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Realization of the optimal sizing of local hybrid
photovoltaic and wind energy systems with load

scheduling capacity
Majdi Saidi, Zhongliang Li, Seifeddine Ben Elghali, Rachid Outbib

Abstract—Proper sizing of a local hybrid energy system is im-
portant to satisfy local power requirement and achieve low cost.
This paper presents a sizing approach for a local photovoltaic
(PV)/wind turbine (WT) hybrid energy system considering the
capacity of local demand side management. In the approach,
instantaneous energy consumption is modelled by analysing
the power characteristics of various load types. Based on the
model, local electricity load can be scheduled to minimize the
electricity consumed from the utility grid. The system sizing is
then formulated as a bi-level optimization problem, in which the
down-level is dedicated to scheduling the energy consumption
in a given energy generation profile, while the up-level is to
seek for the optimal sizing of the hybrid energy system. Genetic
and efficient global optimization algorithms are used respectively
to solve the down-level and up-level optimization problems. A
practical industrial case study is used to verify the sizing strategy.
Different sizing configurations are realized and compared to
demonstrate the benefits of the proposed approach.

Index Terms—Hybrid energy system sizing, demand side
management, evolutionary algorithm, global optimization, mixed-
integer optimization.

NOMENCLATURE

Subscript
bat Battery
c Controllable load
c Cut-in
e Electricity
end End
err Error
f Fix load
g Grid, global
L Length of time
l Load
max Cut-off, maximum
min Minimum
new New
p Production
pv Photovoltaic
pw PV/WT hybrid system
r Rated
s System
start Start
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wt Wind turbine
Variables
R Correlation matrix
r Correlation vector
x Kriging model input
y Kriging model output
T Period
δ Self discharging rate
ϵ Error of Gaussian process
η Efficiency
.̂ Estimation of .
µ Mean of Gaussian process
Φ Cumulative density function
ϕ Probability density function
σ Standard variance of Gaussian process
θk, pk Correlation parameters
A Area
C Cost
Cor Correlation error
E Energy
EI Expected improvement
G Solar radiation
I Improvement
k Discret time index
M Dimension of Kriging model input
N Number
P Power
p Price
s Mean root square error
SOC State of the charge
T Control period
t Time
Tg Analysis duration
v Speed

I. INTRODUCTION

It has been proven that renewable energy use could be
promoted by increasing the decentralized energy generation
proportion. Since the last twos decades, increasing local
renewable energy system installations have been prompted
by policy encouragement and system cost decrease [1]. The
local energy system is often hybridized with different energy
sources and combined with energy storage units (ESUs) to
realize a secure and flexible energy supply [2].

From power consumers’ point of view, the investment of
local hybrid energy systems could be attractive for economic
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and ecological reasons. For potential investors, system sizing
plays a crucial role at the feasibility analysis stage. Besides, a
well sized local energy system could be beneficial to supply
more secure power, higher electricity quality and system
efficiency [3]. Various variables can be taken into account for
sizing a local hybrid energy system, such as those quantify
power security level, economic and ecological impacts. In
most cases, depending on the specific requirements, the system
sizing is formulated as a constrained optimization problem
[4]. Different hybrid energy sizing formulation and resolution
methods can be found in recent review papers [5][6][7].

For sizing a hybrid energy system, various factors need
to be considered including the ones characterize reliability,
economic, environmental and social impacts [7]. In different
sizing optimization formulations, the power balance of gen-
eration and consumption sides is one of the most important
elements. As a reliability indicator, the power balance has
been considered as either a criterion or a constraint and
formed mathematically in various forms. For instance, loss of
power supply probability (LPSP), defined as the percentage
of power supply that the concerned energy system is not able
to satisfy the load demand, has been widely used to quantify
the power balance performance. In most studies, the LPSP
is applied as a constraint in the way that the LPSP of the
concerned system must be less than a preset value [8][9][10].
In other formulations, the LPSP is considered as an objective
to minimize [11][12]. In the latter case, the LPSP concept
is often considered together with other factors in a multi-
objective sizing problem [13]. Similar to the LPSP concept,
other quantities, such as loss of load probability and loss
of energy expected, have also been proposed to evaluate the
power balance of hybrid energy systems and used for sizing.
These indicators of power balance have been explained and
compared in recent review papers [7][5].

Sizing a local hybrid energy system is specific to the
characteristics of the concerned energy consumer. To analyse
and evaluate the power balance using the afore-mentioned
indicators, the specific load power profiles and/or the historical
consumption traces are required [7][5]. The system size is thus
dependent on the load properties of the concerned consumer.

With the development of smart-grids technology, it is be-
coming interesting to plan some local loads to adapt to the
energy generation characteristics and realize effective demand
side management (DSM) [14]. In addition to the management
of energy generation side, the integration of DSM offers more
potential to improve the performance of distributed hybrid
energy systems in terms of reduced system operation costs,
electricity costs, and improved power supply security [15].
During the last years, several DSM strategies have been
proposed for local hybrid energy systems. For instance, in
[16], a load scheduling approach is proposed to store excess
renewable energy as industrial products. Much more works
are focused to the load planning for domestic applications
[17][18]. More systematic insights of DSM can be referred
in the review paper [19][20][21].

