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Abstract 
 

Seizures can occur spontaneously and in a recurrent manner, which defines epilepsy; or they can be induced in a normal brain 

under a variety of conditions in most neuronal networks and species from flies to humans. Such universality raises the possibility 

that invariant properties exist that characterize seizures under different physiological and pathological conditions. Here, we 

analysed seizure dynamics mathematically and established a taxonomy of seizures based on first principles. For the 

predominant seizure class we developed a generic model called Epileptor. As an experimental model system, we used ictal-

like discharges induced in vitro in mouse hippocampi. We show that only five state variables linked by integral-differential 

equations are sufficient to describe the onset, time course and offset of ictal-like discharges as well as their recurrence. Two 

state variables are responsible for generating rapid discharges (fast time scale), two for spike and wave events (intermediate 

time scale) and one for the control of time course, including the alternation between ‘normal’ and ictal periods (slow time scale). 

We propose that normal and ictal activities coexist: a separatrix acts as a barrier (or seizure threshold) between these states. 

Seizure onset is reached upon the collision of normal brain trajectories with the separatrix. We show theoretically and 

experimentally how a system can be pushed toward seizure under a wide variety of conditions. Within our experimental model, 

the onset and offset of ictal-like discharges are well-defined mathematical events: a saddle-node and homoclinic bifurcation, 

respectively. These bifurcations necessitate a baseline shift at onset and a logarithmic scaling of interspike intervals at offset. 

These predictions were not only confirmed in our invitro experiments, but also for focal seizures recorded in different 

syndromes, brain regions and species (humans and zebrafish). Finally, we identified several possible biophysical parameters 

contributing to the five state variables in our model system. We show that these parameters apply to specific experimental 

conditions and propose that there exists a wide array of possible biophysical mechanisms for seizure genesis, while preserving 

central invariant properties. Epileptor and the seizure taxonomy will guide future modeling and translational research by 

identifying universal rules governing the initiation and termination of seizures and predicting the conditions necessary for those 

transitions  



 

Introduction 
Epilepsy is characterized by the occurrence of spontaneous 

seizures, which arise when large regions of the brain produce 

uncontrolled, synchronous neural activity. Partial-onset seizures 

form the most common form of epilepsy, which is most likely to 

be drug-resistant (Brodie et al., 2012). Epilepsy can exist by itself 

or be associated to other neurological disorders including 

Alzheimer’s disease (Friedman et al., 2012), autism (Robinson, 

2012) and Down’s syndrome (Arya et al., 2011). Despite the fact 

that so many different pathologies, conditions and network 

reorganizations can result in partial epilepsy (Pitkanen and 

Sutula, 2002), one observation is particularly striking: the 

electrophysiological signature of different seizures is remarkably 

similar from case to case, even among primitive laboratory 

models. For example, different seizure-onset patterns are 

common to different epileptogenic lesions (Perucca et al., 2013). 

Although seven seizure-onset patterns can be distinguished, two 

major categories of activities are consistently found: fast 

oscillations and spikes with or without waves (Perucca et al., 

2013). 

Another striking property of seizures across species (from flies 

to humans) is the possibility of triggering them in any ‘normal’ 

brain using an array of inducing conditions. In humans, sleep 

deprivation, stress, electroshock treatment or toxins can evoke 

seizures (Luttges and McGaugh, 1967; Nakken et al., 2005; Jett, 

2012). In animals, electrical stimulation (kindling) or 

administration of various chemical compounds is commonly 

used to trigger seizures in vivo (Raol and Brooks-Kayal, 2012). A 

large variety of protocols can be used in vitro to produce ictal-

like events, including in human slices (Huberfeld et al., 2011), 

demonstrating that even small neuronal networks can be forced 

into a ‘seizure’ state. Although the conditions needed to induce 

them may be very different, the electrophysiological signature of 

such seizures is remarkably similar to those recorded in vivo, 

including the presence of fast oscillations and spikes. 

As seizures can occur under such diverse conditions, including 

in ‘normal’ networks, they belong to the dynamic repertoire of 

brain activities, as do other types of oscillations (e.g. theta, 

gamma etc.). Based on their apparent stereotypy, we 

hypothesize the existence of dynamical properties that would be 

invariant in most spontaneous and evoked seizures across brain 

regions and species. The notion of invariance is key to our 

approach. In non-linear dynamics, one form of invariance 

produces bifurcations, which are transitions from one type of 

behaviour to another. The most generic type of bifurcations are 

local, which are invariant under transformation and can often be 

described by canonical models 

(typically differential equations). Canonical models define the 

minimal requirements necessary for a generic behaviour to arise 

(Hale and Koçak, 1991; Kuznetsov, 1998). 

In the first part of this article, we test our hypothesis of 

invariance in seizures. We use a simple in vitro model system and 

systematically characterize transitions between normal and 

epileptic states. From this characterization, we develop a 

taxonomy of epileptic seizures. For one particularly prominent 

class of seizures, we derive the bifurcations at seizure onset and 

offset and construct a set of differential equations for the 

complete seizure like event (SLE), which defines our model for 

seizure evolution, the ‘Epileptor’. This process of developing 

canonical models based upon generic properties of a system has 

been successful in describing dynamical phenomena such as 

ferromagnetism, lasers and superconductivity in physics (Cross 

and Hohenberg, 1993) and neuronal discharge patterns (spiking 

and bursting) in biology (Ermentrout and Terman, 2010). Their 

interest lies in their abstract nature, as they do not depend upon 

a detailed knowledge/identification of biophysical properties 

and still enable the identification of general rules. In the second 

part of this article, we test the rules derived from the Epileptor to 

account for seizure dynamics in other species and diverse brain 

regions for different types of epilepsies in patients. Finally, 

predictions from Epileptor will be tested experimentally, 

particularly exploring different pathways to seizure onset. Our 

results reveal that seizures are a simple, conserved behaviour of 

brain networks that can be systematically classified through their 

onset and offset bifurcations, suggesting that anti-seizure 

strategies could involve altering dynamical properties rather 

than specific pathways. 

Materials and methods 

Experimental procedures 
All protocols were designed and approved according to INSERM 

and international guidelines for experimental animal care and use. 

Experiments were performed on intact hippocampal-septum 

preparations taken from FVB NG mice between postnatal Day 5 

and 7 (day of birth = Day 0). Animals were sacrificed by rapid 

decapitation and brains were extracted and transferred to 

oxygenated (95% O2/5% CO2) ice cold (4C) artificial CSF 

containing: 126 mM NaCl; 3.5 mM 

KCl; 2 mM CaCl2; 1.2 mM MgCl2; 25 mM NaHCO3; 1.2 mM 

NaHPO4; and 10 mM D-glucose (pH 7.3). The two hemispheres 

were separated and dissected to obtain hippocampal-septum 

preparations (Khalilov et al., 1997). They contained the 

hippocampal formation, septum and parts of adjacent neocortical 

areas. Preparations were transferred to a chamber with artificial 

CSF at room temperature. After at least 2 h incubation, 

preparations were transferred to the recording chamber. The 

hippocampus and the still-connected septum were placed into 

two chambers and perfused with different media (Khalilov et al., 

2003). To ensure a high level of oxygenation, the preparation was 

perfused at 15 ml/min with artificial CSF warmed to 33C bubbled 

with CO2/O2 gas mixture. The pH was controlled during each 

experiment. After a 30 min baseline recording in Mg2+containing 

artificial CSF solution, the media was changed to one without 

added Mg2+ in the chamber containing the hippocampus. Under 

this condition, the extracellular concentration of Mg2+ does not 



 

necessarily decrease to zero because there is minimal Mg2+ 

contamination from other constituents of the artificial CSF, 

reaching up to 0.08 mM (Mody et al., 1987). This very low residual 

level does not prevent the genesis of epileptiform events. In other 

experiments, external [K+] was increased by adding increments of 

1 mM KCl to artificial CSF. Mannitol was added in the same way in 

increments of 10 mM. Extracellular recordings were performed 

using glass extracellular electrodes filled with low Mg2+ artificial 

CSF placed in the CA1 stratum oriens region. Field potentials were 

amplified with isoDAM-8A differential amplifiers (World Precision 

Instruments), which allows direct current (DC) recordings (low pass 

filter set to 3 kHz), digitalized with DigiData1200 converter 

(Molecular Devices) stored on the hard drive of the personal 

computer using PClamp 8.2 software (Molecular Devices). 

Interneurons and pyramidal cells were blindly recorded or 

identified using infrared-differential interference contrast 

microscopy through a 60 water immersion objective. 

Microelectrodes had a resistance of 4–8 MV, and an internal solution 

of the following composition was used to record excitatory and 

inhibitory postsynaptic currents: 135 mM Cs-gluconate; 2 mM 

MgCl2; 0.1 mM CaCl2; 1 mM EGTA; 2 mM MgATP; 0.5 mM Na4GTP; 

10 mM HEPES; and 0.5% biocytin (pH 7.3; 270–280 mOsm). Access 

resistance was monitored throughout the experiments (range 12–30 

MV). Experiments were discarded if series resistance increased by 

more than 20%. Cell attached recordings were first performed to 

record the firing activity of the recorded cells. For voltage clamp 

experiments, cells were kept at 60 mV or + 10 mV for the analysis of 

glutamatergic or gamma aminobutyric acid (GABA)-ergic 

spontaneous postsynaptic currents, respectively. These currents 

were sensitive to D-APV/NBQX [D-2-amino-5-

phosphonovalerate/2,3-dihydroxy-6nitro-7-sulfamoyl-

benzo(F)quinoxaline] and bicuculline, antagonists of NMDA/AMPA 

(N-methyl-D-aspartate/-amino-3-hydroxy-5methyl-4-isoxazole 

propionic acid) and GABAA receptors respectively. Some cells were 

recorded in current clamp to monitor membrane voltage. In these 

experiments, the Cs-gluconate-based solution was replaced by a K-

gluconate-based solution. All data were acquired using an analog-

digital converter (Digidata 1322B, Molecular Devices) and analysed 

using Clampfit (Molecular Devices) or Matlab (Mathworks)-based 

software. During recordings, all neurons were passively filled with 

biocytin for post hoc morphological identification (Quilichini et al., 

2012). 

Recordings of changes in the extracellular [K+] were performed 

with double-barreled K+-sensitive and reference microelectrodes 

manufactured and calibrated as described previously (Heinemann et 

al., 1992). In brief, electrodes were pulled from double-barrelled 

theta glass. The reference barrel was filled with 154 mM NaCl 

solution, the ion sensitive barrel with potassium ionophore I cocktail 

A60031 (Fluka) and 100 mM KCl. Ion-sensitive microelectrodes with 

a sensitivity of 8 mV/mM of [K+] were used for experiments. 

Glass oxygen microelectrodes (OX-10, Unisense) were calibrated 

and then placed at a 75–100-mm depth into the CA1 stratum oriens 

region of the hippocampus close to the field electrode. The data 

were then aquired synchronously with the local field potential. 

Changes in NADH (or FAD) fluorescence in hippocampal 

preparations were monitored using a 33040 nm (45040 nm) band 

pass excitation filter and 420 nm (520 nm) long pass filter for 

emission (OmegaOptical). The light source was the Intensilight C-

HGFI illuminator (Nikon Instruments Europe B.V.) equipped with a 

mercury arc lamp. Hippocampi were epi-illuminated and imaged 

through a Nikon upright microscope (FN1, Eclipse) with 4/0.10 Nikon 

Plan objective (Nikon Instruments Europe B.V.). Images were 

acquired using a linear, cooled 12-bit charge-coupled device 

camera (Sensicam, PCOAG) with a 640-480 digital spatial resolution. 

Because of a low level of fluorescence emission for the fluorophores, 

NADH and FAD images were acquired every 600 ms as 8-8 binned 

images. The exposure time was adjusted to obtain a fluorescence 

intensity between 2000 and 3000 optical intensity levels. Images 

were stored in a computer as 12 bit files (effective spatial resolution 

of 80). The recording sites were extracted in three to five regions of 

interest using ImageJ software (developed by Wayne Rasband, 

National Institutes of Health). Data were expressed as the percentage 

changes in fluorescence over a baseline [(ΔF / F) x 100%]. 

 

Data analysis 
Noise 
Physiological recordings contain many types of noise, but for the 

purpose of the paper we concentrate on the random activity 

produced by uncorrelated synaptic events, or ‘synaptic noise’, which 

is the activity we modulate by adding KCl to the septum above. We 

measured several characteristics of this noise, comparing the levels 

just before an event (pre-ictal, 1–60 s) with the baseline levels 

(interictal, 460 s). Both current clamp (mV) and voltage clamp (pA) 

recordings provide similar data for noise analysis, though only in the 

former can cellular depolarization be assessed. 

Raw data 
Amplitude distributions were fit to a Gaussian curve. Power spectral 

density was obtained using the ‘pwelch’ method in Matlab with 10 

000 samples and 100 overlap. Noise colour was tested by fitting the 

Power spectral density 4-10 Hz to the equation: Power spectral 

density = A/frequency^k (Destexhe et al., 2003), with typical values 

of k~1–2.5 for neural noise activity. The White test was used to 

determine whether noise increased as seizures approached, i.e. 

testing for heteroskedasticity (White, 1980). Cross correlations of the 

signals were used to assess whether there was any non-random 

autocorrelation. Noise intensity was measured as the second 

moment of the patch clamp data about the median amplitude 

(Stacey et al., 2009), summed over 0.1 s. Total variance in the 

pre/interictal periods was the average variance of local field potential 

of all 0.1 s bins. 

Spike time data 
In this analysis and elsewhere, ‘spikes’ refer to population transients. 

