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Abstract
Exploiting experts’ knowledge can significantly increase the
quality of the Bayesian network (BN) structures produced by
learning algorithms. However, in practice, experts may not be
100% confident about the opinions they provide. Worst, the
latter can also be conflicting. Including such specific knowl-
edge in learning algorithms is therefore complex. In the litera-
ture, there exist a few score-based algorithms that can exploit
both data and the knowledge about the existence/absence of
arcs in the BN. But, as far as we know, no constraint-based
learning algorithm is capable of exploiting such knowledge.
In this paper, we fill this gap by introducing the mathematical
foundations for new independence tests including this kind
of information. We provide a new constraint-based algorithm
relying on these tests as well as experiments that highlight the
robustness of our method and its benefits compared to other
constraint-based learning algorithms.

1 Introduction
Bayesian networks (BN) are popular graphical models de-
signed for compactly encoding joint probabilities. Their
graphical structures represent sets of conditional indepen-
dences. They can be either constructed by expert knowl-
edge when the number of variables is limited or, more of-
ten than not, they are learnt from data. Although struc-
ture learning is known to be NP-hard (Chickering 1996),
there exist numerous exact and approximate learning al-
gorithms in the literature. Basically, they can be divided
into four types of approaches: i) score-based (Heckerman,
Geiger, and Chickering 1995); ii) constraint-based (Spirtes
and Glymour 1991); iii) variable ordering-based (Teyssier
and Koller 2005); iv) hybrid algorithms that combine the
above methods to take advantage of their best (Tsamardinos,
Brown, and Aliferis 2006). Each approach has its own pros
and cons. In this paper, we focus on constraint-based learn-
ing algorithms. Actually, this type of learning exhibits ap-
pealing properties in terms of the accuracy of the structures
learnt (Scutari, Graafland, and Gutiérrez 2019), and also in
terms of causal discovery and overfitting avoidance.

Although BNs are seldom constructed entirely from ex-
pert knowledge, exploiting the latter in learning algorithms
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can still prove useful in order to increase the accuracy of
the output structures. In a sense, score-based approaches na-
tively include expert knowledge through their priors. But
their expressive power is not very high in practice. One step
toward more sophisticated knowledge, expressed in the form
of ancestral sets constraints, was introduced in (Borboudakis
and Tsamardinos 2012; Chen et al. 2016). Sets of possi-
bly conflicting uncertain knowledge provided by several ex-
perts about the existence or absence of arcs in the struc-
ture were addressed in (Richardson and Domingos 2003;
Amirkhani et al. 2017). This consisted essentially in mod-
ifying the scores classically used for learning.

In this paper, we are interested in exploiting possibly con-
flicting uncertain knowledge within a constraint-based ap-
proach. As far as we know, only knowledge about the ex-
istence or absence of arcs expressed as hard structural con-
straints have been introduced in the constraint-based frame-
work (de Campos and Castellano 2007). This rules out both
conflicting and uncertain experts’ knowledge, which are of-
ten available in practical situations. We therefore propose a
novel algorithm filling this gap. More precisely, constraint-
based approaches consist of exploiting statistical indepen-
dence tests in order to determine the set of conditional in-
dependences underlying the joint distribution of the BN’s
random variables. The main issue is therefore to introduce
such experts’ knowledge into the statistical tests. In Sec-
tion 2, we introduce the mathematical foundation for such
tests. Relying on tailored BNs, it results in new G-tests that
precisely take into account sets of possibly conflicting as-
sertions about the conditional dependence or independence
between pairs of random variables. The confidence the ex-
perts have in these assertions as well as the trust we have in
the experts are also taken into account. In Section 3, a vari-
ant of PC-stable (Colombo and Maathuis 2014) is proposed
that includes these new tests. Finally, in Section 4, some ex-
periments are provided to highlight the behavior of this new
algorithm, and Section 5 concludes the paper.