The load scheduling is dependent on the property of gener-
ated energy whose capacity and characteristics are determined
largely by the system size. For an energy system, sizing and

load scheduling are therefore correlated and influence each
other. However, in most of the sizing methods, the flexibility
of load scheduling is not considered explicitly, but only treated
by adding an uncertain factor of load [15]. In other works,
load scheduling is often conducted for a roughly sized system
[22]. As the sizing and load scheduling proceed separately, the
system size could be improper to release fully the advantages
of load scheduling.

The main objective of this work is to propose a novel opti-
mal sizing strategy, including both sizing problem formulation
and resolution, for the electricity consumers in consideration of
the load flexibility. Two representative users with such flexibil-
ity are metallurgical and equipment manufacturing industries
[23]. The preliminary idea of the strategy was presented in
[24], while this work has enhanced the involved methodologies
and results. The proposed sizing strategy consists in adapting
the load scheduling as much as possible to the available locally
generated energy for an electricity consumer.

The sizing of the local energy system together with the
load scheduling is formulated as a deterministic static bi-
level optimization problem. On the down-level, the load power
characteristic in function of different load types is modelled
firstly. Then, the load scheduling subject to one load variation
cycle is realized by minimizing the electricity supplied from
the local power grid. The up-level optimization is formulated
outside the load scheduling operation and dedicated to the
system sizing.

The novel formulation of sizing problem necessities novel
resolution methods. Technically, to find a solution to this prob-
lem necessitating a large time for computation, a heuristics
solution genetic algorithm (GA) and Bayesian optimization
method efficient global optimization (EGO) are adopted re-
spectively in the two levels to obtain the final optimal sizing
results. To illustrate the proposed approach, a real industrial
case is considered. In the case, a hybrid energy system
composed by photovoltaic (PV) panels, wind turbines (WT)
and optional ESUs is designed for an industrial manufacturer
to compensate the consumption of electricity from the utility
grid.

The contributions of this work can be summarized as
follows:

• Modelling and scheduling methods are proposed for
industrial energy consumers.

• Bi-level optimization is formulated for the system sizing
integrated with load scheduling. GA and EGO algorithms
are proposed to solve the bi-level problem.

• Effectiveness of the strategy is validated through compar-
ative studies.

The remaining paper is organized in following way: In
Section II, the model of the PV/WT hybrid energy system
and the design criterion is presented. The system design with
ESUs is also introduced in this section. Then, load modelling
and scheduling procedures are described in Section III. The bi-
level optimization framework and the algorithms are presented
in Section IV. Following that, the results of the case study
are provided and discussed in Section V. Finally, Section VI
concludes the proposed work.
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II. SYSTEM MODELLING AND DESIGN CRITERIA

Throughout the paper, we will use the following notations.
The time is denoted t and is assumed to be belonging to a
period T = (0, Tg) where Tg designates the global duration of
the analysis, i.e. the life cycle of the hybrid energy system. In
the sequel, we will use the integer interval notation, namely,
for two integers a < b, [[a, b]] will denote the set {a, a +
1, . . . , b}.

A. System modelling
To size the hybrid energy system properly, the power flow

should be analysed firstly. The structure of the studied hybrid
energy system is illustrated in Fig. 1. To simplify the system
installation and maintenance, ESUs will be optionally installed
in this system. To achieve optimal efficiency, it is supposed that
the energy on both supply and demand sides can be managed
and with bidirectional communication.

Fig. 1. Diagram of the PV/WT hybrid energy system.

Considering that a maximum power point track regulator is
used for the PVs, the power generated by a PV panel Ppv(t)
at time t ∈ T can be modelled as a linear function of radiation
[25], as

Ppv(t) = G(t)Apvηpv (1)

where G(t) is the solar radiation at t ∈ T depending on local
climatic condition. Apv and ηpv are respectively the PV panel
surface and efficiency, which depends on the characteristics of
the used PV.

Pwt(t), power generated by a WT, is modelled using a
piece-wise function of the wind speed v(t) [26]:

Pwt(t) =



0, v(t) < vc

Pr
v(t)3 − v3c
v3r − v3c

, vc ≤ v(t) < vr

Pr, vr ≤ v(t) < vmax

0, v(t) ≥ vmax

(2)

where Pr is the rated power of the WT; vc, vr, and vmax are
named cut-in, nominal and cut-off speeds whose values are
dependent on the WT characteristics.