For noise analysis, the detected spikes referred to detected afferent 

signals that produced post-synaptic potentials. Raw data were 

bandpass filtered (0.5–20 Hz, bidirectional elliptic), passed through a 

peak detector and spikes identified by manually assigning a 

threshold. These values were chosen manually to maximize 

automated detection of post-synaptic potentials based upon visual 

inspection of 2-s segments. The time between all successive spikes 

(interspike interval) was fitted to the lognormal distribution to assess 

whether it the spikes occurred as a Poisson process. 

Statistics 
Mann Whitney U and t-tests were performed to compare pre- versus 

interictal data: raw voltage, spike time, noise intensity and local field 

potential voltage. 



 

Interspike interval scaling 
All species tested (human, mouse, rat and zebrafish) were analysed 

in identical fashion. The spikes detected in this analysis refer to the 

epileptic ‘spike and slow wave’ activity seen on traditional EEG or 

local field potential recordings. The recorded voltage was first 

bandpassed (4–100 Hz, bidirectional elliptic) and peaks/troughs of 

epileptic spikes identified using the ‘findpeaks’ function (Matlab, 

Mathworks) and manual thresholding. The parameters were chosen 

manually to maximize automated detection of epileptic spikes 

(filtering out slow wave) based upon visual inspection of 10 s 

segments of recording. A trained clinical epileptologist manually 

determined those parameters, as well as seizure start and end times 

by visual analysis of every seizure. The relationship between the 

interspike intervals and time until the end of the seizure was 

evaluated by equation fitting. For this relationship, the interspike 

interval was the latency (s) between consecutive spikes, and the time 

was the duration from the first spike in the pair to the end of the 

seizure (s). All times were positive numbers. Data were fit to several 

equations using a least-squares fit algorithm in the ‘cftool’ (Matlab, 

Mathworks). Suitability of logarithmic scaling was assessed by 

comparing summed squared error, adjusted R2, and qualitative 

features among the different models (Supplementary material). For 

visualization purposes, the plots of these data were oriented the 

same way as the EEG data (Fig. 6). Thus, the x-axis for the interspike 

interval plots is reversed with the lowest numbers (end of the seizure) 

at the far right. The first interspike interval in a seizure occurs at the 

far left, with an x-value equal to the total duration of the seizure. 

 

Human recordings 
Human seizures were recorded using standard clinical procedures 

for intracranial monitoring, and the patients consented to a data 

sharing agreement as approved by the local ethical committee. Data 

were recorded using a standard 128-channel clinical acquisition 

system: XLTek, Inc.: 0.1 Hz high pass filter, 100 Hz low pass filter, 512 

Hz sampling rate (Worrell et al., 2008). As is typical for such 

recordings, the data are recorded with alternating current coupling, 

which removes any DC component. The data were de-identified, 

posted and downloaded from the International EEG Database 

(http://www.ieeg. org). All clinical data for each patient shown is 

available from the IEEG database. Studies used and clinical data are 

listed in Supplementary Table 1. 

Zebrafish recordings 
Hyperthemia-induced seizure-like events were kindly provided by Dr 

S. Baraban. The experimental procedure is described in (Hunt et al., 

2012).  

Low Ca2+ recordings 
Seizure-like events recorded when lowering extracellular Ca2+ were 

kindly provided by Dr. J. R. Jefferys and Dr. Jiruska Premysl. The 

experimental procedure is described in Jiruska et al. (2010). 

Results 

Basic building blocks of seizure 

dynamics 
As we searched for invariant features in seizure dynamics, any 

experimental model system may be used. Here, we analysed 

SLEs recorded in the intact immature hippocampus of mice in 

vitro, as this preparation is easily amenable to experimentation. 

When placed in continuous epileptogenic conditions, the 

preparation produces spontaneous recurrent SLEs (Fig. 1, 

unfiltered record). In Fig. 2A, we show one such typical 

spontaneous SLE (0.01 Hz high-pass filter). As observed in many 

types of seizure (Perucca et al., 2013), SLEs are characterized by 

a beginning (onset), various sequences of fast discharges and 

spike and wave events (SWEs), and an end (offset). Here, we 

consider fast discharges and SWEs as basic building blocks of 

SLEs, i.e. their temporal arrangement, embedding and 

amplitude can vary indefinitely without affecting the generality of 

the results. Similar dynamic patterns were found in a zebrafish 

model of hyperthermia-induced seizure (Fig. 2B) and in human 

patients with epilepsy (Fig. 2C and Supplementary Table 1). 

Time-evolving phenomena can be formalized with differential 

equations and state variables, which describe the fundamental 

dynamics of the system. State variables are the smallest possible 

subset of system variables that can represent the entire state of 

the system at a given point in time (Supplementary material). 

They are not unique and often difficult to relate to directly 

Figure 1 Experimental model of spontaneous SLEs. (A) When placed in persistent 

epileptogenic conditions, SLEs are generated at regular intervals in the isolated mouse whole 

hippocampus at postnatal Day 6 in vitro. Direct current recordings show a DC shift at SLE onset, 

which reverses after SLE offset. (B–D) Correspond to insets b–d in A. 

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu133/-/DC1
http://www.ieeg.org/
http://www.ieeg.org/
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu133/-/DC1
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http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu133/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu133/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu133/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu133/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu133/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu133/-/DC1


 

measurable biological/biophysical variables. These variables 

can be plotted in the space spanned by the state variables (the 

‘state space’) to demonstrate the characteristic ‘flow’, which 

determines how the trajectories evolve. In dynamic system 

theory, time scale separation allows the grouping of state 

variables into subsets acting on the same time scale (Haken, 

1983) that can be considered as the building blocks of a dynamic 

system. For SLEs, the two building blocks, fast discharges and 

SWEs operate on different time scales (fast and slow, 

respectively). We will refer to each building block as an 

‘ensemble’. Fast discharges necessitate a first ensemble with at 

least two state variables (x1, y1) due to their oscillatory nature 

(Hale and Koçak, 1991). SWEs comprise large amplitude spikes 

followed by long lasting wave components reminiscent of a large 

class of systems collectively termed excitable systems (Gerstner 

and Kistler, 2002), which necessitate a second ensemble with 

two state variables (x2, y2). Our goal is now to write the differential 

equations of ensembles 1 and 2 that account for SLE genesis, 

time course and recurrence in our experimental conditions. 

 

Epileptor: a dynamic multiscale 

model of seizures with five state 

variables 
By themselves, the two sets of differential equations for (x1, 

y1) and (x2, y2) can neither generate the time-evolving event 

that is a SLE nor its recurrence. At least one additional state 

variable, z, acting on a very slow time scale (slower than that of 

SWEs), is necessary to capture the time course of the 

alternating sequence of SLEs. This slow state variable z guides 

the entire system, not only between SLEs, but also throughout 

the SLE time course. At the same time the dynamics of z 

depends on the states of the other state variables (x1, y1) and 

(x2, y2). We call z the slow permittivity variable, as it describes 

the systemic effects that dictate how close the system is to the 

seizure threshold. As we will show later, z likely includes a large 

number of extracellular processes that occur on an ultraslow 

time scale and presumably influence the likelihood of seizure 

occurrence. In order to build the model, we used the special 

case where the system is placed in continuous epileptogenic 

conditions. In subsequent sections, we shall demonstrate that 

z can in fact cover general cases, including clinically relevant 

situations. 

All three sets of state variables, z, (x1, y1) and (x2, y2), depend 

upon each other, indicating that the differential equations 

describing their time evolution are coupled. The analysis of 

our data set of SLEs revealed that fast discharges are either not 

present during the SWE (Fig. 2A) or only present during the 

wave and not the spike (Fig. 2A). This property defines a 

directional link between (x1, y1) and (x2, y2) that we capture via 

a bidirectional coupling f1(x1, x2) and f2(x1, x2). It is important to 

note that fast discharges must not be mistaken for high 

frequency oscillations, which often override spikes at seizure 

onset (Bragin et al., 2002). High frequency oscillations are 

related to epileptogenic networks (Jacobs et al., 2009), but are 

not completely specific to epilepsy (Blanco et al., 2011) and 

are not necessarily causally linked to seizure genesis 

(Quilichini et al., 2012). Rather, the fast discharges described 

by (x1, y1) are analogous to the low voltage fast activity that is 

still an active area of basic research (Jiruska et al., 2013) and 

has great value in localizing focal seizures (Zakaria et al., 2012). 

At some distance before and after seizures, the brain appears 

to operate ‘normally’ and expresses its rich dynamic repertoire 

of diverse brain states, which may vary greatly in different models 

and species. The ictal state, however, represents a clear 

departure from the normal baseline behaviour. The transitions 

Figure 2 Seizure patterns conserved across species and brain regions.  

All displayed recordings were obtained in alternating current mode, thus filtering very slow 

variations of the field potential. (A) SLE recorded in mouse whole hippocampus displaying 

a typical sequence of tonic and tonic-clonic patterns. Two generic patterns can be 

distinguished: fast discharges (#) and large spike and wave events (*). Note that fast 

discharges can be embedded in the wave (*#). (B) Hyperthermia-induced SLE recorded in 

vivo in zebrafish display similar patterns, with fast discharges shown in panel I and SWE in 

panel II. (C) Spontaneous seizure recorded in an epileptic patient (Supplementary Table 1) 

displaying a fast discharge followed by the occurrence of spike and wave events. Note that 

in all three species, there is a slowing down of the activity when reaching seizure offset. 

 



 

from this normal state to a seizure and back constitute two 

bifurcations. The invariance of the bifurcations at seizure onset 

and offset is a manifestation of this nonlinear coupling. By 

identifying all possible bifurcation combinations, we will now 

develop a taxonomy of SLEs and then discuss the most 

prominent class. 

 

Taxonomy of seizure-like events 
The changes of dynamics at SLE onset and offset have certain 

characteristic features such as variations of amplitude and 

frequency of the discharges, which produce distinct flow 

changes in state space and are the bifurcations we seek to 

identify. In the mathematical literature, the mode of operation 

characterized by the alternation of a silent phase of near-

equilibrium point activity and an active phase of rapid discharges 

is called bursting (Ermentrout and Terman, 2010). The first 

classification of bursters was proposed by Rinzel (1987) and 

systematically extended, among others, by Izhikevich (2000). 

Different classes of bursters correspond to the different 

transitions between the silent and active phase of the burst cycle. 

It turns out that there are only four types of bifurcations of 

equilibria (fixed points at seizure onset) and four types of 

bifurcations of oscillations (planar limit cycles at seizure offset) 

resulting in 16 classes in total (Izhikevich, 2000; Ermentrout and 

Terman, 2010). This mathematical classification is the basis of our 

proposed taxonomy of SLEs. Note that theoretically more 

complicated behaviours may exist, but are significantly less 

probable to be encountered in nature (Izhikevich, 2000). The 16 

different classes are summarized in Table 1, where we follow the 

naming scheme of Izhikevich (2000), in which each class is 

labelled according to the type of bifurcation of equilibria/ 

bifurcation of limit cycle. The four bifurcations of equilibria are 

saddle-node (fold), saddle-node on invariant circle, supercritical 

Hopf and subcritical Hopf bifurcation. The four bifurcations of 

limit cycles are saddle-node on invariant circle, saddle-

homoclinic, supercritical Hopf and fold cycle.  

 

Detailed descriptions of the various bifurcation types and their 

normal forms (canonical models) can be found in Kuznetsov 

(1998). Note that normal forms classify local bifurcations around 

equilibria in state space, whereas global bifurcations involving 

‘larger’ invariant sets such as periodic orbits are significantly 

more complicated. To aid in the classification of seizure types in 

the framework of a taxonomy of SLEs, the scaling properties of 

the seizure onset/offset bifurcations are listed as bifurcation of 

equilibrium in Table 2 and as bifurcation of oscillations in Table 

3. As the bifurcation point of seizure onset/offset is approached 

through the slow change of the permittivity z, the discharges 

change their behaviour. If  λ = z - zcrit denotes the distance to the 

bifurcation point zcrit, then the changes in the discharges will 

scale with  in ways that are characteristic for each bifurcation 

type. The frequency and amplitude of discharges may be either 

constant and independent of λ (denoted by ‘Fixed’ in Tables 2 

and 3), completely arbitrary (‘Arbitrary’) or scale from zero 

following a square root or logarithmic behaviour [‘Zero λ (√λ), 

‘Zero (ln λ)’]. Each bifurcation may also be distinguished through 

the number of states that can coexist for the same permittivity 

value (‘Bistable’ and ‘Monostable’). In the following, we use the 

taxonomy of SLEs in Table 1 to characterize the time course and 

recurrence of the SLEs in our experimental conditions. 
 



 

Saddle-node bifurcation at seizure 

onset 
In the experiment, the onset of SLEs is characterized by the 

abrupt appearance of fast discharges (Fig. 2A). As these do not 

scale up from zero amplitude or frequency, this transition is 

limited to either a subcritical Hopf or a saddle-node bifurcation 

(Table 2). A saddle-node bifurcation requires a baseline shift of 

the measured time-dependent variable, whereas a subcritical 

Hopf bifurcation results in a transition centered on the baseline 

and does not have a baseline shift. DC shifts from the baseline 

field potential occurred systematically in our experimental data 

(Figs 1, 5B and 7B), ruling out the subcritical Hopf bifurcation. 