2 Novel Independence Tests
The goal of this section is to introduce Rule 1, a new inde-
pendence test taking into account multiple experts’ uncertain
knowledge. It relies on the exploitation of BNs:



Definition 1 (Bayesian network). A BN is a pair (G,Θ)
where G = (V,E) is a directed acyclic graph (DAG), V
represents a set of random variables1, E is a set of arcs, and
Θ = {P (X|Pa(X))}X∈V is the set of the conditional prob-
ability distributions (CPD) of the nodes / random variables
X inG given their parents Pa(X) inG. The BN encodes the
joint probability over V as P (V) =

∏
X∈V P (X|Pa(X)).

For our new independence test, consider two random vari-
ables X and Y whose domains are ΩX = {x1, . . . , xr}
and ΩY = {y1, . . . , ys} respectively and whose joint dis-
tribution is P (X,Y) = {θxiyj : xi ∈ ΩX, yj ∈ ΩY}.
For all xi ∈ ΩX, let θxi. =

∑
yj∈ΩY

θxiyj and, for all
yj ∈ ΩY, let θ.yj =

∑
xi∈ΩX

θxiyj . Let S = {(XY )(n)}Nn=1
be a set of mutually independent variables distributed w.r.t.
P (X,Y). Hence, P ((XY )(n) = xiyj) = θxiyj for all
xiyj ∈ ΩXY = ΩX × ΩY. A set s = {(xy)(n)}Nn=1 of ob-
servations of the (XY )(n) is therefore an i.i.d. sample of
observations of (X,Y). Finally, let I be the unobserved ran-
dom variable indicating whether X and Y are independent
(I = 1) or not (I = 0). We model the relationships be-
tween the (XY )(n) and I using the BN of Fig. 1, that is, the
(XY )(n) are mutually independent but become dependent
whenever I is observed. Indeed, if I = 1 and we observe
a subset S′ ⊂ S incompatible with I = 1, S\S′ will most
likely account for the independence between X and Y.

· · ·(XY )(1) (XY )(N)

I

Figure 1: Relationship between the (XY )(n) and Variable I.

Proposition 1. Let s = {(xy)(n)}Nn=1 be a sample of obser-
vations of {(XY )(n)}Nn=1. Let pI = P (I = 1). Assume that
the conditional joint distribution of {(XY )(n)}Nn=1 given
I = 1 is approximately equal to

∏N
n=1 P ((XY )(n)|I = 1).

Then, we have that:

P (I = i|s) ≈


1− P (I = 1|s) if i = 0,

pI ×
∏

xy∈ΩXY

[
θx. × θ.y
θxy

]Nxy

if i = 1, (1)

whereNxy refers to the number of elements in s equal to xy.
Note that the above assumption precisely corresponds to

that which is used in the classical χ2 and G2 independence
tests. Fig. 1, the values of pI and of {θxy} and the above
proposition fully characterize the BN of the joint of I and
{(XY )(n)}Nn=1. Parameters {θxy} can simply be estimated
by Maximum Likelihood. It is easy to see that Equation (1)
does not constrain the value of pI. This one should therefore
reflect our background knowledge about the independence
of X and Y. We will provide some reasonable possible val-
ues in the experimental section.

1By abuse of notation, we use interchangeably X ∈ V to de-
note a node in the BN and its corresponding random variable.

Now, assume that K experts provide their knowledge
about the state of I, i.e., about whether X and Y are inde-
pendent, through assertions ek similar to “I think that X and
Y are independent” or “I believe that X directly influences
Y”. Let Ok be a random variable representing the opinion
of the kth expert (Ok = 0 and Ok = 1 mean dependence
and independence respectively). Hence statement ek is an
observation of Variable Ok and P (ek|Ok) is a vector of size
|Ok| with one value equal to 1 and the other equal to 0. In
addition, assume that the experts are able to estimate their
confidence, say γk, in their correct identification of the true
state of I. For instance, the kth expert may estimate that she
is 70% confident that her judgment is right. In this case,
γk = 0.7. Then P (Ok = i|I = i) = γk for i ∈ {0, 1}.
The experts’ opinions are based on previous experiences
with X and Y. Hence they are not independent. However,
whenever the value of I is known, the knowledge of some
experts should not provide new information to the others.
So the relations between I and the Ok’s can be encoded by a
BN containing only arcs I → Ok. Finally, it is well-known
that people have trouble to accurately estimate probabilities
(Tversky and Kahneman 1992). So, we should not directly
use γk in P (Ok = i|I = i) but rather a transform of γk. To
avoid ambiguities, we introduce a new variableEk using this
transform, i.e., P (Ek = i|I = i) = ϕk(γk). Note that ϕk(·)
can also include our own perception about the accuracy of
the kth expert. In this paper, we suggest using the following
parameterized logistic function mapping [0, 1] to [0, 1]:

