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Abstract

The Nyström method, known as an efficient technique for approx-
imating Gram matrices, builds upon a small subset of the data called
landmarks, whose choice impacts the quality of the approximated Gram
matrix. Various sampling methods have been proposed in the literature
to choose such a subset, among which some based on ridge Leverage
scores, which come with good theoretical and practical results. Nev-
ertheless, direct computation of ridge leverage scores has an Θ(n3)
computation cost if n is the number of data, which is prohibitive when
n is large. To tackle this problem, we here propose a Θ(n) divide-
and-conquer (DAC) method to approximate ridge leverage scores and
we provide theoretical guarantees and empirical results regarding their
ability to blend with the Nyström approximation strategy. Our ex-
perimental results show that the proposed approximate leverage score
sampling scheme achieves a good trade-off between predictive perfor-
mance and running time.

Ridge leverage scores, Nyström approximation, kernel methods.

1 Introduction

Kernel methods [1, 2] exploit training data through the use of so-called pos-
itive kernel functions that compute dot products of a version of the training
data that are embedded into a Reproducing kernel Hilbert space (RKHS).
Their appeal comes from their strong theoretical basis, their ability to seam-
lessly generalize linear statistical approaches to nonlinear settings, and their
effectiveness in handling structured data.

Given a dataset {xi}ni=1 of n points, the working of a kernel method
requires to compute the kernel k on all the pairs {(xi, xj)}ni=1 to construct the
Gram matrix K := [k(xi, xj)]

n
i=1, of Θ(n2) storage and Θ(n3) computational
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demand whenever K has to be inverted (a frequent need). Both storage and
computational expectations are problematic when n is large. To overcome
this problem, methods to approximate K have been devised, such as, to
name a few, Random Fourier Features (RFF) [3], Cholesky factorization [4],
and Nyström method [5], and proved effective [6, 7, 8, 9].

As stated before, we here focus on the Nyström approximation, which
builds an approximation of the Gram matrix using landmark points. Re-
sults from the literature show that it is possible to reach approximation
results better than those obtained by uniform sampling of the landmarks,
by crafting data-dependent sampling techniques, which, for instance, could
be based on ridge leverage scores and related quantities [10, 11]. However,
these techniques remain expensive as computing the ridge leverage scores
is Θ(n3). Therefore, recent work has focused on methods able to efficiently
approximate statistical quantities such as leverage scores [12, 13, 14, 15].

Here, we propose a new algorithm to efficiently approximate the ridge
leverage scores, and using it in the Nyström method, we show that we achieve
a good trade-off between predictive performance and running time. The
paper is organized as follows. Section 2 recalls the Nyström method and the
ridge leverage scores. Section 3 introduces our divide-and-conquer (DAC)
ridge leverage score approximation algorithm and its theoretical guarantees.
Finally, Section 4 reports empirical results of our method on real world
datasets, showing that it allows for a solid approximation performance with
competitive running times.

2 Nyström method and approximated ridge lever-
age scores

2.1 Nyström approximation

Let X be an input space, and k : X × X → R a kernel function associated
to a reproducing kernel Hilbert space Hk. Let N := {xi}ni=1 be a set of n
data point of X (i.e., xi ∈ X ), and K ∈ Rn×n the kernel matrix of N .

The Nyström method is a well studied technique for approximating the
kernel matrix K and reducing the computational cost of kernel methods [5].
It builds an approximation K̂ of K using only a small subset of points, called
landmarks. Let E ⊆ N be the landmark set. The approximated Gram
matrix is set to K̂ := KN,E(KE)+KT

N,E where KN,E = (k(xi, xj))xi∈N,xj∈E
is a n × |E| matrix, and KE = (k(xi, xj))xi∈E,xj∈E is a |E| × |E| matrix.
Here, we denote by A+ the Moore-Penrose inverse of matrix A and by AT

its transpose. This approximation is computed in Θ(n|E|2), which is smaller
than n2 for |E| � n.
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Data: N := {x1, . . . , xn} a set of n data, γ ∈]0, 1]
Result: K̂, an approximation to K
Compute l̂1, . . . , l̂n an over-approximation of ridge leverage scores ;

Let pi = min
{

1, 16l̂i log
(

1
γ

∑
j l̂j

)}
;

Sample E ⊆ N with probability pi for each xi ;

Return K̂ := KN,E(KE)+KT
N,E where KN,E and KE are defined as

in Section 2.1 ;

Algorithm 1: Kernel matrix approximation using approximated ridge
leverage score.