Homoclinic bifurcation at seizure offset 
As SLEs progress towards offset, there is a DC shift back to 

baseline (Figs 1, 5B and 7B). Only the fold limit cycle and the 

homoclinic bifurcations show a DC shift at the bifurcation point 

(indicated by ‘Bistability’ in Table 3), although secondary 

bifurcations can be introduced to mimick this behaviour 

(Izhikevich, 2000). The fold limit cycle bifurcation maintains a 

constant frequency towards the seizure offset, which was not 

found in the majority of our experiments. The predominant 

candidate at seizure offset is thus the homoclinic bifurcation, 

which, amongst others, predicts that the interspike intervals scale 

logarithmically as seizure offset approaches. The prediction of a 

logarithmic scaling will be validated experimentally in the 

following section.  

The Epileptor 
In conjunction, the saddle-node (or fold) bifurcation at seizure 

onset and the homoclinic bifurcation at seizure offset define the 

predominant class of an SLE, the fold/homoclinic class, also 

called square wave burster (Ermentrout and Terman, 2010). 

Given the constraints imposed by the nature of the bifurcations 

and the links between the five state variables z, (x1, y1) and (x2, y2), 

we can now develop the full mathematical model of the SLE, 

which we call the Epileptor. There are standard models of square 

wave bursters, which we consider here as a starting point for 

model development. Typically these models relate to neural 

discharges on time scales from 10 ms to seconds and are based 

on some ionic current mechanisms producing slow negative 

feedback in models of electrical activity in pancreatic beta-cells 

and respiratory rhythms within the pre-Bo¨ tzinger complex 

(Ermentrout and Terman, 2010). The slow variable of these 

standard models, however, acts on a different time scale than 

considered for SLEs, which suggests that the involved 

biophysical mechanisms may not be the same (see our later 

discussion on the likely candidate biophysical mechanisms of the 

permittivity variable). Still, the standard models of square wave 

bursters provide mathematical guidance in the development of 

the Epileptor model. For zero coupling between the two 

ensembles, we adapt the mathematical form of the standard 

model in Hindmarsh and Rose (1984) for ensemble 1 with (x1, y1) 

and the mathematical form of an excitable system with a saddle 

node on invariant circle bifurcation for ensemble 2 with (x2, y2) as 

shown by Roy et al. (2011). Then the following modifications are 

introduced: a linear inhibitory coupling from ensemble 2 to 1 

and a low-pass filtered excitatory coupling from ensemble 1 to 2 

to generate the SWE and interictal spikes; the negative feedback 

coupling of the permittivity z to the ensemble 2 to bias the 

preictal spikes towards SLE onset; and changes of the non-

linearities of the original standard models to guarantee the 

structural stability of the bifurcations. Structural stability was 

tested computationally for all used parameters. The final 

parameter values were chosen to fit the Epileptor against the 

experimental data, where the sum of the two ensemble x-

variables, x1 + x2, was matched visually against the electrographic 

signatures of a SLE. Although each of the state variables may 

reflect a diversity of biophysical variables, we found that plotting 

x1 + x2 as a function of time bore striking resemblance with the 

field potential. The complete system of the Epileptor equations 

reads then as follows: 

 

Here the state variables x1 and y1 comprise the first subsystem 

responsible for fast oscillations and x2 and y2 the second 

subsystem involved in spike wave events. The slow permittivity 

variable is z. The characteristic time scales are τ0 of the 

permittivity variable, τ1 of ensemble 1 and τ2 of ensemble 2, 

where the time scale hierarchy is τ0 »τ1 »τ2. The time constant of 

1 does not appear in the equations explicitly as it is equal to 1, 

hence we omitted it for simplicity. Note that the integral coupling 

function g(x1) can be rewritten as an ordinary differential 

equation, which then technically introduces a sixth state variable 

(Supplementary material). The initial conditions for the numerical 

simulation are x1 = 0; y1 = 5; z = 3; x2 = 0; y2 = 0. Noise is 

introduced into each equation as linear additive Gaussian white 

noise with zero mean and a variance of 0.025 for the first 

subsystem and 0.25 for the second subsystem. For the solution 

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awu133/-/DC1


 

of the stochastic equations we employ the Euler Maruyama 

method. 

 

Dynamics of the Epileptor 
In Epileptor, ‘normal’ brain function and seizures occupy two 

different regions of state space, being isolated from one 

another by a divergent flow acting as a barrier (Fig. 3). This 

barrier between the two states establishes bistability and is 

known as the separatrix, which in this case essentially describes 

the seizure threshold (Frohlich et al., 2010; Kramer et al., 2012). 

We show the bifurcations of seizure onset (Fig. 3, rows Ia and Ib) 

and seizure offset (Fig. 3, rows IIa and IIb) as cartoons of six 

potential landscapes (rows Ia and IIa) and six vector fields (rows 

Ib and IIb). The potential landscapes metaphorically illustrate 

the transitions between seizure and non-seizure states for 

changing values of permittivity z and the vector fields show the 

corresponding flows in the two-dimensional state space of the 

Epileptor’s ensemble 1. In rows Ia and IIa, two minima are 

separated by a potential well. The left minimum is the normal 

state, the right minimum is the seizure state. As the permittivity 

variable changes, the potential landscape changes and one 

minimum becomes a maximum resulting in a transition from one 

state to the other. The flows in state space show the same 

behaviour (Ib and IIb). Here we plot trajectories for various initial 

conditions, where the arrows indicate the direction of the flow 

and circles indicate the equilibrium points (fixed points). A 

stable fixed point attracts trajectories in its neighborhood (full 

circle), whereas unstable fixed points deflect the trajectories 

(empty circle). A so-called saddle point is a fixed point with a 

stable and unstable direction (empty circle). In the first figure of 

Ib (from left to right) a saddle point separates the state space in 

two regions with a stable fixed point to its left and a stable limit 

cycle to its right. As the permittivity is changed towards seizure 

onset the separatrix moves closer to the stable fixed point 

(middle figure, row Ib) until the separatrix collides with the 

stable fixed point and the two disappear (right figure, row Ib) via 

a saddle-node bifurcation. Row IIb shows the corresponding 

scenario for seizure offset: as the permittivity changes, the 

separatrix moves towards the limit cycle (middle figure) until 

separatrix and limit cycle collide and annihilate each other (right 

figure). This event is called the homoclinic bifurcation and 

leaves the system with only the stable fixed point. A bifurcation 

diagram captures the hitherto described dynamics more 

quantitatively in Fig. 4, which has been generated using 

analytical calculation of fixed points and numerical continuation. 

Fig. 5A traces out time series from simulations of the Epileptor 

model. Note the presence of SWEs before seizure onset, even 

far from it. The presence of more interictal spikes (and even fast 

oscillations) reflects that the Epileptor is getting close to the 

separatrix. The experimental/clinical analogy would be that 

network excitability increases and generates spikes and/or 

oscillations. These activities have their own dynamics; they can 

take various shapes (reflecting the diversity of interictal/preictal 

states) as the system moves close or away from the separatrix.  

This concept of getting close to the separatrix and away from it 

without reaching the bifurcation point is analogous to the 

‘preictal state’ that has been theorized for many years (Stacey et 

al., 2011a) and may have been identified in a recent clinical trial 

(Cook et al., 2013). 

Figure 3 Caricatures of the flows in state space of ensemble 1 as the slow permittivity 

variable z changes.  

Rows Ia and IIa indicate metaphorically the bistability of the ‘normal’ (left minimum, Ia) and 

seizure (right minimum, IIa) state, as well as its loss. Note that ‘normal’ brain trajectories are 

displayed as a fixed point for the sake of illustration (it does not reflect the diversity of 

possible trajectories). Rows Ib and IIb show the corresponding flows in state space. As the 

permittivity z decreases (from left to right), rows Ia and Ib show how the interictal state loses 

its stability and the transition occurs towards the ictal state (seizure onset) via a saddle-

node bifurcation. Rows IIa and IIb show the equivalent situation for increasing values of z 

and the homoclinic bifurcation leading to seizure offset. 

Figure 4 Bifurcation diagram of the Epileptor.  

(A) The set of fixed points form curves, where the solid line indicates the stable fixed point. 

A branch of limit cycles terminates at the homoclinic bifurcation point (HB), whereas the 

fixed points lose stability via saddle-node bifurcations (SN). The system displays bistability 

between the left saddle-node bifurcation point (SN) and the homoclinic bifurcation point 

(HB). (B) The projection of the Epileptor trajectory is plotted onto the bifurcation diagram. 



 

Because the Epileptor was constructed on the basis of an 

experimental model of SLEs (an immature hippocampus placed 

in continuous epileptogenic conditions in vitro), we first tested 

the generality of its predictions in other brain regions and 

species, and then explored the concept of the separatrix to 

understand how seizure onset can be reached in more realistic 

conditions. 

 

Validating model predictions: 

bifurcations and invariance 
The Epileptor model makes two important predictions about 

seizure onset and offset in the seizure class fold/homoclinic 

(Table 1) that we can validate directly: (i) seizure onset can only 

occur in the presence of a DC shift of the field potential; and (ii) 

the interspike intervals show a logarithmic scaling approaching 

seizure offset.  

Presence of a direct current shift at 

seizure onset 
We used the presence of a DC shift at seizure onset and its 

reversal after seizure offset in our experimental model to identify 

the onset and offset bifurcations (Fig. 1). This DC shift is smaller 

(-0.26 ± 0.08 mV, n = 15 SLEs from five hippocampi, P < 0.01) 

and shorter lasting (1–3 min) than that found in spreading 

depression (Somjen, 2001). Like most clinical and experimental 

EEG, seizures are recorded in alternating current mode, thus 

filtering any slow variations of the field potential (Fig. 2). The DC 

shift at onset of a partial spontaneous seizure, is actually well 

known in several species including baboons (Pumain et al., 1985) 

and humans (Ikeda et al., 1999; Vanhatalo et al., 2003), though it 

is under-recognized clinically because clinical electrodes are 

poor at recording DC (Tallgren et al., 2005; Stacey et al., 2012) 

and seizures are rarely recorded with DC coupling. To the best 

of our knowledge, we are not aware of published spontaneous 

focal seizures recorded in DC mode without a DC shift. 

Logarithmic scaling of interspike 

intervals approaching seizure offset 
The presence of a homoclinic bifurcation at seizure offset 

imposes a logarithmic scaling of interspike intervals. Introducing 

noise in Epileptor enabled us to generate numerous SLEs and 

verify that SLE offsets in the Epileptor show the logarithmic 

scaling of homoclinic bifurcations (Supplementary Fig. 1). In all 

SLEs recorded in our experimental conditions in vitro (n = 16 

hippocampi), the interspike intervals exhibited a logarithmic 

scaling at seizure offset (Fig. 6A and B), verifying the prediction 

that seizure offset corresponds to a homoclinic bifurcation. We 
Figure 5 Slow permittivity state variable and seizure topology. (A, left) Seizure generated 

by the Epileptor with five state variables. 

Seizure onset, time course and offset are controlled by the permittivity state variable 

evolving slowly in time (red). Note that the SLE occurs 

with a rapid and large shift of the potential. Right, the seizure trajectory (expressed in terms 

of _x1 + x2) is approximated in a 3D space defined by the first state variables (X = _x1 and 

Y = x2) and by the slow permittivity variable (Z = z). Note that the values of the z-variable 

have been shifted upwards for plotting purposes. (B, left), simultaneous recording in the 

hippocampus of a SLE in low Mg2+ conditions in DC mode, O2 levels in the preparation 

(yellow) and NADH levels (red), which indirectly reflect ATP use. Note the large DC shift 

during the SLE, as predicted by Epileptor. The time course of oxygen and NADH is similar 

to that of the slow permittivity variable. Right, the 3D representation of a seizure in a delayed 

space (X and Y), with Z the extracellular potassium concentration measured simultaneously 

(Supplementary Fig. 8) is very similar to that obtained by the Epileptor in A. 

Figure 6 Homoclinic bifurcation at seizure offset in various species. (A) In a mouse 

hippocampus, interspike intervals display logarithmic 

scaling typical of a homoclinic bifurcation. The last spike of the seizure is used as our 

reference time point (red squares mark seizure durations). After accounting for uncertainty 

in seizure onset time and clonic firing at seizure termination, log scaling fit the data better 

than other potential models (Supplementary Fig. 9A). The interspike interval from this 

reference displays a logarithmic scaling, which characterizes a homoclinic bifurcation in the 

three species. Red line: a log equation fit to the last seven datapoints (t5 10) and 

extrapolated. (B) Summary of all measures performed in mice hippocampi (n = 16), zebrafish 

(n = 2) and human (n = 24). Logarithmic scaling is preserved in all species. Note the similarity 

between the different human subjects, who had a wide array of epilepsy pathologies 

(Supplementary Table 1). The slope difference relates to differences in seizure duration in 

the various conditions. (C) Logarithmic scaling in zebrafish. (D) In human, we show 

independent seizures simultaneously recorded in the right and left hemisphere with 

different dynamics, both showing log scaling. Inset: corrected equation fit (red) ignores fast 

spiking between clonic bursts in the last 30 s of seizure. LSS = Left somatosensory cortex; 

RIT = Right inferior temporal lobe. 
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then tested the interspike intervals in each of the first 24 patients 

with identifiable seizures in the International EEG database 

(www.ieeg.org). This arbitrary sample includes several different 

seizure types and brain regions (Supplementary Table 1). We 

verified logarithmic scaling in 20 (83%) of the patients 

(Supplementary material), the majority of which had remarkably 

similar dynamics despite their clinical disparities (Fig. 6B, 

Supplementary Fig. 2 and Supplementary Table 1). Similar 

findings, which appear visually as spikes slowing down near the 

end of seizures, were recently identified in live human recordings 

on multiple spatial scales from EEG down to multiunits (Kramer 

et al., 2012). The same property was found in other species, such 

as zebrafish (Fig. 6B and C, Supplementary Fig. 9), and is 

apparent also in flies [see Fig. 2C in Zhang et al. (2002)]. These 

invariant scaling laws argue strongly in favour that a homoclinic 

bifurcation at offset is an invariant property of focal seizures. 

