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This study compares results obtained with several chemometric methods: SIMCA, PLS2-DA, PLS2-DA with
SIMCA, and PLS1-DA in two infrared spectroscopic applications. The results were optimized by select-
ing spectral ranges containing discriminant information. In the first application, mid-infrared spectra of
crude petroleum oils were classified according to their geographical origins. In the second application,
near-infrared spectra of French virgin olive oils were classified in five registered designations of origins
(RDOs). The PLS-DA discrimination was better than SIMCA in classification performance for both appli-
cations. In both cases, the PLS1-DA classifications give 100% good results. The encountered difficulties
lassification
iscriminant analysis
LS-DA
IMCA
ariable selection

nfrared
rude petroleum oils

with SIMCA analyses were explained by the criteria of spectral variance. As a matter of fact, when the
ratio between inter-spectral variance and intra-spectral variance was close to the Fc (Fisher criterion)
threshold, SIMCA analysis gave poor results. The discrimination power of the variable range selection
procedure was estimated from the number of correctly classified samples.

© 2010 Elsevier B.V. All rights reserved.
irgin olive oils

. Introduction

Pure pattern recognition techniques are oriented in discrim-
nated way among different groups of samples and operate by
ividing the hyperspace in as many regions as the number of
roups. So, if a sample is represented in the region of space cor-
esponding to a particular category, it is classified as belonging to
hat category. In this case, each sample is always assigned to one
nd only one group [1]. These methods include Linear Discriminant
nalysis (LDA) [2] and Partial Least-Squares Discriminant Analy-
is (PLS-DA) [3]. The principle of PLS-DA consists in a classical PLS
egression where the response variable is binary and expresses a
lass membership. Therefore, PLS-DA does not allow attributing
sample to other groups than the ones first defined. As a con-

equence, all measured variables play the same role with respect

o the class assignment. Actually, PLS latent variables are built to
nd a proper compromise between two purposes: describing the
et of explanatory variables and predicting the response ones. A
LS-DA classification should well benefit from such a property in
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iques de Saint Jérôme, Avenue escadrille Normandie Niemen, 13397 Marseille,
rance.
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the direction of building typologies with an intrinsic prediction
power.

Another group of class-modeling techniques represents a dif-
ferent approach to pattern recognition, as it focuses on modeling
the analogies among the elements of a class rather than on dis-
criminating among the different categories. In these methods, each
category is modeled separately. The objects in agreement with the
model are considered as a member of the class, while objects not
in agreement are rejected as non-members. When more than one
class is modeled, three different situations can be encountered:
each sample can be assigned to a single category, or represented
by several categories or not be included in any category. In com-
parison with pure pattern recognition techniques, class-modeling
tools offer at least two main advantages: it is in principle possible
to recover samples which are not represented in any of the exam-
ined categories and which, as a consequence, can be either simply
outlying observations or members of a new class not considered
during the modeling stage. Moreover, as each category is modeled
separately, any additional class can be added without recalculat-
ing the already existing class models. The most commonly used

chemometric class-modeling technique is SIMCA (Soft Indepen-
dent Modeling of Class Analogy) [4,5].

The range of study by supervised pattern recognition tech-
niques is wide. Some recent reviews about applications of these
chemometric techniques have been published: general reviews on

dx.doi.org/10.1016/j.vibspec.2010.09.012
http://www.sciencedirect.com/science/journal/09242031
http://www.elsevier.com/locate/vibspec
mailto:nathalie.dupuy@univ-cezanne.fr
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eographical origin of foods [6,7] or reviews on source rock origin
8], wines [9], and honeys [10].

There have been many reports in the literature comparing
he performance of different pattern recognition techniques on
pectroscopic data [11–14]. The increase of pattern recognition
echniques and pattern recognition applications led us to search
he best method to be used.

The aim of this study was to compare the results obtained
ith SIMCA, PLS2-DA, PLS2-DA with SIMCA, and PLS1-DA in two

pplications, after optimization on the basis of spectral variance
nalysis. The first application concerns a classification of crude
etroleum oils according to their geographical origins using mid-

nfrared (MIR) spectroscopy. The second application is about the
lassification of French virgin olive oils in five registered designa-
ion of origin (RDOs) by near-infrared (NIR) spectroscopy.