2.2 Approximated ridge leverage scores

The ridge leverage scores are a measure of the ‘importance’ of each data
point in the data set (see [16] for more details). If the ridge leverage scores
are used to define the probability of sampling each data point, they offer
a theoretically justified method for sampling landmarks giving rise to the
matrix K̂ with good approximation guarantees [10, 13].

For λ > 0, the ridge leverage score of any xi ∈ X is:

li := [K (K + λI)−1]i,i .

Unfortunately, since we need to invert the matrix K+λI, the complexity of
computing the ridge leverage scores is Θ(n3). This makes the ridge leverage
scores very expensive to compute and unusable for the Nyström method.

A number of recent papers have focused on approximating the ridge
leverage scores (e.g., [12, 13]). In [12], a uniform leverage score approxi-
mation method was proposed. It is based on computing approximates of
the ridge Leverage scores by approximating the kernel matrix K using a
Nyström method with landmarks sampled uniformly at random. In [13],
the authors propose a recursive version of the algorithm in [12]. They re-
cursively improve the approximated ridge leverage scores by approximating
the kernel matrix using landmarks sampled from the previously computed
ridge leverage scores. They then used these approximations for Nyström
method as described in Algorithm 1. They have shown that even if the
complexity of the two methods is Θ(ns2) (for some user-defined subsample
size s), the uniform method is faster. Nevertheless, this comes at a cost in
the approximation quality, since [13] has better approximation results than
[12].

We present in the next section our DAC algorithm to approximate the
ridge leverage scores with the same complexity as in [12, 13]. We then show
in Section 4, that our method has good approximation results as [13], while
being faster in practice.
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Data: N := {x1, . . . , xn} a set of n data, r > 0;

Result: l̂i, ∀i ∈ {1, . . . , n};
Partition N : let S1, . . . , Sr be disjoint sets such that: Si ⊆ N ,
Si ∩ Sj = ∅ for all i, j ≤ r, and ∪ri=1Si = N ;

Compute KS1(KS1 + λI)−1, . . . ,KSr(KSr + λI)−1;
for xi ∈ N ;
do

Let S ∈ {S1, . . . , Sr} be the set that contains xi;
Let ji be the position of xi in S ;

l̂i = [KS(KS + λI)−1]ji,ji where
KS = (k(x, y))x∈S,y∈S ∈ R|S|×|S|;

end

Return l̂i for all i ∈ {1, . . . , n};

Algorithm 2: Divide And Conquer (DAC) for Ridge Leverage score
approximation

3 Divide And Conquer (DAC) algorithm

We now describe a scalable simple approach to estimate the leverage scores.
Our method is based on a divide-and-conquer (DAC) strategy. Instead of
computing the leverage scores using all the data, we divide the data set into
r disjoints small subsets of size si, i = 1, . . . , r, and we compute the leverage
scores for each subset. The computational complexity will be then reduced
from Θ(n3) to Θ(

∑
i s

3
i ). In the following, without loss of generality, we

assume that all the subsets have the same size s. The overall complexity in
this case is Θ(ns2). Our DAC approach is depicted in Algorithm 2.

The DAC approach for approximating the leverage scores is easy and
simple. One important question is what theoretical guarantees can we pro-
vide on the performance of the approximated leverage scores. To answer
this question, we follow the work of [13] and provide the following theoret-
ical results showing how the approximated leverage scores l̂i relate to the
true ones li.