 

Seizure topology 
The Epileptor model allows us to unravel the topology and 

trajectories of seizures in the state space defined by the five state 

variables. Since five-dimensional representations are not 

practicable, we used a tri-dimensional representation for 

illustration, plotting x1, x2 and z as a function of time. The resulting 

topology corresponds to spirals on a cone (Fig. 5A). Although - 

x1 + x2 bears analogy with the field potential, the precise 

biophysical equivalent of the z variable is unknown and will be 

likely complex. One of its distinguishing features is its slow time-

dependent evolution. Several biophysical parameters are known 

to evolve slowly in time during seizures, including extracellular 

ions (Heinemann et al., 1986) and oxygen (Suh et al., 2006). We 

measured extracellular [K+] during SLEs and plotted it as the z 

variable; the topology of experimental SLEs were remarkably 

similar to the theoretical one (Fig. 5B). As the measurement of a 

slow variable was not available in the humans and zebrafish, we 

constructed the trajectories in a space of delayed state variables, 

which approximates the original state space (Takens, 1981) and 

allows unfolding the resulting trajectories for illustration of the 

flow topology. Even though the trajectory lines are distorted and 

difficult to read, they still unveil the basic phases of the seizures, 

showing clear similarities between the Epileptor and SLEs 

(Supplementary Fig. 3). 

 

Validating model predictions: how 

seizures start 
Seizures can occur with regularity in some patients, as for 

catamenial epilepsy (Penovich and Helmers, 2008) or during the 

sleepwake cycle (Karafin et al., 2010), in keeping with the 

possibility that ultra-slow systemic effects, analogous to the slow 

permittivity variable, can push the system periodically to seizure 

onset. However, seizures arise, most of the time, without obvious 

causes or predictive factors. In such instances, we propose that 

brain trajectories are close to the separatrix, and the closer the 

‘normal’ brain state is to the separatrix, the easier it will be to have 

a seizure. Linked to the distance to the separatrix (i.e. proximity 

to seizure threshold) is the build-up of preictal spiking in the 

Epileptor (Fig. 7C), which is analogous to physiological 

fluctuations around baseline such as increased preictal spiking 

Figure 7 Different paths to seizure onset.  

(A) Stimulations (red stars, traces b, c, d and e) given to Epileptor between two SLEs (trace a 

shows Epileptor regular behaviour) either failed to trigger a SLE (traces b and c) or 

generated one before expected (traces d and e). This predicts the presence of a refractory 

period occurring right after SLE offset and that the system can be pushed toward SLE onset. 

(B) Experimental verification. Top: The whole hippocampus and the septum connected to 

each other were placed in two different chambers (inset). After generating a series of SLEs 

in the hippocampus in low Mg2+ conditions, the extracellular concentration of Mg2+ was 

raised to 0.4mM, which maintained the hippocampus below the SLE threshold. The septum 

was bathed with normal artificial CSF. Bottom: A stimulating electrode was placed in the 

septum to stimulate axons projecting to the hippocampus. The stimulation generated a 

small DC shift followed by a SLE. The same train applied after seizure offset failed to evoke 

a SLE. After waiting 410 min, stimuli of equal magnitude produced a SLE (not shown). (C) 

Top: noise was progressively increased in Epileptor until seizure onset was reached leading 

to the prediction that synaptic noise is sufficient to drive the system to the bifurcation. Note 

that the number of spikes before seizure onset scales with the distance to the bifurcation. 

(D) Experimental validation. The hippocampus (H) was placed in subthreshold conditions as 

in B. Top: a hippocampal neuron was recorded in voltage clamp mode at + 10mV to 

measure GABAergic currents. The extracellular concentration of K+ was raised by 5mM in 

the septum (S), leading to increased cell firing there, which correlated with an increase in 

synaptic activity received by the neuron. This led to the occurrence of a SLE. The septum 

was then returned to normal artificial CSF conditions. Changing osmolarity in the 

hippocampus with 50mM mannitol was sufficient to induce a SLE without increasing 

synaptic noise (Supplementary Table 2). Bottom: Both procedures were synergistic. Raising 

[K + ] by 2mM in the septum or adding 10mM mannitol were not sufficient to trigger a SLE 

by themselves. When they were both combined, a SLE could be evoked, demonstrating that 

multiple different trajectories can lead to seizure onset. aCSF = artificial CSF; LFP = local 

field potential; stim = stimulation; TU = arbitrary time units; VC = voltage clamp. 
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  MATERIALS	
  
	
  
	
  

Phase	
  flows	
  in	
  state	
  spaces	
  

The	
  time	
  course	
  of	
  state	
  variables	
  is	
  prescribed	
  by	
  dynamic	
  systems,	
  often	
  represented	
  

by	
  differential	
  or	
  integral-­‐differential	
  equations	
  as	
  in	
  the	
  case	
  of	
  the	
  Epileptor.	
  The	
  time	
  

series	
  resulting	
  from	
  solving	
  differential	
  equations	
  can	
  either	
  be	
  plotted	
  as	
  the	
  value	
  of	
  

the	
  state	
  variables	
  over	
  time,	
  or	
  equivalently	
  as	
  a	
  trajectory	
  in	
  the	
  state	
  space.	
  The	
  state	
  

space	
  (also	
  sometimes	
  referred	
  to	
  as	
  phase	
  space)	
  is	
  spanned	
  by	
  the	
  state	
  variables	
  and	
  

a	
   trajectory	
   is	
   a	
   connected	
   path	
   through	
   phase	
   space.	
   As	
   an	
   approximation,	
   the	
  

trajectory	
   may	
   also	
   be	
   represented	
   in	
   a	
   space	
   spanned	
   by	
   its	
   delayed	
   coordinates	
  

(Takens	
  1981)	
  (see	
  Supplemental	
  Figure	
  3).	
  Such	
  visualization	
  unfolds	
  the	
  trajectory	
  if	
  

the	
  dimension	
  of	
   the	
  delay	
  space	
  corresponds	
   to	
  at	
   least	
  2n+1	
   times	
   the	
  dimension	
  of	
  

the	
  attractor	
  or	
  flow	
  in	
  the	
  original	
  state	
  space.	
  Then	
  there	
  is	
  a	
  topological	
  mapping	
  from	
  	
  

the	
  original	
   	
   state	
   	
   space	
   	
   to	
   	
   the	
   	
   embedding	
   space.	
   	
   The	
  delay	
   time	
   for	
   the	
   attractor	
  

reconstruction	
   from	
   a	
   scalar	
   time	
   series	
   of	
   infinite	
   length	
   can	
   be	
   chosen	
   almost	
  

arbitrarily	
  (Buzug	
  and	
  Pfister	
  1992).	
  The	
  time	
  derivative	
  of	
  the	
  state	
  variables	
  gives	
  the	
  

instantaneous	
   rate	
   of	
   change	
   of	
   the	
   system	
   and	
   defines	
   a	
   tangent	
   vector	
   in	
   the	
   state	
  

space,	
  basically	
  indicating	
  how	
  the	
  system	
  will	
  evolve	
  along	
  the	
  trajectory.	
  The	
  tangent	
  

vector	
  is	
  a	
  vector	
  at	
  every	
  point	
  in	
  state	
  space,	
  which	
  is	
  equivalent	
  to	
  the	
  solution	
  of	
  the	
  

evolution	
  equation	
  at	
  that	
  point.	
  Essentially	
  at	
  each	
  point	
  in	
  the	
  state	
  space	
  there	
  exists	
  a	
  

vector	
  defining	
  a	
  vector	
  field,	
  which	
  describes	
  the	
  directed	
  flow	
  through	
  the	
  state	
  space	
  

embodying	
   the	
   evolution	
   equation.	
   Hence	
   a	
   trajectory	
   traces	
   the	
   time-­‐dependent	
  

solution	
  of	
  a	
  dynamical	
  system	
  through	
  a	
  succession	
  of	
  instantaneous	
  states.	
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Bifurcations	
  and	
  invariances	
  

As	
   control	
   parameters	
   of	
   a	
   dynamic	
   system	
   change,	
   the	
   structure	
   of	
   the	
   flow	
   in	
   state	
  

space	
  will	
  also	
  depend	
  on	
  these	
  parameters.	
  If	
  a	
  state	
  variable	
  is	
  sufficiently	
  slower	
  than	
  

all	
  other	
  state	
  variables	
  (as	
  in	
  the	
  case	
  of	
  the	
  Epileptor),	
  then	
  the	
  slow	
  variable	
  can	
  be	
  

also	
  regarded	
  as	
  acting	
  as	
  a	
  control	
  parameter	
  for	
  finite	
  periods	
  of	
  time.	
  Small	
  changes	
  

in	
  the	
  slow	
  parameter	
  or	
  control	
  parameters	
  may	
  then	
  produce	
  no	
  qualitative	
  changes	
  

in	
   the	
  state	
   space	
  until	
   a	
   critical	
   value	
   is	
   reached	
   and	
   the	
   dynamical	
   system	
   is	
   said	
   to	
  

have	
  gone	
  through	
  a	
  bifurcation.	
  In	
  the	
  neighborhood	
  of	
  a	
  hyperbolic	
  fixed	
  point	
  (where	
  

all	
  eigenvalues	
  from	
  a	
  linearization	
  around	
  the	
  fixed	
  point	
  are	
  non-­‐zero),	
  the	
  Hartman–

Grobman	
   theorem	
  states	
   that	
   the	
   behavior	
   of	
   a	
   dynamical	
   system	
   is	
   invariant	
   and	
  

qualitatively	
  the	
  same	
  as	
  the	
  behavior	
  of	
   its	
   linearization	
  near	
  this	
  point	
  provided	
  that	
  

no	
  eigenvalue	
  of	
   the	
   linearization	
  has	
   its	
   real	
  part	
  equal	
   to	
  0.	
  Therefore	
  when	
  dealing	
  

with	
  such	
  fixed	
  points	
  one	
  can	
  use	
  the	
  simpler	
  linearization	
  of	
  the	
  system	
  to	
  analyze	
  its	
  

behavior.	
  	
  

Sufficiently	
  close	
  to	
  the	
  critical	
  control	
  parameter	
  value	
  of	
  a	
  local	
  bifurcation	
  (i.e.	
  when	
  

an	
  equilibrium	
  point	
  changes	
  its	
  stability),	
  a	
  dynamical	
  system	
  may	
  be	
  mapped	
  upon	
  a	
  

nonlinear	
  canonical	
   form	
  of	
  a	
  given	
  bifurcation	
  via	
  a	
  coordinate	
   transform	
  (Kuznetsov	
  

1998),	
   which	
   defines	
   the	
   normal	
   form	
   of	
   the	
   dynamical	
   system.	
   Global	
   bifurcations	
  

occur	
  when	
   'larger'	
   invariant	
   sets,	
   such	
  as	
  periodic	
  orbits,	
   collide	
  with	
  equilibria.	
  This	
  

causes	
  changes	
   in	
   the	
   topology	
  of	
   the	
   trajectories	
   in	
   the	
  phase	
  space,	
  which	
  cannot	
  be	
  

confined	
  to	
  a	
  small	
  neighborhood,	
  as	
  is	
  the	
  case	
  with	
  local	
  bifurcations.	
  Normal	
  forms	
  of	
  

global	
   bifurcations	
   are	
   not	
   systematically	
   defined.	
   Bifurcations	
   show	
   characteristic	
  

scalings	
  of	
  their	
  amplitudes	
  and	
  frequencies	
  as	
  a	
  function	
  of	
  the	
  control	
  parameter	
  and	
  

its	
   difference	
   to	
   its	
   critical	
   value	
   (Izhikevich,	
   2000).	
   Further	
   away	
   from	
   this	
   critical	
  

parameter	
   value,	
   structural	
   stability	
   remains	
   a	
   fundamental	
   property	
   of	
   a	
  dynamical	
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system,	
  which	
  means	
  that	
  the	
  qualitative	
  behavior	
  of	
  the	
  trajectories	
  represented	
  by	
  the	
  

topology	
   of	
   the	
   flow	
   in	
   state	
   space	
   is	
   unaffected	
   by	
  small	
   (sufficiently	
   smooth)	
  

parameter	
   variations.	
   Examples	
   of	
   such	
   qualitative	
   properties	
   are	
   numbers	
   of	
  fixed	
  

points	
  and	
  periodic	
  orbits	
  (but	
  not	
  their	
  periods).	
  This	
  behavior	
  holds	
  for	
  all	
  systems	
  in	
  

two	
  dimensions,	
  but	
   is	
  more	
  difficult	
   to	
  generalize	
   for	
  higher	
  dimensions	
  where	
  more	
  

complex	
  behaviors	
  may	
  be	
  more	
  typical	
  such	
  as	
  strange	
  attractors	
  and	
  hence	
  need	
  to	
  be	
  

studied	
  on	
  a	
  case-­‐by-­‐case	
  basis.	
  

	
  

Alternative	
  formulation	
  of	
  Epileptor	
  equations	
  

The	
  low-­‐pass	
  filtering	
  effects	
  of	
  the	
  integral	
  g(x)	
  can	
  be	
  rewritten	
  through	
  the	
  use	
  of	
  a	
  

dummy	
  variable	
  u.	
  Then	
  the	
  Epileptor	
  equations	
  read	
  as	
  follows:	
  

 

!x1 = y1 − f1(x1, x2 ) − z + Irest1
!y1 = y0 − 5x1

2 − y1

!z = 1
τ 0

(4(x1 − x0 ) − z)

!x2 = −y2 + x2 − x2
3 + Irest2 + 2u -  0.3(z − 3.5)

!y2 =
1
τ 2

(−y2 + f2 (x2 ))

!u = −γ (u − 0.1x1)

	
  

	
  
All	
  parameters	
  and	
  functions	
  are	
  as	
  in	
  the	
  main	
  text.	
  The	
  dummy	
  variable	
  u	
  acts	
  as	
  a	
  low	
  
pass	
  filter	
  due	
  to	
  the	
  time	
  scale	
  separation:

 
1
γ = 100≫ τ 2 .	
  