Given Npv and Nwt, the numbers of PV panels and WTs,
the instantaneous power generated by the PV/WT hybrid
energy system Ppw(t) is calculated, for t ∈ T , as

Ppw(t) = NpvPpv(t) +NwtPwt(t) (3)

B. Energy management

ESUs are optionally installed in the hybrid energy system.
Here, we consider using Li-ion batteries as ESUs. The varia-
tion of the state of charge (SOC) of the batteries is modelled
as follows

SOC(t+T ) = SOC(t)(1−δ)+Pbat(t)Tηbat(Pbat)
sign(Pbat)/Ebat,max

(4)
where δ is battery self discharging rate; Pbat(t) is the charging
power and the negative Pbat(t) denotes that battery is in
discharging operation; Ebat,max is the maximum energy that
the battery can store; η is the efficiency of the battery.

With the ESUs, the energy flow is managed using basic
rules. Given the parameters of an energy storage unit, the
energy management rules are summarized in Algorithm 1. A
main principle adopted for establishing this algorithm consists
of using first the available energy from renewable sources.
With the energy management rules, the power supplied by
utility grid Pg can be determined. It should be noted that
the average battery capacity is used to consider the effect of
battery degradation. In the case that there is no ESUs in the
hybrid system, Pg(t) can be calculated as follows

Pg(t) =

{
Pl(t)− Ppw(t), Pl(t) > Ppw(t)

0, Pl(t) ≤ Ppw(t)
(5)

where Pl is the load power. It should be noted that, in this
study, the local generated power is not allowed to feed the
power grid, but only used for the local energy use.

C. Cost analysis

The whole cost during the life cycle of the system Cg is
composed by the system cost Cs and electricity cost Ce, as

Cg = Cs + Ce (6)

where the system cost consists of the costs related to PVs,
WT and batteries, as

Cs = ppv Npv + pwt Nwt + pbat Nbat (7)

where ppv , pwt, pbat are the unit costs of PV, WT and
battery which cover the initial costs, including acquisition
and installing costs, operating & maintenance and replacement
costs.

The electricity cost corresponding to the concerned system
life cycle is calculated as follows

Ce = pe

∫ Tg

0

Pg(τ)dτ (8)

where pe is the price of electricity from power grid.
The objective of system sizing is to minimize the total

cost Cg by finding the optimal combination of hybrid system
components, namely Npv , Nwt and Nbat.
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Algorithm 1 Rule-based supply side energy management
strategy.
Require: SOC(t) (battery state of charge), Ppw(t), Pl(t);
Ensure: SOC(t+ T ), Pbat(t), Pg(t)

1: if Ppw(t) > Pl(t) then
2: Pg(t) = 0
3: if SOC(t) < SOCmax then
4: if Ppw(t)− Pl(t) < Pbat,max then
5: Pbat(t) = Ppw(t)− Pl(t)
6: else
7: Pbat(t) = Pbat,max

8: end if
9: else

10: Pbat(t) = 0
11: end if
12: else
13: if SOC(t) > SOCmin then
14: if Ppw(t)− Pl(t) > Pbat,min then
15: Pbat(t) = Ppw(t)− Pl(t)
16: Pg(t) = 0
17: else
18: Pbat(t) = Pbat,min

19: Pg(t) = Pl(t)− Ppw(t) + Pbat(t)
20: end if
21: else
22: Pbat(t) = 0
23: Pg(t) = Pl(t)− Ppw(t) + Pbat(t)
24: end if
25: end if
26: Update SOC(t+ T ) according to (5).

III. LOAD MODELLING AND SCHEDULING

For a hybrid energy system equipped with ESUs, the overall
characteristics of generated power can be adjusted to match
the load power characteristics by manipulating the charging
and discharging power of the ESUs. In this study, to reach the
equivalent effect, the effort is made to adjust the load power
aiming to match the characteristics of energy generation.

In this work, a framework of industrial application is con-
sidered. However, the proposed approach can be used for other
applications. First, the electricity consumption is modelled to
achieve load scheduling. The different loads can be recognized
as controllable loads related to the production tasks, and
uncontrollable or fixed ones. In this work, the strategy consists
in adjusting the controllable part of the load and the analysis
is focused on a production cycle.

As shown in Fig. 2(a), a production cycle can be subdivided
to Np time slots. At each time slot, the whole power Pl(k)
(k ∈ [[1, Np]]) can be considered as the sum of two quantities,
namely,

Pl(k) = Pf (k) + Pc(k), (9)

where Pc(k)(k ∈ [[1, Np]]) is the power sum of all controllable
loads, as

Pc(k) =

Nc∑
i=1

P (i)(k), (10)

where P (i) is the power ith controllable load and Nc denotes
the number of controllable loads. In Fig. 2(a), Nc = 2.

For i ∈ [[1, Np]], the ith load is started at kith time slot and
lasts for Li time slots. The power of the ith task is therefore

P (i)(k) =

{
P (i)
r , k ∈ [[ki, ki + Li − 1]]

0, k ∈ [[1, ki − 1]] ∪ [[ki + Li, Np]]
(11)

where P
(i)
r is the average power of the ith load.

Li is considered as constant satisfying Li ≤ Np. The load
power Pl(k) is then a function of starting time of each task
ki (i ∈ [[1, Nc]]).