. Experimental

.1. Samples

.1.1. Crude petroleum oils
Crude petroleum oils (36 samples), from different fields, were

nalyzed by MIR spectroscopy to identify their geographical ori-
ins: Algeria (ALG), n = 11; South America (S.A.), n = 7; Equator
EQU), n = 11; and Venezuela (VEN), n = 7. Five MIR spectra were
ecorded for each sample and models were performed on these five
pectra per sample. Replicates have been collected following. Spec-
ra have not been recording origin by origin to not bias chemometric
reatments. Hence, a total of 180 spectra which were divided in
wo subgroups: the calibration (n = 23 × 5 = 115) set samples which
ere chosen to take into account all possible variations because of
atural variations; and the prediction set samples (n = 13 × 5 = 65)
hich were randomly selected for each geographic origin. All the

eplicates of the same sample were used in the same set.

.1.2. Virgin olive oils
Commercial virgin olive oils (317 samples) were obtained from

he French Inter-Professional Olive Oil Association (AFIDOL, Aix-
n-Provence, France) and from Service Commun des Laboratoires
u ministère des finances français (SCL, Marseille, France). Sam-
les were obtained from four successive crops (from 2003/2004 to
006/2007). They came from five French RDOs: Aix-en-Provence
AP) n = 97, Haute-Provence (HP) n = 46, Nice (NI) n = 46, Nyons (NY)
= 41, and Vallée des Baux de Provence (VB) n = 87. Samples were
nalyzed by NIR spectroscopy. Spectra have not been recorded ori-
in by origin, not to bias chemometric treatments.

The calibration set was made up of 225 samples chosen in
rder to take into account all possible variations because of natural
ariations among fatty acid and triacylglycerol compositions. The
etermination of fatty acid and triacylglycerol rates in these sam-
les have been described in previous work [7]; fifty samples having
he highest and the lowest fatty acid and triacylglycerol concentra-
ions were chosen in calibration. The other samples were randomly
elected. The prediction set was made up of 92 samples which were
ot selected in the calibration set. The years of harvest are not used
s a criterion and all of them could be found in calibration and
rediction sets.

.2. Spectroscopic techniques

.2.1. Mid-infrared spectroscopy
MIR spectra of each crude petroleum oils were recorded five
imes from 3400 to 700 cm−1, with 4 cm−1 resolution and 100
cans on a Nicolet Avatar spectrometer equipped with a DTGS
etector, an Ever-Glo source and a KBr/Germanium beam splitter.
he spectrometer was placed in an air-conditioned room (21 ◦C).
amples were deposited without preparation on a single bounce
Fig. 1. MIR normalized spectra of crude petroleum oils. Absorption bands: � C–H:
3052 cm−1; �as CH3: 2952 cm−1; �as CH2: 2922 cm−1; �s CH2: 2853 cm−1; �C C:
1602 cm−1; ıas C–H in CH3 and CH2 groups:1456 cm−1; ıs C–H in CH3 group:
1376 cm−1; ıCH2 in –(CH2)n, n > 3: 721 cm−1.

attenuated total reflection (ATR) cell provided with a diamond
crystal. Air was taken as reference for the background spectrum
before each sample. Between each spectrum, the ATR plate was
cleaned in situ by scrubbing with ethanol solution and dried.
Cleanliness was verified by a comparison between a new back-
ground spectrum and the previous background spectrum. The
recorded spectra have been normalized after correction of the
baseline by the instrument software OMNIC 4.1b (Thermo Nicolet).
Each spectrum is constituted of 1402 points.