 
	
  

Assessing	
  logarithmic	
  scaling	
  in	
  interspike	
  intervals	
  

We	
  assessed	
   the	
   best	
  model	
   for	
   our	
   data	
   using	
   a	
   sample	
   of	
   20	
   seizures	
   (16	
  mouse,	
   2	
  

zebrafish,	
  2	
  human)	
  via	
  goodness-­‐of-­‐fit	
  (GoF)	
  with	
  sum	
  of	
  squared	
  residual	
  error	
  (SSE)	
  

and	
  degree-­‐of-­‐freedom-­‐adjusted	
  R-­‐square	
  (R2).	
  Several	
  potential	
  equations	
  were	
  tested:	
  

log	
  (Interspike	
   interval	
   (ISI)	
  =	
  a*log	
  x	
  +	
  b),	
  power	
   law	
  (a*x^b	
  +c),	
   inverse	
  square	
  root	
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(a*1/sqrt(x)	
   +	
   b)	
   and	
   exponential	
   (a*exp(b*x)).	
   Choice	
   of	
   best	
   fit	
   was	
   made	
   by	
  

comparing	
   the	
   GoF	
  with	
   a	
   qualitative	
   assessment	
   of	
   how	
   each	
   equation	
   captured	
   the	
  

dynamics.	
   We	
   used	
   the	
   R-­‐square	
   to	
   compare	
   GoF	
   between	
   the	
   different	
   equations,	
  

reinforced	
  by	
  the	
  fact	
  that	
  all	
  equations	
  have	
  the	
  same	
  number	
  of	
  predictors	
  (degrees	
  of	
  

freedom).	
  	
  We	
  also	
  considered	
  the	
  constant	
  model	
  (ISI	
  =	
  k);	
  however	
  this	
  was	
  clearly	
  not	
  

preferred	
  in	
  any	
  of	
  the	
  training	
  data	
  because	
  the	
  variable	
  x	
  was	
  significant	
  in	
  all	
  of	
  them.	
  	
  

Qualitatively,	
  the	
  equation	
  must	
  predict	
  that	
  interspike	
  intervals	
  increase	
  as	
  the	
  

seizure	
   terminates	
   and	
   then	
   spiking	
   stops	
   completely-­‐the	
   “critical	
   slowing	
  down”	
   that	
  

has	
   been	
   previously	
   identified	
   (Kramer	
   et	
   al.,	
   2012).	
   	
   Exponential	
   equations	
   were	
  

rejected	
  because	
  they	
  because	
  they	
  underestimated	
  the	
  ISI	
  near	
  the	
  end	
  of	
  seizures	
  and	
  

predicted	
   that	
   spikes	
   would	
   continue	
   after	
   the	
   seizure	
   ended.	
   Linear,	
   constant,	
   and	
  

polynomial	
  functions	
  also	
  did	
  not	
  capture	
  the	
  dynamics	
  near	
  seizure	
  termination.	
  	
  Thus,	
  

power	
   law	
   (of	
  which	
   inverse	
   square	
   root	
   is	
   a	
   special	
   case)	
   and	
   log	
   equations	
   are	
   the	
  

primary	
  candidates,	
  but	
  often	
  are	
  quite	
  similar	
  in	
  this	
  range	
  of	
  data.	
  In	
  cases	
  where	
  GoF	
  

from	
  log	
  and	
  power	
  law	
  were	
  similar,	
  we	
  performed	
  a	
  modified	
  predicted	
  residual	
  sum	
  

of	
   squares	
   (PRESS)	
   statistic	
   (Tarpey,	
  2000)	
   to	
  predict	
   the	
   entire	
  distribution	
  of	
   ISI	
  by	
  

fitting	
   from	
   data	
   in	
   only	
   the	
   last	
   25%	
   of	
   the	
   seizure.	
   The	
   GoF	
   was	
   then	
   assessed	
   by	
  

calculating	
   the	
   SSE	
   with	
   that	
   predicted	
  model	
   extrapolated	
   to	
   the	
   entire	
   dataset.	
   We	
  

compared	
  power	
  law	
  with	
  log	
  scaling	
  in	
  20	
  seizures	
  (16	
  mouse,	
  2	
  zebrafish,	
  2	
  human)	
  

and	
   found	
   log	
  scaling	
   to	
  have	
   lower	
  RMSE	
   in	
  16	
  of	
   the	
  cases	
  (p<	
  0.005,	
  binomial	
   test)	
  

and	
  concluded	
  that	
  log	
  scaling	
  is	
  the	
  most	
  appropriate	
  model	
  (Supplemental	
  Figure	
  9A).	
  

When	
  these	
  equations	
  were	
  tested	
  on	
  the	
  whole	
  cohort	
  of	
  human	
  patients,	
  there	
  were	
  

some	
  data	
  that	
  did	
  not	
  fit	
  any	
  of	
  the	
  equations	
  well.	
  	
  A	
  small	
  number	
  of	
  the	
  human	
  

seizures	
  (4	
  out	
  of	
  24)	
  did	
  not	
  slow	
  down	
  at	
  the	
  end,	
  producing	
  “reversed”	
  slopes	
  

(Supplemental	
  Table	
  1,	
  Supplemental	
  Figure	
  2C).	
  Note	
  that	
  clinically	
  this	
  type	
  of	
  seizure	
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is	
  very	
  unusual,	
  as	
  ‘slowing	
  down’	
  is	
  a	
  well-­‐known	
  characteristic	
  of	
  human	
  seizure	
  

termination.	
  Interestingly,	
  the	
  ISI	
  for	
  these	
  4	
  patients	
  was	
  adequately	
  modeled	
  with	
  a	
  

constant,	
  which	
  places	
  them	
  into	
  a	
  different	
  class	
  of	
  the	
  seizure	
  taxonomy	
  in	
  Table	
  1.	
  

There	
  were	
  two	
  other	
  effects	
  occasionally	
  seen	
  in	
  all	
  species	
  that	
  were	
  not	
  explained	
  by	
  

the	
  log	
  scaling.	
  	
  The	
  first	
  was	
  irregular,	
  slow	
  firing	
  at	
  seizure	
  onset	
  (e.g.	
  Fig.	
  6A).	
  	
  This	
  

“stuttering”	
  was	
  usually	
  large	
  spike	
  wave	
  discharges	
  occurring	
  before	
  the	
  fast	
  spiking,	
  in	
  

the	
  period	
  in	
  which	
  seizure	
  onset	
  is	
  difficult	
  to	
  define.	
  	
  These	
  types	
  of	
  seizure	
  onset	
  have	
  

also	
  recently	
  been	
  identified	
  in	
  a	
  heuristic	
  classification	
  of	
  seizure	
  types	
  (Perucca	
  et	
  al.	
  

2013).	
  To	
  be	
  conservative,	
  these	
  periods	
  were	
  included	
  within	
  the	
  seizure	
  epoch,	
  though	
  

clinicians	
  typically	
  disagree	
  about	
  the	
  precise	
  time	
  of	
  seizure	
  onset	
  (Benbadis	
  et	
  al.,	
  

2009).	
  The	
  second	
  was	
  clonic	
  firing	
  at	
  the	
  end	
  of	
  seizure.	
  The	
  fast	
  spiking	
  during	
  clonic	
  

bursts	
  was	
  similar	
  to	
  that	
  at	
  the	
  beginning	
  of	
  the	
  seizure,	
  while	
  the	
  intervals	
  between	
  

bursts	
  fit	
  the	
  log	
  scaling	
  (Fig.	
  6D,	
  Supplemental	
  Figure	
  9).	
  	
  When	
  we	
  compared	
  inverse	
  

square	
  root	
  and	
  log	
  scaling	
  in	
  the	
  full	
  complement	
  of	
  24	
  human	
  seizures	
  (Supplemental	
  

Table	
  1),	
  the	
  R2,	
  SSE	
  and	
  PRESS	
  values	
  were	
  not	
  significantly	
  different,	
  and	
  thus	
  we	
  

deemed	
  either	
  the	
  SNIC	
  (1/square	
  root)	
  or	
  the	
  homoclinic	
  (log)	
  bifurcations	
  the	
  most	
  

appropriate.	
  	
  Including	
  the	
  DC	
  shift	
  to	
  the	
  bistability	
  of	
  the	
  offset,	
  we	
  conclude	
  that	
  the	
  

homoclinic	
  bifurcation	
  is	
  correct	
  for	
  the	
  seizures	
  we	
  studied.	
  



Jirsa	
  et	
  al,	
  Supplemental	
  Information	
  

	
   6	
  

	
  
	
  
Supplemental	
  Figure	
  1:	
  Logarithmic	
  scaling	
  of	
  interspike	
  interval	
  (ISI)	
  in	
  the	
  Epileptor	
  

model,	
  providing	
  evidence	
  for	
  a	
  homoclinic	
  bifurcation	
  at	
  seizure	
  offset.	
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Supplemental	
  Figure	
  2:	
  	
  Examples	
  from	
  four	
  of	
  the	
  human	
  patients	
  listed	
  in	
  Suppl.	
  
Table	
  1.	
  	
  Top:	
  raw	
  data	
  from	
  one	
  EEG	
  channel.	
  	
  Bottom:	
  Interspike	
  intervals	
  as	
  a	
  function	
  
of	
  time	
  to	
  end	
  of	
  seizure.	
  	
  Red	
  	
  line:	
  data	
  fit	
  to	
  log	
  equation.	
  Note	
  that	
  in	
  study	
  006,	
  the	
  
ISI	
  are	
  much	
  smaller	
  than	
  in	
  other	
  patients	
  and	
  do	
  not	
  slow	
  down	
  at	
  the	
  end	
  of	
  the	
  
seizure:	
  the	
  data	
  do	
  not	
  fit	
  well	
  to	
  the	
  log	
  equation	
  and	
  could	
  potentially	
  be	
  modeled	
  as	
  a	
  
constant.	
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Supplemental	
   Figure	
   3.	
   Topologies	
   of	
   seizures	
   in	
   various	
   species.	
   Delayed	
   plot	
  

representation	
  of	
  seizures	
  generated	
  in	
  Epileptor	
  (A),	
  in	
  the	
  intact	
  mouse	
  hippocampus	
  

(B),	
  zebrafish	
  (C)	
  and	
  human	
  (D),	
  corresponding	
  to	
  the	
  examples	
  shown	
  in	
  Fig.	
  1.	
  In	
  this	
  

space,	
  the	
  coordinates	
  of	
  a	
  point	
  M(X,Y,Z)	
  are	
  x(t)	
  (the	
  value	
  of	
  the	
  field	
  potential	
  at	
  time	
  

t),	
  x(t-­‐∆t)	
  and	
  x(t-­‐2∆t);	
  with	
  ∆t	
  a	
  small	
  time	
  interval.	
  The	
  trajectories,	
  although	
  distorted,	
  

are	
  very	
  similar	
  in	
  nature,	
  composed	
  of	
  spirals	
  traveling	
  on	
  cone-­‐like	
  structures.	
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Supplemental	
   Figure	
   4.	
   Lack	
   of	
   crosstalk	
   between	
   the	
   chambers	
   containing	
   the	
  

hippocampus	
   and	
   the	
   septum.	
   Extracellular	
   [K+]	
   was	
   raised	
   in	
   the	
   septum	
   chamber	
  

(horizontal	
  bars),	
   and	
   the	
  extracellular	
   [K+]	
  measured	
  with	
  a	
  K+	
   sensitive	
  electrode	
   in	
  

the	
  chamber	
  with	
  the	
  hippocampus.	
  Raising	
  [K+]	
  in	
  the	
  septum	
  chamber	
  did	
  not	
  change	
  

[K+]	
  in	
  the	
  hippocampus.	
  The	
  experiment	
  was	
  reproduced	
  in	
  3	
  different	
  preparations.	
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Supplemental	
  Figure	
  5.	
  Different	
  seizure-­‐like	
  events	
  generated	
  by	
  the	
  Epileptor	
  in	
  the	
  

presence	
  of	
  increasing	
  levels	
  of	
  noise,	
  from	
  top	
  to	
  bottom.	
  The	
  initial	
  conditions	
  for	
  the	
  

numerical	
  simulation	
  are	
  x1=0.022;	
  y1=0.91;	
  z=3.84;	
  x2=-­‐1.11;	
  y2=0.	
  73.	
  Noise	
  is	
  

introduced	
  into	
  each	
  equation	
  as	
  linear	
  additive	
  Gaussian	
  white	
  noise	
  with	
  zero	
  mean	
  

and	
  a	
  variance	
  of	
  0.025	
  for	
  the	
  first	
  subsystem	
  and	
  0.1,	
  0.25,	
  0.71,	
  and	
  1	
  (from	
  top	
  to	
  

bottom)	
  for	
  the	
  second	
  subsystem. Although	
  noise	
  changes	
  the	
  some	
  aspects	
  of	
  the	
  

appearance,	
  the	
  main	
  building	
  blocks,	
  fast	
  discharges	
  and	
  SWEs,	
  are	
  still	
  present	
  albeit	
  

organized	
  differently.	
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Supplemental	
  Figure	
  6:	
  Increase	
  of	
  synaptic	
  noise	
  at	
  seizure	
  onset	
  in	
  the	
  hippocampus	
  
in	
   low	
   Mg2+.	
   A.	
   An	
   Oriens-­‐Lacunosum	
   Moleculare	
   (O-­‐LM)	
   GABAergic	
   neuron	
   was	
  
recorded	
  in	
  whole	
  cell	
  configuration	
  current	
  clamp	
  mode	
  simultaneously	
  with	
  the	
  local	
  
field	
   potential	
   (LFP)	
   in	
   low	
   Mg2+	
   conditions.	
   B.	
   Zoom	
   of	
   the	
   activities	
   in	
   the	
   orange	
  