It should be noted that the powers P
(i)
r and durations Li

(i ∈ [[1, Nc]]) of different controllable and fixed loads can
be identified by analysing the power consumption of each
individual production task. In the focused production cycle, it
is considered that there are always redundant premier materials
for different tasks. With redundant premier materials, different
tasks can be carried out independently.

(a) Load modeling (b) Load scheduling

Fig. 2. Schematic diagram of load modelling and scheduling.

With the identified load model, the power curve can be
configured by assigning the starting times ki to controllable
loads, as shown in Fig. 2(b). In this study, the load is scheduled
to sufficiently use local generated energy and minimize the
energy supplied by the power grid. The energy from the power
grid is

Eg =

Np∑
k=1

Pg(k)T (12)

where T is the control period. In the case that there is no ESUs
in the hybrid system, Pg(k) can be calculated as follows

Pg(k) =

{
Pl(k)− Ppw(k), Pl(k) > Ppw(k)

0, Pl(k) ≤ Ppw(k)
(13)

where the power generated, denoted as Ppw(k), k ∈ [[1, Np]],
is considered known. Eg is therefore dependent on Pl(k),
which is finally a function of ki ∈ [[1, Np]]. Therefore, the
load scheduling problem seeks to minimize Eg by varying ki
(i ∈ [[1, Nc]]).

IV. OPTIMAL SIZING STRATEGY VIA BI-LEVEL
OPTIMIZATION

As shown in Fig. 3, the optimal sizing is realized through a
bi-level optimization procedure [24]. The down-level and up-
level optimizations are respectively dedicated to load schedul-
ing and system sizing.
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In the down-level optimization, the minimized electricity
cost C

(m)
e , which is proportional to the energy supplied by

grid E
(m)
g , can be obtained after conducting load scheduling

for production cycle m. The same load scheduling procedure
will be adopted for each production cycle in the concerned
period Tg .

In the up-level optimization, the whole cost Cg , which could
quantify the long-term profit, is used for evaluating a sizing
option. In the concerned period, multiple (Ng) production
cycles will be handled with load scheduling actions. It should
be noted that the load scheduling is carried out independently
for each production cycle such that the variation among
different production cycles can be taken into account.

Solving the optimization problems separately in the two
levers is beneficial since the overall problem can be decom-
posed into sub optimization problems with smaller scales in
terms of variable number. In the sequel, the optimization
problems and the corresponding solvers will be introduced
respectively for the two levels.

Fig. 3. Schematic of the proposed sizing approach based on bi-level
optimization.

A. Load scheduling in down-level optimization

The objective at this level is to minimize energy consump-
tion from the power grid by scheduling the controllable loads.
The starting times ki are constrained by the stating time
hour kstart, end time hour kend and their durations Li. The
load scheduling is formulated as a mixed integer optimization
problem.

minE(m)
g (k1, k2, . . . , kNc){

ki ∈ [[kstart, kend − Li]]

i ∈ [[1, Nc]]

(14)

To solve the problem using exhaustive search, the com-
putational complexity is O

(
(kend − kstart)

Nc
)
. In the case

where the number of controllable loads Nc is large, the
traditional approaches such as branch and bound, are meant
for a small number of variables and often yield approximate
results [27]. In this study, GA is adopted to resolve the down-
level optimization and reduce the computational time [28]. As
GA has been successfully applied in many practical cases, the

implementation of GA will not be depicted in this paper. The
details of the realization of GA can nevertheless be found in
[29]. A detailed Matlab implementation example can also be
found in [30].

B. System sizing in up-level optimization

In the concerned period for sizing, the total electricity cost
Ce is the sum of the costs for all involved production cycles,
as

Ce(Npv, Nwt) =

Ng∑
m=1

C(m)
e = pe

Ng∑
m=1

E(m)
g (15)

where pe is the electricity price.
The up-level optimization is formulated as

minCg(Npv, Nwt) = Cs(Npv, Nwt) + Ce(Npv, Nwt){
Npv ∈ [[Npv,min, Npv,max]]

Nwt ∈ [[Nwt,min, Nwt,max]]

(16)

where Cs and Ce are calculated respectively using (7) and
(15). The linkage between up-level and down-level optimiza-
tions lies in the calculation of electricity cost Ce. For this term,
multiple down-level optimizations have to be realized in each
calculation of Cg , which is computationally heavy. To alleviate
the computing burden, the objective function calls should be
reduced in the optimization algorithm. EGO is adopted in the
up-level optimization for this purpose. The principle of EGO
is to use a surrogate model instead of the original objective
function. By optimizing the less costly surrogate model instead
of the original cost function, the computing time can be
reduced.

In our case, denoting x = [Npv, Nwt], the Kriging
model mimics the cost function y = Cg(x) in (15)
as a Gaussian process. Based on a set of input points
X = [x(1);x(2); . . . ;x(n)] and their function values y =
[y(1); y(2); . . . ; y(n)], a Kriging model can be built as:

y(x) = µ+ ϵ(x) (17)

where µ is the mean of the Gaussian process. ϵ is the normal
distributed error with mean zero and variance σ2.