ϕk(γk) =
1

βk − 1

[
1 + βk

1 + β1−2γk
k

− 1

]
. (2)

This transform is quite general, as shown in Fig. 2 in which,
for simplicity, ρk = 2 log βk.
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Figure 2: Probability transform ϕk(·).

Overall, to take into account the uncertain experts knowl-
edge, the BN of Fig. 1 can be extended as that of Fig. 3.
Evidence ek can then be entered as P (ek|Ek) = P (ek|Ok).

Using this Bayesian network, it is possible to compute the
likelihood ratios used in G2-type independence tests:
Proposition 2. Let s = {(xy)(n)}Nn=1 be a sample of obser-
vations of {(XY )(n)}Nn=1 and e = {ek}Kk=1 be some expert
knowledge. Then, the likelihoods L(s|I = 1, e) = P (s|I =
1, e) = LP1

(s|e) and L(s|e) = P (s|e) are such that:

L(s|e) =
ε0
P (e)

×LP0
(s|e)+

[
1− ε0

P (e)

]
×LP1

(s|e), (3)
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Figure 3: Relationships including experts’ knowledge.

with LP0
(s|e) =

∏
xy∈ΩXY

θNxy
xy , LP1

(s|e) =
∏

xy∈ΩXY

(θx.θ.y)
Nxy ,

P (e) = ε0 + P (I = 1)× [ε1 − ε0],

ε0 = P (e|I = 0) =
∑

E1,...,EK

K∏
k=1

P (Ek|I = 0)P (ek|Ek),

ε1 = P (e|I = 1) =
∑

E1,...,EK

K∏
k=1

P (Ek|I = 1)P (ek|Ek),

Nxy = the number of elements of s equal to xy.
Equation (3) can be interpreted as follows: there is an un-

certainty concerning Probability distribution P of the popu-
lation, which can be equal either to P0(X,Y) = {θxy : x ∈
ΩX, y ∈ ΩY} or to P1(X,Y) = {θx.θ.y : x ∈ ΩX, y ∈ ΩY}.
L can therefore be modeled as a mixture of the likelihoods of
two populations, weighted w.r.t. the expert knowledge con-
fidence and our perception of its accuracy.

When no expert knowledge ek is available, we trivially
have ε0 = ε1 = P (e) = 1. Similarly, when we trust equally
the expertise of the experts w.r.t. dependence and indepen-
dence of X and Y and when the expert has no knowledge
and just says that there is a 50-50% chance that there is an
independence between X and Y, then ε0 = ε1. Note that,
whenever ε0 = ε1, P (s, e) = LP0

(s|e), which is the likeli-
hood used at the numerator of the classical G-test.

Let LR(s|e) denote Likelihood ratio L(s|e)/L(s|I =
1, e). Then, by the above proposition, it holds that:

LR(s|e) =
ε0
P (e)

×LRP0(s|e)+

[
1− ε0

P (e)

]
×LRP1(s|e),

with LRP0(s|e) = LP0(s|e)/LP1(s|e) and LRP1(s|e) =
1. This likelihood ratio is therefore the mixture of two like-
lihoods, one over the population related to P0 and the other
one over the population related to P1. Now, in the classical
G-test, under the assumption that the likelihood under the
alternative hypothesis is close to that under the null hypoth-
esis, their ratio should be close to 1 and, therefore, at sig-
nificance level α, the G-test consists of computing a thresh-
old above which only a percentage α of the set of all possi-
ble samples would produce a ratio greater than this thresh-
old (given that the aforementioned assumption holds). Here,
the α-percentage over the whole population is logically split
into an α × η percentage over the population related to P0

plus an α× (1−η) percentage over the population related to
P1, with η = ε0/P (e). As likelihood ratio LRP1

(s|e) is al-
ways equal to 1, the α× (1−η) percentage is uninformative
for the G-test. So, the test relies only on LRP0

(s|e).