(interictal,	
   i.e.	
   far	
   from	
   the	
   SLE)	
   and	
   grey	
   (pre-­‐ictal,	
   just	
   before	
   SLE	
   onset)	
   regions	
  
shown	
   in	
   A.	
   During	
   the	
   interictal	
   period,	
   few	
   synaptic	
   inputs	
   could	
   be	
   detected	
   (red	
  
trace).	
   In	
   contrast,	
   during	
   the	
   preictal	
   period,	
   there	
   was	
   strong	
   barrage	
   of	
   synaptic	
  
inputs,	
   leading	
   to	
  cell	
   firing	
  (black	
   trace).	
  Note	
   that	
   the	
  preictal	
  period	
  was	
  associated	
  
with	
   a	
   10	
  mV	
  depolarization	
   of	
   the	
  membrane.	
   The	
   same	
  behavior	
  was	
   found	
   in	
   four	
  
other	
   GABA	
   neurons	
   (four	
   different	
   preparations).	
   C.	
   Left:	
   Histogram	
   of	
   membrane	
  
voltages	
  in	
  preictal	
  vs.	
  interictal	
  period.	
  Both	
  are	
  Gaussian	
  distributions,	
  and	
  the	
  preictal	
  
period	
   has	
   a	
   higher	
   mean	
   (net	
   depolarization).	
   Right:	
   Comparison	
   of	
   power	
   spectral	
  
density	
   (PSD)	
   between	
  preictal	
   and	
   interictal.	
   Both	
   have	
   a	
   “pink”	
   noise	
   spectrum,	
   but	
  
with	
  a	
  clear	
  difference	
  in	
  the	
  two	
  periods	
  (see	
  Supplemental	
  Table	
  1).	
  D.	
  Simultaneous	
  
recordings	
   of	
   LFP	
   and	
   of	
   a	
   Hippocampal-­‐Septum	
   GABA	
   neuron	
   in	
   whole	
   cell	
  
configuration	
   voltage	
   clamp	
   mode	
   at	
   +10	
   mV	
   to	
   measure	
   spontaneous	
   postsynaptic	
  
inhibitory	
  (GABAergic)	
  currents	
  (IPSCs).	
  Note	
  the	
  strong	
  increase	
  in	
  GABAergic	
  activity	
  
(*),	
  which	
  was	
  not	
   associated	
  with	
  any	
  detectable	
   activity	
   in	
   the	
  LFP.	
   Just	
  before	
  SLE,	
  
there	
   was	
   another	
   barrage	
   of	
   activity	
   (**,	
   and	
   inset).	
   Similar	
   increases	
   in	
   noise	
   were	
  
found	
  in	
  20	
  other	
  GABA	
  neurons	
  (20	
  different	
  preparations).	
  



Jirsa	
  et	
  al,	
  Supplemental	
  Information	
  

	
   12	
  

	
  
	
  
Supplemental	
  Figure	
  7:	
  Increasing	
  [K+]	
  in	
  the	
  septum	
  compartment	
  increases	
  synaptic	
  
activity	
   in	
   a	
   simultaneously-­‐recorded	
   neuron	
   in	
   the	
   hippocampus.	
   The	
   ACSF	
   of	
   the	
  
hippocampal	
   compartment	
   was	
   normal.	
   Here,	
   we	
   used	
   a	
   Cs-­‐Cl	
   solution,	
   with	
   which	
  
glutamatergic,	
  cholinergic	
  and	
  GABAergic	
  inputs	
  appear	
  as	
  downward	
  deflections.	
  Note	
  
the	
  increase	
  in	
  synaptic	
  activity	
  as	
  soon	
  as	
  the	
  septum	
  is	
  exposed	
  to	
  increased	
  [K+].	
  Upon	
  
wash	
  out,	
  synaptic	
  activity	
  returned	
  to	
  baseline	
  values.	
  With	
  this	
  dual	
  chamber,	
  there	
  is	
  
no	
  crosstalk	
  (leakage)	
  between	
  one	
  chamber	
  and	
  the	
  other	
  (Supplemental	
  Figure	
  5).	
  The	
  
experiment	
  was	
  reproduced	
  in	
  three	
  different	
  preparations.	
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Supplemental	
   Figure	
  8.	
  Extracellular	
  [K+],	
  FAD	
  and	
  O2	
  share	
  a	
  time	
  course	
  similar	
  to	
  

that	
   of	
   the	
   slow	
   state	
   variable.	
   A.	
   Simultaneous	
   recording	
   of	
   the	
   field	
   potential	
   (top	
  

trace)	
  and	
  extracellular	
  [K+]	
  during	
  an	
  SLE.	
  Note	
  that	
  the	
  time	
  evolution	
  of	
  [K+]	
  mirrors	
  

that	
  of	
  the	
  DC	
  shift	
  of	
   the	
  field.	
  B.	
  Simultaneous	
  recording	
  of	
  FAD	
  and	
  O2	
   levels	
  during	
  

SLEs.	
  Interestingly,	
  it	
  is	
  only	
  when	
  FAD	
  and	
  O2	
  levels	
  return	
  to	
  baseline	
  that	
  a	
  new	
  SLE	
  

can	
  occur,	
  similar	
  to	
  the	
  predicted	
  behavior	
  of	
  the	
  slow	
  state	
  variable.	
  The	
  experiment	
  

was	
  reproduced	
  in	
  n=10	
  preparations	
  for	
  [K+]	
  measurements	
  and	
  n=3	
  preparations	
  for	
  

FAD/O2.	
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Supplemental	
  Figure	
  9:	
  Logarithmic	
  scaling.	
  A:	
  Comparison	
  of	
  log	
  scaling	
  and	
  power	
  

law.	
  	
  With	
  the	
  majority	
  of	
  data	
  near	
  the	
  beginning	
  of	
  the	
  seizure	
  (high	
  x),	
  power	
  and	
  log	
  

are	
  sometimes	
  very	
  similar.	
  	
  However,	
  if	
  the	
  equations	
  are	
  fit	
  to	
  only	
  the	
  last	
  25%	
  of	
  the	
  

data	
  (t=0	
  to	
  80,	
  33/635	
  points)	
  and	
  extrapolated,	
  the	
  log	
  fit	
  still	
  represents	
  the	
  data	
  well,	
  

while	
  the	
  power	
  law	
  does	
  not.	
  	
  Asterisks:	
  T=80.	
  	
  B:	
  	
  During	
  SLE	
  in	
  rat	
  hippocampal	
  slices	
  

caused	
  by	
  very	
  low	
  calcium,	
  the	
  interspike	
  intervals	
  exhibit	
  log	
  scaling.	
  There	
  were	
  

prominent	
  clonic	
  bursts	
  of	
  fast	
  activity	
  at	
  the	
  end.	
  	
  Box:	
  clonic	
  fast	
  spiking	
  intervals	
  

ignored	
  during	
  equation	
  fit.	
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Study	
   Gender	
   Age	
   Location	
   Pathology	
   R2	
  
4_2	
   F	
   27	
   R	
  Temp-­‐Occ	
   Neocortical	
  gliosis	
   0.062	
  
5	
   M	
   26	
   R	
  Temp-­‐Hippoc	
   MTS	
   0.344	
  
6	
   M	
   25	
   L	
  Front	
   Not	
  resected	
   0.007*	
  	
  	
  	
  §	
  
10	
   F	
   13	
   L	
  Front-­‐Par	
   Neocortical	
  gliosis	
   0.140	
  
11	
   F	
   34	
   R	
  Front	
   FCD	
  IIB	
   0.252	
  	
  	
  	
  	
  	
  §	
  

	
  	
  	
  12_2	
   M	
   37	
   R,	
  L	
  Temp	
   Gliosis	
   0.076	
  
16	
   F	
   36	
   R	
  Temp	
   Remote	
  leptomeningitis	
   0.058	
  
17	
   M	
   39	
   R	
  Temp-­‐Hippoc	
   MTS	
   0.101	
  
19	
   M	
   33	
   L	
  Temp	
   Neocortical	
  gliosis	
   0.144	
  
20	
   M	
   10	
   R	
  Front	
   Hemorrhagic	
  stroke	
   0.138	
  
21	
   M	
   16	
   R	
  Front	
   Neocortical	
  gliosis	
   0.018	
  
22	
   F	
   21	
   L	
  Temp	
   Neocortical	
  gliosis	
   0.573	
  
23	
   M	
   16	
   L	
  Occ	
   Remote	
  destructive	
  injury	
   0.053	
  
24	
   F	
   23	
   L,R	
  Front-­‐Par-­‐Temp	
   Not	
  resected	
   0.322	
  
26	
   M	
   9	
   L	
  Front-­‐Temp	
   Neocortical	
  gliosis,	
  FCD	
  IIB	
   0.010*	
  
27	
   F	
   34	
   L	
  Temp	
   MTS	
   0.377	
  	
  	
  	
  	
  	
  §	
  
29	
   F	
   22	
   L	
  Temp	
   MTS	
  and	
  neocortical	
  gliosis	
   0.001	
  
30	
   F	
   18	
   L	
  Front	
   Remote	
  vascular	
  injury	
   0.060	
  
31	
   M	
   5	
   R	
  Front	
   FCD	
  IIA	
   0.279	
  
33	
   M	
   3	
   L	
  Front	
   Cortical	
  tuber	
   0.003*	
  
34	
   F	
   33	
   R	
  Front	
   Grade	
  2	
  oligodendroglioma	
   0.018	
  
37	
   F	
   62	
   R	
  Par	
   Not	
  resected	
   0.105	
  
38	
   M	
   58	
   L	
  Temp	
   MTS	
   0.207	
  	
  	
  	
  	
  	
  §	
  
40	
   M	
   32	
   L	
  Front-­‐Par	
   Not	
  resected	
   0.038*	
  

	
  
	
  
Supplemental	
  Table	
  1:	
  	
  	
  Patient	
  summary	
  and	
  goodness-­‐of-­‐fit	
  

Deidentified	
  data	
  for	
  each	
  individual	
  patient	
  are	
  stored	
  on	
  www.ieeg.org	
  as	
  a	
  numbered	
  

“Study	
  #”	
  (e.g.	
  “4_2”	
  is	
  “Study	
  004_2”).	
  	
  EEG,	
  demographic,	
  and	
  clinical	
  metadata	
  are	
  all	
  

freely	
  available	
  from	
  the	
  website.	
  	
  All	
  studies	
  present	
  in	
  the	
  database	
  at	
  time	
  of	
  analysis	
  

were	
  included	
  except	
  for	
  one	
  that	
  had	
  no	
  data	
  (Study	
  014)	
  and	
  one	
  that	
  had	
  no	
  seizure	
  

(Study	
  028).	
  Pathology	
  listed	
  is	
  taken	
  from	
  the	
  clinical	
  documentation.	
  	
  *-­‐	
  indicates	
  data	
  

that	
  did	
  not	
  fit	
  the	
  log	
  equation	
  well	
  and	
  resulted	
  in	
  a	
  “reversed”	
  slope.	
  	
  

§-­‐	
  Subject	
  data	
  shown	
  in	
  Figure	
  S5.	
  	
  Study	
  24	
  was	
  used	
  in	
  Fig.	
  3.	
  Study	
  34	
  was	
  used	
  for	
  

Fig.	
  1	
  and	
  Suppl.	
  Fig.	
  4	
  &	
  6D.	
  R2:	
  DoF-­‐adjusted	
  R2	
  of	
  logarithmic	
  equation	
  fit	
  (perfect	
  fit	
  =	
  

1).	
   	