The correlation error between ϵ(x(i)) and ϵ(x(j)) is a
function of their distance, as

Cor
(
ϵ(x(i)), ϵ(x(j))

)
= exp(−

M∑
k=1

θk|x(i)
k − x

(j)
k |

pk) (18)

where M is the dimension of the input variables (2 in our
case), θk and pk (k = 1, 2, ...,M) are parameters to be
determined. Together with µ and σ, 2M + 2 parameters need
to be estimated. The parameters can be found by maximizing
the likelihood of the samples [31]. Given the correlation
parameters θk and pk for k = 1, 2, ...,M , µ and σ can be
deduced in closed form, as

µ̂ =
1TR−1y

1TR−11
(19)

σ̂ =
(y − 1µ̂)TR−1(y − 1µ̂)

n
(20)
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where R denotes a n × n matrix whose (i, j) entry is
Cor

(
ϵ(x(i)), ϵ(x(j))

)
, 1 is n-dimensional vector with all

entries 1.
The prediction of an unknown point x and the mean squared

error s2 of the prediction can be calculated using the Kriging
model

ŷ(x) = µ̂+ rTR−1(y − 1µ̂) (21)

s2(x) = σ2

[
1− rTR−1r − (1− 1TR−1r)

1TR−11

]
(22)

where r denotes the n-vector with ith entry ri =
Cor

(
ϵ(x), ϵ(x(i))

)
.

The identified Kriging model is validated by carrying out a
leave-one-out cross-validation procedure. Specifically, given a
data set (X,y), the predicted output ŷ(i) of a test sample x(i)
is calculated through the model identified using the remaining
n− 1 samples. Following that, the number of standard errors
that the actual value is above or below the predicted value
Nerr(x(i)) is computed as

Nerr(x(i)) =
y(i)− ŷ(i)

s
(23)

The model is considered to be valid if Nerr(x(i)) is in interval
[−3, 3]. More details on model validation can be found in [31].

The real cost function value Cg(x) of x follows Gaussian
distribution with mean ŷ(x) and variance s2(x). The improve-
ment of this point beyond the best observed value ymin is then

I(x) = max (ymin − Cg(x), 0) (24)

Based on the distribution of Cg(x), the expected improve-
ment value can be derived as [31]

EI(x) = (ymin − ŷ(x)) Φ

(
(ymin − ŷ(x))

s(x)

)
+ s(x)ϕ

(
(ymin − ŷ(x))

s(x)

) (25)

where Φ(x) and ϕ(x) are the cumulative density function and
probability density function of the normal distribution respec-
tively. In the EGO algorithm, the sample with the maximum
EI value, which is considered as the most probable solution,
is evaluated and added to the sample set. The procedure is
repeated until the maximum EI is less than a prescribed value
(e.g., 0.01ymin). The whole EGO process is summarized in
Algorithm 2. More details on EGO theoretical deduction can
be found in [31] [32] [33].

V. CASE STUDY

In this section, the proposed sizing strategy is applied to one
industrial case. In the case, a PV/WT hybrid energy system
with optional ESU is designed. It should be noted that the
sizing strategy could also be used for other cases where the
load can be partially or fully scheduled.

First, we introduce technical parameters used in this study.
Second, we propose four scenarios for distinguishing different
cases according to the presence or not of storage system
and with or without a scheduling procedure. Particularly,

Algorithm 2 EGO algorithm for up-level optimization.
Require:

1: Initialize design set (X,y), set algorithm threshold ϵEI

2: Estimate parameters of Kriging model: µ̂, σ̂, ŷ, and s
according to (19), (20), (21) and (22)

3: Calculate EI for all possible x according to (25)
Ensure:

1: while maxEI(x) > ϵEI do
2: xnew = argmaxEI(x)
3: ynew = Cg(xnew)
4: X ←X ∪ xnew

5: y ← y ∪ ynew
6: ymin = min(y), xmin = x : Cg(x) = ymin

7: Estimate parameters of Kriging model: µ̂, σ̂, ŷ, and s
according to (19), (20), (21) and (22)

8: Calculate EI for all possible x according to (25)
9: end while

the proposed bi-level optimization based sizing strategy is
applied for the third scenario. The performance of the bi-
level optimization solver combining GA and EGO is evaluated.
Third, we give a comparative analysis.

A. Parameters of the studied case

The technical and economical parameters of the PV panel,
WT and battery selected from the market are summarized
in Table I. The PV, WT and battery installing capabilities
are constrained by the available space and the installation
requirements. By evaluating the studied case, the maximum
number of PV panels Npv,max, WTs Nwt,max and batteries
Nbat,max are respectively 371, 6 and 40.