2.2.2. Near-infrared spectroscopy
NIR spectra of each virgin olive oil were recorded with a Nico-

let Antaris spectrometer interfaced to a personal computer using
the software result integration 2.1 Thermo Nicolet 2.1. Virgin olive
oil samples were filled into a 2 mm pathlength quartz cell directly
sampled from the bottle without any chemical treatment. Spectra
were recorded between 4500 and 10,000 cm−1 at 4 cm−1 reso-
lution by co-adding 10 scans using double sided interferograms
and an empty cell as a reference. The recorded spectra have been
normalized by the UNSCRAMBLER software before chemometric
applications. Each spectrum is constituted of 2853 points.

2.3. Unsupervised pattern recognition

Principal Component Analysis (PCA) is an unsupervised pattern
recognition and it is often the first step of exploratory data analysis
to detect groups in the measured data. PCA models the directions of
maximum variations in a data set by projecting as a swarm of points
in a space defined by principal components (PCs). PCs describe,
in decreasing order, the higher variations among the objects, and
because they are calculated to be orthogonal to another one, each
PC can be interpreted independently. That permits an overview of
the data structure by revealing relationships between the objects
as well as the detection of deviating objects. To find these sources of
variations, the original data matrix is decomposed into the object
space, the variable space, and the error matrix. The error matrix
represents the variations not explained by the previously extracted
PCs and is dependent on the problem definition [15,16]. The PCA
algorithm is used with mean centered data.

2.4. Supervised pattern recognition
2.4.1. Soft Independent Modeling of Class Analogy Classification
(SIMCA)

SIMCA is the most used of the class-modeling techniques. The
SIMCA classification is a method based on disjoint PCA modeling
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Fig. 2. PCA of the crude petroleum oil spectra on PC1 (53%) and PC2

ealized for each class in the calibration set. Unknown samples are
hen compared to the class models and assigned to classes accord-
ng to their analogy with the calibration samples. A new sample

ill be recognized as a member of a class if it is enough similar to
he other members; else it will be rejected. Each class is modeled
sing separate PCA models. A model distance limit Smax is used for
lassifying new samples and Smax is calculated for the class model

as follows (Eq. (1)):

max(m) = S0(m)
√

Fc (1)

here S0 is the average distance within the model, and Fc (Fisher
riterion) is the critical value provided by the Fisher–Snedecor
ables. The Fc value depends on the percentage of risk, generally
et to 5% [17]. Class membership is defined at a significance level
f 2.5% of Smax. Mean centering is applied before modeling.

.4.2. Partial least squares regression (PLS)
PLS [18,19] was initially built for quantitative analysis, but now

t is also used for pattern recognition. This supervised analysis
s based on the relation between spectral intensity and sample
haracteristics [20]. Interference and overlapping of the spectral
nformation may be overcome using powerful multicomponent
nalysis such as PLS regression. The ability of this algorithm is to
athematically correlate spectral data to a property matrix (rel-

tive rate or geographical origin) [21]. Mean centering is applied
efore modeling. The number of latent variables selected for the
LS model was obtained by cross validation on the calibration set.
When several dependent data are available for calibration, two
pproaches can be used in PLS regression: either properties are cal-
brated for one at a time (PLS1), or properties are calibrated at once
PLS2). In PLS1 model, the Y response consists of a single variable.

hen there is more than one Y response a separated model must
. ALG: Algeria; S.A.: South America; EQU: Equator; VEN: Venezuela.

be constructed for each Y response. In PLS2 model, responses are
multivariate. PLS1 and PLS2 models provide different prediction set
and PLS2 regression give better results than PLS1 regression only if
Y variables are strongly correlated [1,11,22]. In the other case, PLS1
models are generally more robust [22,23].

PLS regression can be adapted for pattern recognition, giving
rise to the PLS-DA method. PLS-DA is performed using an exclusive
binary coding. During the calibration process, the PLS-DA method
is trained to compute the “membership values”, one for each class;
the sample is then assigned to one class when the value is above a
specific prediction threshold [24]. This method, adapted from PLS1
or PLS2 regressions, uses M spectral variables as predictors and q
variables (0 or 1) as variables response [25–28].