   Temp:	
   temporal	
   lobe,	
   Occ:	
   occipital,	
   Front:	
   frontal,	
   Par:	
   parietal,	
   Hippoc:	
  

hippocampus,	
  MTS:	
  mesial	
  temporal	
  sclerosis,	
  FCD:	
  focal	
  cortical	
  dysplasia.	
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Noise/N	
  	
  	
  	
   Vm	
  Noise	
  Ratio	
   Peak	
  noise	
  intensity	
  LFP	
  Ratio	
   	
   Time	
  to	
  event	
  (s)	
   	
  
Spont	
  0	
  Mg2+	
  CC	
   2/2	
  (2)	
   	
  	
  	
  	
   4.2	
  ±	
  1.3	
   	
   301	
  mV2	
   	
   1.3	
  ±	
  .4	
   	
   105	
  ±	
  35	
   	
   	
  
Spont	
  0	
  Mg2+	
  VC	
   10/16	
  (16)	
  	
  	
  	
   2.7	
  ±	
  2	
   	
   98040	
  pA2	
   1.1	
  ±	
  .2	
   	
   35	
  ±	
  21	
   	
   	
  
Spont	
  0	
  Mg2+	
  AP	
   6/13	
  (13)	
  	
   54	
  ±	
  68	
  (AP	
  rate)	
   	
   	
   	
   	
   26	
  ±	
  18	
  
Summary	
  	
  0	
  Mg2+	
  	
   18/31	
  (31)	
   	
   	
   	
   	
   	
   	
   33	
  ±	
  35	
  
	
  
Evoked	
  KCl	
  VC	
   4/9	
  (5)	
   	
   3.3	
  ±	
  3.5	
   	
   51898	
  pA2	
   1	
  ±	
  .1	
   	
   200	
  ±	
  135	
  
Evoked	
  mannitol	
  VC	
  2/5	
  (3)	
   	
   2.9	
  ±	
  4.1	
   	
   4548	
  (144580)	
  pA2	
   1	
  ±	
  .2	
   	
   172	
  ±	
  176	
  	
  
	
  

Noise	
  Parameters	
  
	
   	
   K	
   	
   Baseline	
  change	
   Ratio	
  #	
  spikes	
   Distribution	
  
Spont	
  0	
  Mg2+	
  VC	
   1.3	
  ±	
  0.2	
   	
   28	
  ±	
  31	
  (pA)	
   1.4	
  ±	
  0.8	
  	
   	
   lognormal	
  	
  
Spont	
  0	
  Mg2+	
  CC	
   1.9	
  ±	
  0.3	
   	
   6	
  ±	
  2.7	
  (mV)	
   2.9	
  ±	
  0.6	
   	
   lognormal	
  
Evoked	
  KCl	
   1.4	
  ±	
  0.2	
   	
   30	
  ±	
  26	
  (pA)	
   2	
  ±	
  2.3	
  	
   	
   lognormal	
  
Evoked	
  mannitol	
   2.1	
  ±	
  0.2	
   	
   29	
  ±	
  29	
  (pA)	
   1.1	
  ±	
  1.1	
  	
   	
   Gumbel	
  
	
  
Noise/N=	
  number	
  of	
  experiments	
  with	
  increased	
  noise/total	
  experiments.	
  Parenthesis=	
  

total	
  number	
  of	
  seizures;	
  Vm	
  noise	
  ratio=	
  preictal/interictal	
  noise	
  intensity.	
  This	
  and	
  all	
  

subsequent	
  columns	
  only	
  measure	
  those	
  bursts	
  with	
  increased	
  noise;	
  Peak	
  noise	
  

intensity=	
  maximum	
  preictal	
  value	
  of	
  noise	
  intensity	
  in	
  100	
  ms	
  windows;	
  LFP	
  ratio=	
  

preictal/interictal	
  variance	
  of	
  field	
  potential;	
  Time	
  to	
  event=	
  time	
  prior	
  to	
  seizure	
  that	
  

noise	
  began;	
  K=	
  parameter	
  in	
  1/frequency^k	
  equation	
  fit	
  in	
  power	
  spectrum;	
  Baseline	
  

change=	
  preictal-­‐interictal	
  median	
  value;	
  Ratio	
  #	
  events=	
  preictal/interictal	
  total	
  spikes;	
  

Distribution=	
  best	
  fit	
  of	
  interspike	
  intervals.	
  
	
  

	
  

Supplemental	
  Table	
  2:	
  Noise	
  analysis.	
  Top:	
  in	
  0	
  magnesium	
  bursting,	
  synaptic	
  noise	
  

increases	
  over	
  50%	
  of	
  the	
  time,	
  often	
  over	
  a	
  minute	
  prior	
  to	
  the	
  burst.	
  This	
  change	
  is	
  

often	
  not	
  measureable	
  in	
  field	
  potential	
  electrodes.	
  Similarly,	
  loose-­‐attached	
  electrodes	
  

see	
  an	
  increase	
  in	
  firing	
  rate	
  prior	
  to	
  the	
  bursts.	
  Similar	
  results	
  were	
  obtained	
  when	
  

evoking	
  seizures	
  with	
  either	
  additional	
  potassium	
  or	
  mannitol,	
  however	
  the	
  mannitol	
  

did	
  not	
  increase	
  synaptic	
  noise	
  significantly.	
  Bottom:	
  noise	
  had	
  similar	
  characteristics	
  in	
  

the	
  zero	
  magnesium	
  and	
  KCl-­‐evoked	
  models,	
  with	
  lognormally	
  distributed,	
  frequent	
  

spike	
  times.	
  The	
  mannitol	
  evoked	
  seizures	
  had	
  very	
  different	
  spike	
  distributions:	
  less	
  

frequent	
  and	
  associated	
  with	
  large	
  LFP	
  spikes,	
  fitting	
  the	
  Gumbel	
  (extreme	
  value)	
  

distribution.	
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(Huberfeld et al., 2011), other preictal waveforms (Stacey et al., 

2011a) or predictive features in the EEG (Cook et al., 2013). 

However, these fluctuations are quite variable, do not inevitably 

progress to a seizure (Cook et al., 2013), and are still dominated 

by the normal baseline activity. Thus, these excursions have not 

yet crossed the separatrix and provide evidence that (i) the 

system is close to threshold; and (ii) there are many potential 

trajectories from the ‘normal’ state to the ‘seizure’ state. The 

stereotypical appearance of a seizure despite the numerous 

trajectories leading into it provides further evidence that it is a 

distinct state of the system. In the Epileptor, it is possible to know 

the distance from the separatrix (bifurcation diagram in Fig. 4), 

and force the system pass its threshold. We shall explore two 

possibilities for provoking seizures and validate them 

experimentally: large external stimulation, as well as timely 

internal noise. 

 

Triggering seizures with electrical 

stimulation 
The most straightforward method to produce an excursion of 

brain trajectories toward the separatrix is to manipulate the 

system directly. In Epileptor, this can be simply done by adding 

current, which moves the system towards the separatrix and 

triggers a SLE before its expected time of occurrence (Fig. 7A, 

traces d and e). Electrical stimulations consistently trigger 

seizures in humans: following electroconvulsive shocks in any 

‘normal’ brain (Walker, 2011) and following cortical stimulation 

during presurgical evaluation of epileptic patients (Valentin et 

al., 2005). Another prediction, which is not as well described 

clinically, is that there is a refractory period after an SLE offset in 

which the same ‘kick’ cannot produce a seizure (Fig. 7A, traces b 

and c). The system will be refractory outside of the interval o 

bistability (Fig. 4). To test both predictions experimentally, we 

isolated the whole mouse hippocampus and the septum 

connected to it (Fig. 7B). We placed the hippocampus in one 

chamber and the septum in another, but maintained the physical 

connection between them. Each chamber could be perfused 

with different solutions without exchange between both 

compartments (Supplementary Fig. 4). Bathing the 

hippocampus in low Mg2+ artificial CSF resulted in recurrent SLEs 

with a typical DC shift (Fig. 7B). The concentration of Mg2+ was 

then raised (0.4–0.6 mM) to prevent the occurrence of 

spontaneous SLEs. Hippocampal circuits were thus maintained 

close to the separatrix, i.e. the z variable does not drive the 

system to the separatrix but maintains it in its vicinity. A train of 

electrical stimuli (10 s, 10 Hz, 170–230 mA) applied to the septum 

triggered a SLE in the hippocampus (Fig. 7B). After SLE offset, 

the same trains failed to elicit SLEs until at least 10 min had 

passed (n = 3 independent experiments), demonstrating a 

refractory period. 

Synaptic noise as a physiological 

seizure trigger 
In non-linear dynamics, noise enables a system to explore its 

state space (Deco et al., 2011) and in computational models has 

been shown to initiate and spread epileptiform activity 

(Suffczynski et al., 2006; Stacey et al., 2011b). Introducing noise 

in the Epileptor gave rise to different SLE patterns, still keeping 

the generic features of fast discharges and SWEs as basic 

building blocks of activity, but organized differently 

(Supplementary Fig. 5). This shows that seizures can be 

organized differently in terms of discharge patterns, while 

keeping the same invariant features. Next, we varied the distance 

to the saddle-node bifurcation systematically in the Epileptor 

and investigated its sensitivity to noise (Fig. 7C). Introducing 

noise made the Epileptor generate interictal spikes and reach 

seizure onset before expected from the bifurcation diagram, 

Figure 8 Possible physiological correlates of ensembles 1 and 2 of Epileptor. Cell attached 

recording A and whole cell current clamp 

recording B of two stratum oriens interneurons in the CA1 region during a SLE. (A) The 

GABA neuron fired at SLE onset during the large spike and wave (1), stopped during the 

fast oscillation (2) and resumed firing when spike and wave reappeared (3). Note that during 

the late spike and wave event (3), the GABA neuron stops firing during the wave when the 

fast oscillation occurs. (B) The current clamp recording shows that the cell stops firing as it 

enters into depolarization block. (C) Whole cell recording in voltage clamp mode of 

GABAergic currents. Note the presence of large GABAergic inputs during the large spike 

and wave before SLE onset (1), their loss during the fast oscillation (2), and their re-

occurrence during the late part of the SLE (3). Note that GABAergic currents are absent 

during the fast oscillation of the late spike and wave complex (3). (D) Whole cell voltage 

clamp recording of synaptic glutamatergic currents received by a GABA neuron during a 

SLE. Note that the cell receives strong glutamatergic inputs during all phases of the SLE, 

including spikes (1 and 3) and fast oscillations (2). Note the remarkable synchrony between 

the glutamatergic currents and the field during the fast oscillation (2). 
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thus generating a SLE. In other words, although the system was 

at some distance from the bifurcation point, while both normal 

and seizure states coexisted, noise made the system explore its 

surroundings in state space until it passed the separatrix. The 

number of interictal spikes was directly related to the distance to 

the bifurcation (Fig. 7C) reflecting the slow transformations 

occurring in network dynamics as the system approaches the 

seizure (Trevelyan et al., 2007). 

Noise was also able to evoke SLEs in the experimental 

preparation. We found a systematic increase of spontaneous 

synaptic noise received by neurons before SLE onset when 

hippocampi were placed in continuous epileptogenic conditions 

(Supplementary Fig. 6). To demonstrate causality, we used the 

dual-chamber as above, with the hippocampus maintained in 

conditions that did not enable the genesis of spontaneous SLEs. 

Raising external [K+] in the septum chamber increased the firing 

activity of septal neurons, thus sending more synaptic activity in 

their target hippocampal cells (Supplementary Fig. 7). The 

septum could thus be used as a generator sending synaptic 

noise to the hippocampus. When reaching a critical value, 

synaptic noise was sufficient to trigger SLEs in the hippocampus 

(Fig. 7D and Supplementary Table 2). 

Increasing synaptic noise is not the only way to pass the 

threshold. The conceptual framework provided by Epileptor 

enables exploring other putative mechanisms. For example, 

change in osmolarity can occur in several clinical situations and 

is associated with increased seizure susceptibility, as it alters 

synaptic transmission, cell volume, and ephaptic communication 

(Andrew, 1991). Using hippocampi maintained in subthreshold 

conditions, we found that changing the osmolarity in the 

hippocampal chamber also generated SLEs (Fig. 7D and 

Supplementary Table 2). Importantly, there was no noise 

increase before SLEs, demonstrating that the seizure onset was 

approached via a different route. However, changes in noise and 

osmolarity were synergistic, producing SLEs when subthreshold 

levels of each were applied simultaneously (Fig. 7D). In such a 

two-state non-epileptic/epileptic system, there are thus multiple 

ways or combinations to reach seizure onset, such as, but not 

limited to, stimulation, noise increase and change in osmolarity. 

Clinically, this prediction means that there are many different 

paths to reach seizure onset. 

 

Biophysical correlates of Epileptor 

state variables 
The state variables in the Epileptor, although abstract, are the 

key to quantifying seizure dynamics. Recognizing biological 

processes that have similar behaviours is technically very 

challenging, but helps understand the underlying processes that 

comprise a seizure. We now present a strategy to identify these 

processes experimentally, acknowledging that their 

identification may only apply to the intact immature mouse 

hippocampus in low Mg2+. 

Slow permittivity variable 
In Epileptor, the key property of the permittivity variable z is its 

evolution on a slow time scale. Several biophysical parameters 

are known to change slowly during or preceding seizures, 

including extracellular levels of ions (Heinemann et al., 1986), 

oxygen (Suh et al., 2006) and metabolism (Zhao et al., 2011). We 

thus measured the levels of extracellular [K+] (Bazhenov et al., 

2008; Frohlich et al., 2008), oxygen and intracellular 

NADH/FAD+, which reflects the activity of energy metabolism in 

hippocampi placed in epileptogenic conditions. The return to 

baseline of [K+], pO2, and NADH/FAD+ corresponded to the 

initiation of the next bifurcation, as predicted by the Epileptor 

(Fig. 5B and Supplementary Fig. 8). We did not identify a 

biophysical variable changing during the interictal period, i.e. a 

variable that would drive the system to seizure threshold. 

However, [K+], pO2, and NADH/FAD+ appear to contribute to SLE 

time course and offset (but not its initiation), with a time evolution 

compatible with z during SLEs. It is interesting to note that 

seizures recorded in vivo in cats (Moody et al., 1974) and awake 

baboons (Pumain et al., 1985) are characterized by the same 

time-dependent evolution of extracellular [K+]. 