TABLE I
TECHNICAL AND ECONOMICAL PARAMETERS OF THE SYSTEM

COMPONENTS

Variable Value

PV panel Apv 1.64 m2

ηpv 0.17

WT
vc 10 m/s
vr 12.5 m/s

vmax 20 m/s
Pr 4 kW

Battery
Ebat,max 4.92 kWh

δ 0.0002
Pbat,max 1.674 kW
Pbat,min −1.674 kW

ηbat 0.98

Price

ppv 220 C/unit
pwt 3080 C/unit
pbat 1100 C/unit
pe 0.065 C/kWh

The production cycle is considered as one workday. During
the product fabrication process, 12 tasks numbered from 1
to 12 need to be scheduled. The electricity consumers for
the 12 tasks and their nominal powers are listed in Table
II. By analysing the operation process in each task, the
average powers and the durations of 12 production tasks are
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listed in Table III. In addition to the loads corresponding
the product fabrication activities, there are also some regular
electricity consumption relating to lighting, office work, air
condition, etc. The power composition of different loads
and the measured power in one workday are shown in Fig.
4. It is seen that the identified model is able to represent
the real power consumption characteristics. In the concerned
production cycle, the energy share of the controllable loads
accounts for 36%.
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Fig. 4. Measured and modelled load power during one production cycle.

In the studied case, it is considered that the same production
cycle is repeated from every Monday to Friday each week,
while constant load of 3 kW is considered in weekend, i.e.,
Saturday and Sunday.

TABLE II
LIST OF INVOLVED ELECTRICITY CONSUMERS AND THEIR POWERS

Load Number Power per unit (kW)

Grinder 3 1.2
Perseuse 1 0.5

Pinter 4 0.2
Soldering station 1 2.45
Welding machine 2 4.5
Overhead crane 1 1 2.7
Overhead crane 2 1 5.5

Workshop extractor 2 1.5
Fan 1 1.5

Electric saw 1 1.1
Paint extractor 1 7.5

Compessor 1 6

The historical solar radiation and wind speed data of the
concerned geographical position are collected. The system life
cycle Tg of 20 years is used to calculate the global cost.

B. Scenario 1: system sizing with neither energy storage nor
load scheduling

In this scenario, the sizing of the system is carried out
with neither energy storage nor load scheduling. The load
powers are considered to be identical. Given a combination
Npv and Nwt, the value of the cost function Cg in (6) is
simple to calculate. The optimal sizing can be found through
an extensive search of all possible sizing options. The number
of combinations Nc is dependent on the maximum installation
capacities, as

Nc = (NPV,max + 1)(Nwt,max + 1) (26)

By deploying the extensive search algorithm, the optimal
PV panel number Npv = 44 and WT number Nwt = 4 are
obtained. With this sizing option, the total cost Cg is 1.016×
105 C, and the system cost Cs = 3.400 × 104 C, electricity
cost Ce = 6.758× 104.

For comparison, the electricity cost is 1.258× 105 C if the
system is not installed. It is therefore economically beneficial
to install the local PV/WT hybrid system.

The locally generated and consumed powers during one year
and one specific production cycle are shown in Fig. 5. It is
noticed that the power generation and consumption are often
mismatched. For instance, in the period shown in the magnified
figure, the energy demanded is intensive in the morning while
the generation peak is in the afternoon. The locally generated
energy is not used sufficiently.
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Fig. 5. Comparison of the generated and load powers with neither energy
storage nor load scheduling.

C. Scenario 2: post load scheduling with a pre-designed
system without energy storage

In this scenario, load scheduling is carried out with the same
sizing option in the last scenario. As stated in Section IV, GA
is deployed to realize load scheduling for all the production
cycles within the system life-cycle. Regarding the problem
shown in (14), the starting time hour kstart and the end time
hour kend are set respectively as 7 and 20 considering the
staffs’ working time.

After the load scheduling operation, Ce is reduced to
6.385 × 104 C. The generated and load powers for one pro-
duction cycle are shown in Fig. 6. By moving the controllable
loads, the power generation and consumption are matched
better than the previous scenario without load scheduling.

D. Scenario 3: system sizing with load scheduling without
energy storage

As presented in Section IV, the optimal sizing considering
load scheduling capability can be achieved via the proposed
bi-level optimization. For the cost function calculation of each
sizing option, i.e., the combined numbers of PV panels and
WTs, GA has to be run for all production cycles, which is
time-consuming. In our case, the load scheduling for all pro-
duction cycles in 20 year, which accounts for 5420 workdays,
takes about 1 min. If the extensive research is adopted, the
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TABLE III
AVERAGE DURATIONS AND POWERS OF THE PRODUCTION TASKS

Task index 1 2 3 4 5 6 7 8 9 10 11 12

Li/h 7 5 6 5 7 4 8 10 8 10 2 7
P

(i)
r /kW 0.98 0.90 0.90 0.60 3.38 3.38 0.83 1.84 0.42 1.20 13.13 0.13
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Fig. 6. Comparison of the generated power and load power with the pre-
designed system. Red line: original load power; Blue line: generated power;
Colourful blocks: scheduled power.

calculation time for all possible sizing combinations will be
about 2604 mins. This is considered unsupportable especially
when some parameters of the installed system change and the
sizing has to be re-conducted. By using the EGO algorithm
for the up-level optimization, the optimum can be found with
a smaller number of cost function calculations.