Proposition 3. Assuming that the likelihood under the alter-
native hypothesis is close to that under the null hypothesis,
2 ln(LRP0(S|e)) ∼ χ2

k, where k = (|ΩX|−1)× (|ΩY|−1).
Rule 1. Our independence test at significance level α given
sample s and expert knowledge e consists of accepting inde-
pendence between X and Y if and only if 2 ln(LRP0

(s|e)) <
ck,αη or, equivalently, if the p-value of 2 ln(LRP0

(s|e)) is
greater than α× η, where η = ε0/P (e) and, for any δ, ck,δ
denotes the (1 − δ) quantile of the χ2 distribution with k
degrees of freedom.

In other words, our test consists of applying the classical
G-test with significance level α × η instead of α. It can be
easily extended to cope with conditional independence test-
ing given a set Z of random variables. For this purpose, it is
sufficient to extend the network of Fig. 3 to that of Fig. 4.
In this BN, Z(1), . . . , Z(N) are random variables distributed
w.r.t. P (Z) = {θz : z ∈ ΩZ} and I is a random variable
indicating whether X and Y are conditionally independent
(I = 1) or not (I = 0) given Z.

· · ·(XY )(1) (XY )(N)

Z(1)

· · ·
Z(N)

I

· · ·E1 EK

Figure 4: The BN for conditional independence testing.

Proposition 4. Let s = {((xy)(n), z(n))}Nn=1 be a sample
of observations of S = {((XY )(n), Z(n))}Nn=1. For any z ∈
ΩZ, assume that P (Z(n)|I) ≈ P (Z(n)) and that:

P (I = 1|s) ≈ p(I = 1)×
∏

xyz∈ΩXYZ

[
θx.|zθ.y|z

θxy|z

]Nxyz

, (4)

where θx.|z =
∑
y∈ΩY

θxy|z , θ.y|z =
∑
x∈ΩX

θxy|z and
θxy|z = P (X = x,Y = y|Z = z). Then, denoting
by L|z(·) the conditional likelihoods given {z(n)}Nn=1, i.e.,
L|z(s|e) = P ({(xy)(n)}Nn=1|e, {z(n)}Nn=1), it holds that:

LR|z(s|e) =
L|z(s|e)

L|z(s|I = 1, e)

=
ε0
P (e)

× LRP0|z(s|e) +

[
1− ε0

P (e)

]
,

where P (e) = ε0 + P (I = 1)× [ε1 − ε0],

LRP0|z(s|e) = LP0|z(s|e)/LRP1|z(s|e), (5)

LP0|z(s|e) =
∏

xyz∈ΩXYZ

θ
Nxyz

xy|z ,

LP1|z(s|e) =
∏

xyz∈ΩXYZ

(
θx.|zθ.y|z

)Nxyz
,

Nxyz is the number of records in s equal to xyz.



Assuming that the likelihoods under the alternative hypoth-
esis and the null hypothesis are close, 2 ln(LRP0|z(S|e)) ∼
χ2
k, where k = (|ΩX| − 1)× (|ΩY| − 1)× ΩZ.
Our conditional independence test is thus the same as that

of Rule 1, except that conditional probabilities are used in-
stead of unconditional ones. Note that all the θ’s can be es-
timated by Maximum Likelihood, as in classical G-tests.

3 Constraint-based Learning with Multiple
Uncertain Experts’ Knowledge

In theory, we can exploit directly our new independence
tests within the well-known PC, IC or PC-stable algorithms.
However, using uncertain experts’ knowledge raises two is-
sues: i) what if the dataset is too small to perform a given
G-test? and ii) what if the G-tests with and without experts’
knowledge result in different decisions?