Corollary 1. Let X be an input space, and k : X ×X → R a kernel function
associated to a RKHS Hk. let N := {x1, . . . , xn} be a set of n data point
in X . For any xi ∈ N , let l̂i as computed in Algorithm 2. Then we have:
l̂i ≥ li.

Proof. Let S1, . . . , Sr as in Algorithm 2, and let S := {Si}ri=1. For any
S ∈ S, let S̄ := N \ S be the complement of S, and KS = (k(x, y))x∈S,y∈S
be the kernel matrix over S. It is known that li =

∑n
j=1

σj
σj+λU

2
i,j , where

K = UΣUT is the SVD of K and σi = Σi,i its singular values [17]. Using
this, it is easy to see that li = 1 − λ (K + λI)−1

i,i . Let consider a fixed xi,
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and let S be the subset that contains xi, and ji be the position of xi in S.
Thus, l̂i = 1− λ (KS + λI)−1

ji,ji
.

Without loss of generality, we assume that K is sorted such that the
elements of S appear in the first block:

K =

[
KS KS,S̄

KT
S,S̄

KS̄

]

Where KS,S̄ = (k(x, z))S×S̄ , and KS̄ = (k(x, z))S̄×S̄ . Using the Shur com-
plement of a block matrix, we have:

(K + λI)−1 =

[
(KS + λI)−1 + CZCT ∗

∗ ∗

]

where Z :=
(
KS̄ + λI −KT

S,S̄
(KS + λI)−1KS,S̄

)−1
, and C := (KS + λI)−1KS,S̄ .

Since K + λI is a PSD marix, so is its Shur complement Z. Using the fact
that CZCT is also a PSD matrix, and that the diagonal entries of a PSD
matrix are positives, we obtain:

(K + λI)−1
ji,ji
≥ (KS + λI)−1

ji,ji
.

We then have that: l̂i ≥ li for all i, since λ > 0.

Corollary 2. Under the same conditions of Corollary 1, for any xi ∈ N let
l̂i as computed in Algorithm 2. We have

n∑
i=1

l̂i ≤
n∑
i=1

li + n

(
1− 1

m

)
,

where m := σmax+λ
σmin+λ is the condition number of K + λI and σmin and σmax

are the smallest and largest eigenvalues of K.

Proof. Let S := {Si}ri=1 as defined in the proof of Corollary 1. For any
S ∈ S, let S̄ := N \ S. We thus have:

n∑
i=1

l̂i = n− λ
∑
S∈S

∑
xi∈S

(KS + λI)−1
ji,ji

, (1)

where ji is the position of xi in the set S. First, we fix S and we bound∑
xi∈S(KS +λI)−1

ji,ji
. Without loss of generality, we assume that the matrix

K is sorted such that the elements of S appear in the first block as in the
proof of Corollary 1. Using the Shur complement [18], we also have:

(K + λI)−1 =

[
A ∗
∗ ∗

]
,
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where A :=
(
KS + λI −KS,S̄(KS̄ + λI)−1KT

S,S̄

)−1
.

The main ingredient of the proof is the following result provided in The-
orem 3.6.1 of [19]:

A � αK(KS + λI)−1,

where αK := (σMin+σMax+2λ)2

4(σMin+λ)(σMax+λ) where σMin and σMax are the smallest and
largest eigenvalues of the matrix K. Applying the trace operator we obtain

Trace
(

(KS + λI)−1
)
≥ α−1

K Trace (A) .

Using the fact that the trace of a matrix is equal to the sum of its diagonal
elements, we have:∑

xi∈S
(KS + λI)−1

ji,ji
≥ α−1

K

∑
xi∈S

(K + λI)−1
ji,ji

.

We now take the sum over all subsets S ∈ S:∑
S∈S

∑
xi∈S

(KS + λI)−1
ji,ji
≥ α−1

K

∑
S∈S

∑
xi∈S

(K + λI)−1
ji,ji

.