As indicated in Algorithm 2, 10 samples are randomly
sampled from all sizing combinations and formed as the initial
design set. A leave-one-out cross-validation is then carried
out over the initial design set. The Nerr(x(i)) values in (23)
is shown in Fig. 7. As all Nerr(x(i)) values are within the
interval [−3, 3], the identified Kriging model is thus validated.
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Fig. 7. Nerr values of all samples in a leave-one-out cross-validation test.

Starting with the initial design set, the optimal sizing option
can be found by implementing Algorithm 2. The parameter ϵ
is set as 0.0001ymin. The Kriging function surfaces and the

(a) Kriging function surface and samples in design set.

(b) Expectated improvement.

Fig. 8. Initial Kriging function surface and EI .

expectation improvement EI before and after the while loop
are shown respectively in Fig. 8 and 9. It can be seen that the
Kriging function and EI surfaces evolve with the increase of
sample number in design set. The final EI values all decrease
to a low level.

To evaluate the performance of up-level optimization al-
gorithm, the EGO is implemented for 5 times with different
random initial design sets. The minimum function output
ymin and the maximum expected improvement max(EI(x)),
shown in Algorithm 2, versus iteration number are shown
respectively in Fig. 10 and 11.

It can be seen that the EGO algorithm can find the converged
solution with different starting sample sets. At the final itera-
tion, the maximum of expected improvement max(EI(x))
is sufficiently small, which guarantee the precision of the
solution.

Concerning the computing time, the optimal sizing option is
found with less than 14 iterations. Together with the 10 starting
samples, the function evaluation runs are limited to less than
24 times. Compared to the extensive search, the EGO is much
more efficient computationally. In this scenario, the computing
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(a) Kriging function surface and samples in design set.

(b) Expectated improvement.

Fig. 9. Final Kriging function surface and EI .
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Fig. 11. max(EI) evolution with iteration number.

time with the proposed bi-level optimization is approximately

30 mins.
In the solution, the optimal numbers of PV panels and WTs

are respectively 66 and 5. Correspondingly, Cg = 9.559×104

C, in which Cs = 4.624×104 C and Ce = 4.935×104 C. It is
observed the electricity consumption is reduced significantly
thanks to more PV and WT installations, as well as load
scheduling operation. Even though the system cost is higher,
the total cost is reduced regarding the last two scenarios.

The generation and consumption powers of the specific
production cycle are shown in Fig. 12. Comparing to the case
shown in Fig. 6, more energy is generated since the system
size is bigger. In addition, the local generation could almost
cover the energy consumption during the production cycle,
which contributes to reduce the electricity cost from the grid.
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Fig. 12. Comparison of the generated power and load power with optimally
sized system. Red line: original load power; Blue line: generated power;
Colourful blocks: scheduled power.

E. Scenario 4: system sizing with energy storage without load
scheduling

The installation of ESUs is a more regular solution to
overcome the power generation and consumption mismatch
and use renewable energy more sufficiently. For comparison,
the sizing of the hybrid energy system with energy storage
installation is studied in this scenario. The energy flow man-
agement in the hybrid energy system is described in Section
II. For each sizing option (combination of the PV panel, WT
and battery numbers), the system cost Cs can be calculated
through (7). The power supplied by utility grid Pg during the
concerned period can be deduced through Algorithm 1 and
the electricity cost Ce can then be calculated with (12) and
(15). An exhaustive research is used in this case to seek for
the optimal combination of the PV panel, WT and battery
numbers.

The optimal numbers of PV panels, WTs and batteries are
found to be respectively 48, 4 and 3. Cg is 1.006 × 105

C, in which Cs = 3.863 × 104 C and Ce = 6.199 × 104

C. Compared with the system design without energy storage
installation (scenario 1), the global cost is reduced slightly
due to the decrease in electricity cost. However, the benefit of
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energy storage installation is not evident because additional
cost from batteries is also introduced. The output power of
the local energy system (bar plot) and the load power of a
selected workday are shown in Fig. 13. It can be seen that the
generated power from PV and WT is more than the load power
from 38 h to 47 h. The excess part is stored in the installed
battery packs. However, between 25 h and 35 h, even the
generated power is less than the required power, the batteries
cannot compensate the power loss due to the limits of SOC
and output power.
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Fig. 13. Generated and load powers of the system with energy storage.

F. Results synthesis and discussion

The optimal sizing results and the corresponding costs for
the four scenarios are summarized in Table IV. Regarding the
global cost, the system design considering load scheduling
(scenario 3) achieves the best performance. The energy storage
installation (scenario 4) is not so beneficial. The system with
energy storage can only reduce a little global cost compared
to the pure PV/WT system without energy storage (scenario
1). The post scheduling with a pre-designed pure PV/WT
(scenario 2) can be even more beneficial. It can therefore be
interesting to schedule the loads to obtain equivalent effect as
energy storage installation.