As for the first issue, usually, the learning algorithm sim-
ply does not take into account the G-test. But in our situa-
tion, expert’s knowledge might still be exploitable. For this
purpose, let d denote the decision to consider that X and Y
are conditionally independent given Z and let u1 and u0 de-
note the utilities of making decision d while being right and
wrong respectively, i.e., they represent our perception about
the gain and loss of making decision d (we therefore assume
that u1 > 0 and u0 < 0). Utilities u1 and u0 may not be
easy to elicit but their ratio T = −u0/u1 is (Keeney and
Raiffa 1976). Finally, note that ε1 and ε0 represent the prob-
abilities, according to the experts, of being right and wrong.
Therefore, from an expected utility point of view, we should
consider X and Y conditionally independent given Z if and
only if ε1u1 + ε0u0 > 0 or, equivalently, if ε1/ε0 > T . We
use precisely this rule in Algorithm 1.

For the second issue, note that removing or keeping an
edge at one step of the constraint-based learning can have a
significant impact on the subsequent steps. So such decisions
must be taken with care. When both G-tests with and with-
out experts’ knowledge agree, we can be confident in the
resulting decision. However, when they disagree, we should
follow the test with expert knowledge (since it takes into ac-
count more information) but we should also not definitely
rule out the information provided by the G-test without ex-
perts’ knowledge. To do so, in Algorithm 1, we construct a
graph G which will be the learnt skeleton, but we also main-
tain another graphical structure named Gadj , which is used
to determine the candidate Sepsets (separating sets). Graph
Gadj takes into account the disagreements between the G-
tests with and without experts’ knowledge.

These variants combined with PC-stable (Colombo and
Maathuis 2014) result in Algorithm 1, called PCSe.

4 Experimentations
We now highlight the effectiveness of PCSe by comparing
it with PC stable and the algorithm proposed in (de Campos
and Castellano 2007), hereafter called PCS and PCSDC re-
spectively. For this purpose, we randomly generate datasets
from benchmark networks taken from a BN repository2.

2https://www.bnlearn.com/bnrepository/

Algorithm 1 Algorithm PCSe
Input: dataset D, experts’ knowledge K, significance
level α, a priori knowledge P (I), threshold T
Output: an undirected graph G and a set of Sepsets

1: V← all the variables/columns of D
2: G = (V,E)← complete undirected graph
3: Gadj = (V,Eadj)← complete undirected graph
4: m← −1 ; Sepset← ∅
5: repeat
6: m← m+ 1
7: for all vertices Xi in V do
8: adji ← {Xj ∈ V : (Xi, Xj) ∈ Eadj}
9: end for

10: for all (Xi, Xj) ∈ Eadj s.t. |adji| ≥ m+ 1 do
11: repeat
12: Choose a new set Z ⊆ adji\{Xj} s.t. |Z| = m
13: Extract from K the knowledge on (Xi, Xj |Z)
14: Create the BN of Fig. 4 and compute its θ-

parameters, ε0, ε1, P (e) and η = ε0/P (e)
15: if D is too small for performing G-test then
16: if ε1/ε0 > T then
17: Remove (Xi, Xj) from both E and Eadj

18: Sepset({Xi, Xj})← Z
19: end if
20: else
21: p← p-value of 2 ln(LRP0|z(s|e)) of Eq. (5)
22: if p ≥ α then
23: Remove (Xi, Xj) from Eadj

24: end if
25: if p ≥ α× η then
26: Remove (Xi, Xj) from E
27: Sepset({Xi, Xj})← Z
28: end if
29: end if
30: until either p ≥ α and p ≥ α × η or all Z s.t.

|Z| = m have been considered
31: end for
32: until all vertices Xi ∈ V are such that |adji| ≤ m
33: return G, Sepset

Samples of sizes ranging from 500 to 10000 records are thus
generated. To provide experts’ knowledge, we first select
randomly 50%3 of the structural information encoded in the
original network. Then, to highlight the robustness of PCSe
w.r.t. errors, part of this information is included as is into the
experts’ knowledge whereas the other part is transformed
into erroneous information, i.e., the presence (resp. absence)
of an edge is included as an absence (resp. presence) of this
edge. In order to enable comparisons with PCSDC, only one
expert is taken into account. Finally, for all the experiments,
Threshold T is fixed at 0.5, and we set P (I = 1) = 0.95 as
this translates well the fact that, in practice, BNs are “sparse”
and, as such, represent a majority of independences.

