ = 0 , (36)

where γ0 = σx, γ1 = −iσy, ∂0 = ∂s, ∂1 = ∂x̃, while
the rescaled coordinate is now x̃ = x/v2(α, β). In this
rescaled time-space, the velocity is 1 and the FDTQW-II
can again be interpreted as a massless Dirac equation in
the (1 + 1) dimension.
By taking the continuous limit, we have character-

ized the propagation behavior of the DTQWs based on
both the Fibonacci sequence of the coin operators and
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FIG. 3. Contour plot for velocity in the case in which Fi-
bonacci sequence is on the step operator for the three periodic
Fibonacci sequence.

the periodic extension of these sequences. Our anal-
ysis shows that both of these quantum walks are bal-
listic and that the continuous limits can reduce to the
(1 + 1)-dimensional massless Dirac equation. There still
remain several unexplored topics, however. For exam-
ple, we have not examined the continuous limit on the
infinite sequence of step operators, as originally defined
in Ref. [38]. The propagation properties of this model
were numerically analyzed in [38, Fig. 3]. According to
Ref. [38], this walk is either ballistic or sub-ballistic de-
pending on the initial values of α and β. Other unknown
aspects include the type of transition that occurs when τ
increases towards infinity, and the mechanism by which
the behavior of the periodic extension changes into that
of the infinite sequence.
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