In the studied production cycle, the starting time hour
kstart and the end time hour kend of the involved tasks are
constrained by staffs’ working time. The scheduling flexibility
is therefore limited. For comparison, the costs are calculated
in scenario 2 and 3 when the kstart and kend are set re-
spectively at 1 and 24, which means that the different tasks
can be scheduled during one production period without time
constraints. The corresponding results are shown in Table IV.
It can be seen that the benefits in the two scenarios are
both improved significantly. It can be further deduced that
the proposed approach could be more interesting for the users
with more flexible working time.

It should also be noted that the sizing result is case-
dependent. The benefit of the proposed bi-level optimization
sizing method varies with both energy generation and load
patterns. For instance, the proposed bi-level optimization siz-
ing method could be less beneficial in the cases where the
proportion of controllable load is relatively small.

This study has put its importance on the impact of load
scheduling flexibility on system sizing. The prediction of
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Fig. 14. Variations of costs versus relative error of the prediction of power
generation in scenario 2 and 3.

power generation has an important impact on the performance
of the proposed strategy since the power generation used for
load scheduling is predicted in practice.

Previous results are obtained assuming that the power
generation can be precisely predicted. To evaluate the effect
of the power generation prediction, errors at different levels
are incorporated into the power generation used for the load
scheduling in scenario 2 and 3. The electricity costs (Ce)
and total costs (Cg) under different relative error levels are
calculated and shown in Fig. 14. It can be seen that the benefit
of load scheduling in saving electricity cost and the total cost
decreases with the increase of the prediction error. It can also
be observed that it is beneficial to integrate the load scheduling
operation even the relative error of the prediction reaches 50%.
Comparing the results in scenario 2 and 3, it is beneficial to
integrate the load scheduling in the sizing phase. However, the
superiority of scenario 3 declines when the prediction error
increases. The performance of the prediction of renewable
energy generation is therefore important to the proposed sizing
strategy.

An industrial energy use is concerned in this work. The
peak load power in the studied case is of tens kW. To fulfil
the energy storage requirement, numerous battery needs to be
installed in scenario 4, which is not economically beneficial.
Other more economical energy storage solutions could be
more interesting for industrial loads. With a proper energy
storage design, it could even more beneficial when the energy
flow is managed considering both energy generation and
consumption sides. However, a more complicated optimization
problem might have to be solved.

In this study, it is considered that the different controllable
tasks are independent in the production cycle. In a more
general industrial case, the interdependent, sequential and
mutual exclusive tasks should also be taken into consideration
in the load model. Accordingly, the resolution method could
also be adapted to the new model formulation.

In the studied case, the locally generated energy is not
allowed to flow to the utility power grid. For instance, in Fig.
12, the surplus energy between 16 h and 24 h will generally
be wasted. The surplus energy could account for an important
part. This could explain that the benefit of installing more PV
panels and WTs in scenario 3 is not so evident.
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TABLE IV
SIZINGS AND COSTS IN DIFFERENT SCENARIOS

Scenario kstart, kend Npv , Nwt, Nbat System cost (C) Electricity cost (C) Total cost (C)

1 null 44, 4, 0 3.400× 104 6.758× 104 1.016× 105

2 7,20 44, 4, 0 3.400× 104 6.385× 104 9.785× 104

2 (comparison group) 1,24 44, 4, 0 3.400× 104 5.806× 104 9.206× 104

3 7,20 66, 5, 0 4.624× 104 4.935× 104 9.559× 104

3 (comparison group) 1,24 41, 6, 0 4.250× 104 4.691× 104 8.941× 104

4 null 48, 4, 3 3.863× 104 6.199× 104 1.006× 105

In this study, the electricity price is assumed to be constant
as its practical yearly variation is hard to quantify. The elec-
tricity price value does not affect the down-level optimization
dedicated to load scheduling regarding (14). The sizing result
is nevertheless related to the electricity price regarding (15)
and (16). More specifically, when the electricity price is lower,
the benefit of local energy system installation will also be
lower.

VI. CONCLUSION

An optimal sizing approach is proposed for grid-connected
hybrid energy systems possessing load scheduling capacity.
To achieve load scheduling, the local power model is built
as a function of starting times of individual tasks. A bi-
level optimization formulation is proposed to combine load
scheduling with the system sizing approach. GA and EGO
algorithms are respectively used for the two levels.

From the results of a real case study, it can be concluded that
the electricity consumed from the power grid can be reduced
thanks to the load scheduling action, given the same local
energy generation. In the studied case, it is demonstrated that
the load scheduling operation could be more economically
beneficial than energy storage installation. Moreover, by inte-
grating the load scheduling into the system design phase, the
renewable energy consumption capacity of locally generated
energy is enhanced. It is therefore motivated to install more
renewable energy units to compensate the local consumption
with load scheduling capability.

In the ongoing work, efforts are being taken to integrate an
interactive dynamic electricity pricing model and an energy
generation prediction model into the load scheduling process.
The sizing strategy is also being tested for other types of
electricity consumer with load flexibility.
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