PCSe, PCS and PCSDC are compared on the basis of the

3We assume that experts’ knowledge cannot exceed 50% of the
structural information encoded in the BN.



Sample size 1000 5000 10000

Correctness (%) PCS PCSDC PCSe PCS PCSDC PCSe PCS PCSDC PCSe

0 0.703 0.000 0.695 0.836 0.000 0.822 0.889 0.000 0.873
25 0.703 0.174 0.719 0.836 0.174 0.837 0.889 0.174 0.881
50 0.703 0.347 0.742 0.836 0.347 0.848 0.889 0.347 0.891
75 0.703 0.521 0.762 0.836 0.521 0.862 0.889 0.521 0.897
100 0.703 0.863 0.779 0.836 0.913 0.859 0.889 0.939 0.909

Table 1: F-scores of PCS, PCSDC and PCSe for the Alarm BN in function of the correctness percentage.

PCS PCSDC PCSe PCS PCSDC PCSe PCS PCSDC PCSe

Correctness (%) Asia Andes Alarm

0 0.662 0.000 0.591 0.639 0.000 0.599 0.623 0.000 0.615
25 0.662 0.166 0.624 0.639 0.164 0.635 0.623 0.166 0.634
50 0.662 0.399 0.671 0.639 0.326 0.667 0.623 0.333 0.663
75 0.662 0.674 0.729 0.639 0.487 0.706 0.623 0.503 0.694
100 0.662 0.844 0.778 0.639 0.838 0.752 0.623 0.831 0.736

Correctness (%) Child Hailfinder Insurance

0 0.833 0.000 0.768 0.522 0.000 0.495 0.608 0.000 0.602
25 0.833 0.199 0.785 0.522 0.117 0.499 0.608 0.177 0.634
50 0.833 0.350 0.802 0.522 0.233 0.523 0.608 0.329 0.640
75 0.833 0.503 0.854 0.522 0.358 0.534 0.608 0.506 0.646
100 0.833 0.914 0.877 0.522 0.725 0.540 0.608 0.815 0.664

Table 2: F-scores of PCS, PCSDC and PCSe for benchmark datasets with 500 records in function of the correctness percentage.

skeletons they produce, i.e., the BNs’ graphs in which arcs
are substituted by (undirected) edges. To do so, these skele-
tons are compared against those of the “true” BNs used to
generate the datasets on the basis of the F-score criterion.
The latter is defined as (2×Precision×Recall)/(Precision+
Recall), where the Recall and Precision metrics are defined
as ratios TP/(TP+FN) and TP/(TP+FP) respectively, and
TP, FP and FN refer to true positives, false positives and false
negatives respectively. As such, the F-score metric provides
a general overview on the reliability of each studied algo-
rithm. To make the comparison study more thorough, in the
experiments, we vary the following parameters:
• the size of the dataset,
• the percentage of correct expert’s assertions,
• the expert’s confidence γk of giving a correct assertion,
• the parameter ρk of the expert’s confidence transform (see

Fig. 2 and Eq. (2)).
Finally, for each set of the above parameters, 100 tests are
performed and Tables 1 to 4 display the average F-scores
over these 100 tests.

All experiments are performed on a 1.9GHz Intel Core i7
computer with 16GB of memory running Windows 10. The
studied learning algorithms have been implemented using
the pyAgrum library (Gonzales, Torti, and Wuillemin 2017).