 

Cells recapitulate state variable 

behaviour 
The Epileptor predicts that the fast subsystem composed of 

ensemble 1 with variables (x1, y1) should be active during SWEs 

with the fast oscillations occurring only during the wave part of 

the event. As experimental data suggests that glutamatergic and 

GABAergic cells are important for fast discharges and SWEs, 

respectively (Isomura et al., 2008), we predicted that GABAergic 

cells would be more active during SWEs than during fast 

discharges, whilst glutamatergic cells would display a reverse 

pattern of activity. Hence we associate the involvement of 

glutamatergic and GABAergic activity with the faster variable x1 

and slower variable x2, respectively. These hypotheses were 

tested experimentally in hippocampi placed in continuous 

epileptogenic conditions. Consistent with the prediction, 

GABAergic neurons recorded in the cell attached configuration 

fired action potentials during SWEs, stopped firing during the 

fast discharge, and resumed firing when SWEs re-occurred 

during SLEs (Fig. 8A). Current clamp recordings revealed that 

they stopped firing during the fast discharge because they 

entered into depolarization block (Fig. 8B). Single cell recordings 

provide only a partial picture of the activity of GABA neurons. If 

GABA neurons are more active during SWEs than fast 

discharges, we predicted that the GABAergic synaptic drive 

(produced by GABA neuron firing) received by hippocampal 

neurons should be predominant during SWEs. In keeping with 

this prediction, whole cell recordings revealed that hippocampal 

neurons received a strong barrage of synaptic GABAergic 

currents before SLE onset, which was largely reduced during the 

fast discharge (Fig. 8C). The GABAergic drive recovered upon 
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recurrence of SWEs, only during the spike component, but not 

during the fast oscillation embedded in the wave as predicted. 

Conversely, hippocampal neurons received a barrage of high 

frequency glutamatergic inputs synchronized with the fast 

discharge in the field (Fig. 8D), in keeping with the predicted 

behaviour of pyramidal cells. It is important to note that the 

presence of strong glutamatergic currents during the spike 

component of SWEs indicates that pyramidal cells also 

contribute to (x2, y2), which is why the biophysical correlate of the 

Epileptor is more complex than the simple interpretation of 

ensembles 1 and 2 as excitatory and inhibitory cells. 

The previous results show that it is possible to construct 

hypothesis-driven search of the biophysical variables 

contributing to the state variable, which may be specific to 

experimental conditions (as demonstrated hereafter), and in the 

clinic, to any specific patient. 

 

Seizures: conserved dynamics from 

many trajectories 
It is important to stress here again that the Epileptor model does 

not impose constraints upon the nature of the biological 

variables; only upon their dynamics and respective relationships. 

This means that multiple parameter configurations can 

theoretically give rise to the same system behaviours. For 

instance, work in the guinea pig brain suggests that the fast 

discharges therein are produced by inhibitory interneurons, 

rather than by pyramidal cells (Gnatkovsky et al., 2008). This 

concept, that there are many functional biological pathways that 

produce the same outcome, was developed and verified 

experimentally in simple neuronal networks (Marder and Taylor, 

2011) and is present in human biology as well (Beall, 2007). This 

issue is particularly relevant both clinically and experimentally, as 

numerous anatomical, molecular, electrophysiological and 

functional modifications have been described in different types 

of epilepsies, experimental models and species; without clear 

consensus emerging about major contributing parameters. 

Hence the possible correlates of the five state variables in the low 

Mg2+ model of SLEs in the intact hippocampus may be only valid 

for these very specific experimental conditions. To illustrate this 

key concept, we used a drastic situation, analysing SLEs 

 

recorded in the absence of Ca2+, a condition that abolishes 

neurotransmitter release (Jiruska et al., 2010). In these 

conditions, the scheme proposed above with pyramidal 

cells/GABA neurons and intact neurotransmission cannot apply. 

Yet, SLEs, in low Ca2+, were also characterized by a strong DC 

shift, and an offset still characterized by a homoclinic bifurcation 

with logarithmic scaling (Supplementary Fig. 9). Interestingly, 

seizures recorded in awake baboons are similarly characterized 

by a large decrease in extracellular Ca2+ compatible with a lack of 

neurotransmission (Pumain et al., 1985). Hence, even in the 

absence of neurotransmission, SLEs still maintain their invariant 

features, further supporting the generic nature of our findings. 

Discussion 
We have identified several invariant features of seizures that are 

preserved across different species, models, and brain regions. 

Invariant features serve as constraints to define landmarks in 

high-dimensional parameter spaces, allowing the researcher to 

describe inherent features that are independent of specific 

parameters. Here we used the scaling behaviour of frequency 

and amplitude during seizure onset and offset to identify the 

specific bifurcations underlying these transitions between brain 

states. This approach allows a systematic characterization of SLEs 

into a taxonomy of 16 classes. Based on the analyses of our 

experimental data, we identified the predominant class of SLEs 

as the seizure onset/offset pair ‘fold/homoclinic bifurcation’ and 

modeled its dynamics through the Epileptor model. 

Where does the Epileptor stand in the model literature? Models 

can be broadly separated in ‘analogies’ and ‘biophysical’. Scaling 

laws are often used to characterize system properties as a whole 

by making analogies to models from physics, such as coupled 

mechanical pendula (Osorio et al., 2010) or sand piles (Bak and 

Paczuski, 1995). Such analogies allow for some intuition of a 

functional mechanism and demonstrate the existence of certain 

general system properties, including multistability (Lopes da 

Silva et al., 1994, 2003a; Shu et al., 2003; Teramae and Fukai, 

2007; Milton, 2010), bifurcations (Lopes da Silva et al., 2003b), 

and delayed recurrent loops (Foss et al., 1996; Foss and Milton, 

2000). But analogies do not predict which multistable states or 

which bifurcations are present in a given neuroscience system. 

More importantly, they do not generate a time series that 

specifically models the data. On the other extreme, biophysical 

models are derived from commonly accepted microscopic 

neuron models, such as the Hodgkin-Huxley equations and/or 

biophysical principles and laws, e.g. Nernst equation of 

electrochemical equilibrium, conservation of mass and/or 

energy, or mean fields (Deco et al., 2008), leading to neural 

population or ‘mass’ models (Wilson and Cowan, 1972; Nunez, 

1974; Freeman, 1975; Jansen and Rit, 1995; Brunel and Wang, 

2003; Stefanescu and Jirsa, 2008). Many of these models find 

applications in epilepsy (Wendling et al., 2002; Breakspear et al., 

2006; Kramer et al., 2012; Wang et al., 2012). In these models, 

parameters have a biophysical meaning and can often be 

independently measured, allowing for experimental validation. 

But the biophysical parameter space is vast and many parameter 

configurations can give rise to the same system behaviours 

(Marder and Taylor, 2011). Our approach has been to identify 
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invariant landmarks in the parameter space obtained from the 

experimental data. These landmarks are the bifurcations that 

unambiguously define how a system qualitatively changes its 

behaviour. The taxonomy of SLEs assembles these invariant 

dynamic elements of seizure evolution in one framework that can 

be used to guide interpretation of experimental results or as a 

map for choosing parameters in biophysical models. It is 

remarkable that the vast majority of seizures in patients 

corresponded to the class of the bifurcation pair 

saddlenode/homoclinic. Though our findings are consistent 

across all data sets, species and brain regions we studied, other 

seizure types will likely exist. Indeed, seizures in four patients did 

not display homoclinic bifurcations at seizure offset because their 

interspike intervals remained essentially constant throughout the 

seizure (Supplementary Table 1). This behaviour is unusual for 

seizures, but is potentially consistent with the fold/Hopf and 

fold/fold classes (assuming the saddle-node (fold) bifurcation 

holds for seizure onset) in the SLE taxonomy (Table 1). Another 

distinction is made regarding absence seizures. Previous 

mathematical models of absence epilepsy have predicted 

seizure onsets in which there is no warning or ‘slow process’ 

(Lopes da Silva et al., 2003a; Breakspear et al., 2006) and the ictal 

state is entered through a Hopf bifurcation with a continuously 

evolving polyspike pattern (Marten et al., 2009; Rodrigues et al., 

2009). Absence seizures are characterized by spike and wave 

discharges resembling the time scales observed for SWEs of the 

Epileptor, which are slow compared to the fast discharges in non-

absence seizures. 

One of the most intriguing predictions is that seizure onset, time 

course and offset are controlled by a slow permittivity variable. 

This concept, that focal seizures inherently are influenced by slow 

processes that govern when they are likely to occur, emphasizes 

the important role of extracellular effects for discharges of 

neuronal populations. In our experimental model, the levels of 

extracellular [K + ], oxygen and ATP consumption show the same 

time-dependent changes as the permittivity variable during 

seizures. Such correlation does not imply causality, and many 

other parameters may also display slowly evolving modifications, 

e.g. release of molecules, synaptic vesicle depletion, 

phosphorylation processes etc. The varying release of 

neuromodulators-neurotransmitters during biological cycles 

(circadian, sleep/wake), alterations in glucose/O2 supply etc. 

could fit the dynamic constraints of this slow permittivity variable. 

They may constitute key biomarkers for seizure prediction and 

may be investigated as such. As some of these parameters may 

not give rise to an electrophysiological signature, specific 

sensors (e.g. glucose, ATP and adenosine) would be needed to 

measure them. It is important to note that if some variables may 

push the system toward the bifurcation, many others oppose this 

movement (collectively referred to as protective/anti-seizure 

mechanisms), e.g. peptides (such as vasoactive intestinal 

polypeptide), activation of adenosine A1 receptors etc. From the 

Epileptor standpoint, the balance between slowly acting pro- 

and anti-seizure mechanisms are exactly what constitutes the 

slow permittivity variable. A challenge for future development 

will be the bridging of different spatiotemporal scales, such as 

the levels of single neuron and neural population dynamics using 

mean field techniques (Deco et al., 2008). Given the 

heterogeneity of neuronal behaviour during seizure initiation 

(Truccolo et al., 2011), we anticipate a complex interplay among 

groups of neurons that present different types of spiking 

patterns, probably with fast and slower time scales as 

encountered in the two Epileptor ensembles. Furthermore, 

environmental effects and electrotonic couplings will likely play 

a prominent role in light of our results in absence of synaptic 

transmission (see Cressman et al., 2009 for biophysical candidate 

mechanisms). Understanding which sets of parameters control 

seizure time course (for example with optogenetics to control the 

activity of specific cell types) will be crucial to design the best 

strategies to stop focal-onset seizures as soon as they start with 

closed-loop systems (Krook-Magnuson et al., 2013; Paz et al., 

2013). 

The concept of a slow permittivity variable may provide alternate 

(but non-exclusive) explanations to long-standing debates. For 

example, whether or not interictal spikes are causally related to 

seizure genesis remains unclear. A study using tissue slices 

obtained from epileptic patients showed that a build-up of large 

pre-ictal spikes preceded seizure-like events when slices were 

placed in continuous epileptogenic conditions (Huberfeld et al., 

2011). The transition was slow (30 min) and required the 

activation of NMDA receptors. Rather than driving seizures, we 

propose that the occurrence of pre-ictal spikes may just reflect 

the modifications occurring within the network on a slow time 

scale. In other words, as the slow permittivity drives the system 

close to the bifurcation, the conditions for generating such pre-

ictal spikes are met. Hence, interictal spikes may just signify a 

specific position of the system in its state space. In keeping with 

this view, interictal spikes show complex dynamics in the days 

preceding the first spontaneous seizure when networks undergo 

complex reorganizations in vivo (El-Hassar et al., 2007; Chauviere 

et al., 2012), and they tend to disappear over time when slices 

are bathed in continuous epileptogenic conditions (Trevelyan et 

al., 2007). This proposal does not rule out the possibility for 

interictal spikes to act as a driving force toward the bifurcation, 

but is not part of the Epileptor mechanisms. 

Nearly every brain region can be driven out of the ‘healthy’ 

subspace to produce seizures, depending upon the severity and 

the widespread diffusion of the process leading to the seizure. In 

a ‘healthy’ brain, the trajectories of brain activities are far from the 

seizure threshold, and need strong external interventions (like an 

electroconvulsive shock) to reach seizure state. In pathological 

conditions, we propose that the reorganization of the underlying 

circuits move normal brain trajectories closer to the separatrix 

(which corresponds to how much the seizure threshold has been 

lowered), increasing the likelihood for seizure occurrence. Many 

factors can potentially move the system in such a way, which 

would explain why network reorganizations are often brain 

region-, model-, time- and epilepsy type-dependent (Pitkanen 

and Sutula, 2002). Hence, there are a large number of possible 

combinations, all leading to the same functional outcome: 

bringing normal brain trajectories in the vicinity of the separatrix. 
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A recent clinical trial, in which patients with epilepsy were 

recorded continuously over several months, found potential 

evidence of brain approaching the separatrix (Cook et al., 2013). 

In this study, several patients had unique, characteristic changes 

in their EEG before seizures that could be identified by an 

automated algorithm. In these patients, the algorithm was quite 

sensitive in predicting oncoming seizures; however, there were 

many ‘false alarms’ in which a seizure did not occur. The Epileptor 

predicts that these changes may not have been failures of the 

algorithm, but rather a reflection of the system approaching the 

bifurcation. 

We performed the experimental analysis of seizure dynamics 

on data from single regions, mostly the hippocampus. 

However, seizures often involve large networks of networks, 

with initiation and propagation zones (Bartolomei et al., 2008). 

Epileptor may serve as a building block of coupled dynamical 

models to study the network mechanisms of seizure 

propagation over larger brain regions. Because seizure 

propagation is the most detrimental factor to the patient’s 

quality of life, the identification of potential invariances in 

seizure propagation would be particularly beneficial in the 

clinic. 

We conclude that seizures belong to the possible repertoire of 

brain activities. They can occur under stringent conditions in 

the ‘normal’ brain, but their probability of occurrence is 

increased as the underlying reorganizations bring the system 

close to the bifurcation. This may explain why so many different 

pathological conditions (e.g. Alzheimer’s disease, stroke, 

autism, brain trauma etc.) are also associated with seizures, yet 

seizures generally have conserved dynamics that are 

recognizable to clinicians regardless of pathology. Their 

invariance from flies to rodents to humans clearly argues that 

seizures are a universal behaviour of neural systems. 
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