Using the fact that the subsets are disjoints and that their union is equal
to N , and plugging this result in Equation (1), we obtain

n∑
i=1

l̂i ≤ n− λα−1
K

n∑
i=1

(K + λI)−1
i,i .

Since (K + λI)−1
i,i = 1−li

λ , we have:

n∑
i=1

l̂i ≤ α−1
K

n∑
i=1

li + n
(
1− α−1

K

)
.

Let m := σMax+λ
σMin+λ . It remains to prove that 1

m ≤ α
−1
K ≤ 1. Indeed,

α−1
K − 1 =

− ((σMin + λ)− (σMax + λ))2

(σMin + σMax + 2λ)2
≤ 0

and α−1
K ≥

4(σMin+λ)(σMax+λ)
4(σMax+λ)2

= σMin+λ
σMax+λ = 1

m .

Using these bounds and a result in [13], we can obtain theoretical guar-
antees on the quality of approximated kernel matrix by Nyström approxi-
mation when using our DAC method.

Theorem 3. Under the same assumptions of Corollary 1, let K̂ be an ap-
proximation of K computed by Algorithm 1 with approximated ridge leverage
score computed by Algorithm 2. Then, with probability at least 1−γ, we have

K − λI � K̂ � K.

Moreover, |E| ≤ 32t log( tγ ), where t :=
∑n

i=1 li + n
(
1− 1

m

)
.

Proof. Apply Theorem 3 of [13] using Corollaries 1 and 2.
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Table 1: Description of the datasets

Dataset number of data number of features

Covertype [21] 581012 54
Adult [22] 48842 15
KC1 [23] 2109 21
Houses [24] 20640 8

4 Experiments

In this section, we evaluate our proposed DAC algorithm on benchmark
real world data sets described in Table 1. In all our experiments we use a
Gaussian kernel with hyper-parameter σ and a regularization parameter λ
fixed as in [20].

We use Algorithm 2 to estimate the leverage scores of each point, sample
a subset of them proportionally to the approximated scores, and use the
Nyström method to approximate the kernel matrix. We compare our DAC1

approach to the uniform leverage score method (uniform LS) [12] and the
recursive2 method [13] since both run in Θ

(
ns2
)
. We also compare our

method to the classical Nyström method, with landmarks sampled uniformly
at random. Since the data sets are very large, we follow [13] and estimate
this error on 10k random data point, except for KC1 which is relatively
small for which we also can compute the exact leverage scores.

In our experiments we fix s =
√
n. We plot in Figure 1 the mean and

variance of the Frobenius norm error over 20 runs in function of landmarks’s
size |E| used in the Nyström method. Our results shows that our DAC
approach outperforms the uniform sampling method and performs similar
to the recursive method.

We compare in Figure 2 the running time of the different methods with
different values of n. In [13], the authors also proposed an accelerated ver-
sion of their recursive method. It improves the running time but not the
approximation error. In this experiments, we also add the running time of
the accelerated recursive method [13]. Our experimental results shows that
the proposed DAC approximate leverage score sampling scheme achieves a
good trade-off between predictive performance and running time.

1Our Python code is available online at https://github.com/DAC-paper/Divide_

And_Conquer_leverage_score_approximation.
2We used the implementation available at https://github.com/axelv/

recursive-nystrom.
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(a) KC1 (b) Covertype

(c) Adult (d) Houses

Figure 1: Approximation error in function of the number of data points n
with s =

√
n.

5 Conclusion

We proposed in this paper a new scalable and well-founded leverage score
sampling scheme based on a divide and conquer strategy. Our experiments
show that the proposed approach achieves good predictive performance with
low running time. Further research may include the empirical study of the
impact of the condition number of the kernel matrix on the approximation
quality. It will be also interesting to study the usefulness of our approxi-
mate leverage score scheme in other applications such as active learning and
dimensionality reduction.
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