Table 1 displays the average F-scores for the Alarm BN,
with γk = 0.8 and ρk = 14, in function of the dataset size
and the percentage of correct expert’s assertions. In the case
of PCSDC, although γk = 0.8, all the expert’s opinions are

taken into account since PCSDC cannot take into account
the confidence of the expert. As can be observed, except
for the case where the correctness is equal to 100%, our al-
gorithm always outperforms the PCSDC method, whatever
the size of the dataset: with a dataset size equal to 1000,
the F-score of our algorithm is actually greater than that of
PCSDC by 24% to 69%. And the larger the dataset size, the
larger the difference between PCSe and PCSDC. This re-
sults from the fact that our new independence tests are able
to aggregate the valuable information provided by the ex-
perts with those contained in the training dataset. On the
contrary, by constraining the learning algorithm to comply
with the expert’s opinions without taking into account the
dataset, PCSDC is doomed to be ineffective when the ex-
pert makes too many mistakes. The differences w.r.t. PCS
are slightly lower compared with those w.r.t. PCSDC. Still,
we always outperform PCS when the correctness percentage
lies between 50% and 100%. Between 25% and 50%, even
if the expert makes many mistakes, PCSe often outperforms
PCS, which makes PCSe quite robust to experts’ errors. But
when this percentage is below 25%, the expert introduces
too many mistakes, which has too negative an impact on the
F-score of PCSe. This makes the latter decrease slightly be-
low that of PCS. The same results can be observed with other
benchmark BNs, see Table 2, in which γk and ρk are still
equal to 0.8 and 14 respectively.

The accuracy of our algorithm can also be demonstrated
by varying Parameters γk and ρk related to the confidence
of the expert. In Table 3, the correctness percentage is fixed



at 75% and ρk is fixed at 14. Parameter γk varies and the F-
scores are computed on datasets of size 1000 generated from
the Insurance BN. As can be seen, PCSe significantly out-
performs all the other algorithms. Note that, for γk = 0.5,
i.e., the expert has no clue about whether her assertion is
right or not, we enforced PCSDC not to take into account
the expert knowledge, hence the 0.581 F-score. For PCSe,
γk = 0.5 implies that ε0 = ε1, hence that the expert knowl-
edge must not be taken into account. Note also that, for
γk = 0.8, the F-scores of both PCS and PCSe are lower
than those for Insurance, with a correctness equal to 75%,
given in Table 2, although the sizes of the datasets used in
Table 3 are twice higher those used in Table 2. This is due to
the G-tests being performed only when the datasets are large
enough (see Lines 15–19 of Algorithm 1).

γk PCS PCSDC PCSe

0.5 0.581 0.581 0.581
0.6 0.581 0.513 0.592
0.7 0.581 0.513 0.606
0.8 0.581 0.513 0.620
0.9 0.581 0.513 0.639

Table 3: F-scores of PCS, PCSDC and PCSe for the Insur-
ance BN in function of γk.

Finally, in Table 4, the percentage of correct assertions is
fixed at 100%, and the datasets are of size 1000 and are gen-
erated from the Alarm BN. The higher the value of ρk, the
more the expert’s opinion is taken into account. Hence if her
assertions are correct, the accuracy of the produced skele-
ton tends also to increase. For γk < 1, when the confidence
transform parameter ρk increases from 5 to 20, we observe
an increase from about 2% to 7% of the F-score. All these re-
sults clearly highlight the reliability of our approach, which
is suited to cope in an efficient way with many important
parameters associated with the expert’s knowledge.

γk ρk = 5 ρk = 10 ρk = 15 ρk = 20

0.6 0.711 0.718 0.726 0.738
0.7 0.720 0.739 0.757 0.774
0.8 0.736 0.760 0.783 0.802
0.9 0.755 0.782 0.805 0.822
1.0 0.873 0.873 0.873 0.873

Table 4: F-scores of PCSe for the Alarm BN in function to
γk and ρk.

5 Conclusion
In this paper, we proposed a new constraint-based algorithm
for learning the structure of BNs in the presence of conflict-
ing and uncertain experts’ knowledge. This algorithm relies
on a very effective novel independence test whose mathe-
matical correctness has been proven. As shown in the ex-
perimentations, our method significantly outperforms other
constraint-based learning approaches. For future works, we

plan to develop a new hybrid BN learning approach capable
of integrating in a coherent way precisely the same experts’
knowledge in its score-based refinement phase.
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