The predicted origins seldom lead to a binary result not exactly
equal 0 or 1 but to a result near 0 or 1, which is justified by the nat-
ural variability of the sample constituents. In front of the difficulty
of calibrating and predicting origin with binary variables, it is nec-
essary to discriminate the results between the initial values 0 or 1.
Samples with values lower than 0.5 and higher than 1.5 were identi-
fied as outside the defined origin and samples with values between
0.5 and 1.5 were identified as belonging to the defined origin.

For PLS1-DA, one regression for each class has been build. For
PLS2-DA, all the classes are included in one regression. For PLS2-
DA-SIMCA, the SIMCA classification is performed on the PLS2-DA
scores. The number of latent variables selected for the PLS model
was obtained by cross validation on the calibration set.
2.5. Data processing

2.5.1. Comparison of the methods
The percentage of correct classification (%CC) is the criterion

used to compare classification results obtained with chemometric
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Fig. 4. NIR normalized spectra of virgin olive oil samples. (A) (4500–4800 cm−1)
ig. 3. Percentage of correct classification (%CC) for each petroleum oil origin as
unction of: (a) the number of principal component used in the SIMCA model; (b)
he number of latent variable used in the PLS2-DA model; (c) the number of latent
ariable used in the PLS1-DA model.

ethods:

CC = Nc

Nc + Nic
× 100 (2)

here Nc is the number of correct classifications and Nic is the
umber of incorrect classifications [29].

.5.2. Selection of variables with variance method
The total sample variance (S2) of a sample set is explained by

he intra-spectral variance (IntraSP) and by the inter-spectral vari-
nce (InterSP). IntraSP represents the variance of all spectra into
ne class (j spectra) calculated at each wavenumber calculated as
ollows (Eq. (3)):

ntraSP =
∑j

i=1(aix − ax)
2

j − 1
(3)

here aix is the absorbance of the spectrum i at the wavenumber
and ax is the mean absorbance of all the j spectra into the class

onsidered at the wavenumber x.
InterSP represents variance of all spectra (n spectra) into the
ample set as follows (Eq. (4)):

nterSP =
∑n

k=1(Akx − Ax)
2

n − 1
(4)
combination of CH stretching vibrations with other vibrational modes; (B)
(5300–6100 cm−1) first overtone of CH2 stretching vibrations (methyl and methy-
lene groups groups); (C) (6700–7450 and 7900–9000 cm−1) combination of CH
stretching vibrations, and (D) (cm−1) second overtone of CH stretching vibrations
(D: methyl and methylene groups groups).

where Akx is the absorbance of the spectrum k at the wavenumber
x and Ax is the mean absorbance of all the n mean spectra of each
class considered at the wavenumber x.

Both intra- and extra-spectral variance have been calculated
using the Bessel’s correction, n − 1, where n is the number of spec-
tra. InterSP and IntraSP are estimators of the distribution of spectral
variances. The Fisher–Snedecor test [30] enables to determine
whether a variance is significantly higher than another one by the
calculation of the Fisher–Snedecor variable (F) according to Eq. (5):

F = InterSP
IntraSP

(5)

IntraSP is an estimator of the intra-group variance �2
1 , InterSP is

an estimator of the inter-group variance �2
2 .

The null hypothesis H0 (�2
1 = �2

2 ) is tested against the alterna-
tive hypothesis H1 (�2

1 = �2
2 ). If the ratio (j − 1)IntraSP/�2

1 follows
a �2

j−1 law and if the ratio (n − 1)IntraSP/�2
2 follows a �2

n−1 law,

so that, under the null hypothesis �2
1 = �2

2 , F is distributed as
[�2

n−1/j − 1]/[�2
m−1/n − 1] which does not depend on the common

variance �2 of the two normal distributions, and can therefore be
used as a test statistic.

The value F is compared to the Fisher criterion (Fc). Fc is the
critical value provided by the Fisher–Snedecor tables obtained by
freedom degree number of interSP and by freedom degree number
of IntraSP. Fc depends on the percentage of risk, generally set to
5% [17]. If F < Fc, the null hypothesis H0 is verified and the classifi-
cation is impossible. If F > Fc, the null hypothesis H0 is not verified
and the classification is possible. In this case, IntraSP is significantly
lower than the InterSP. Thus, the corresponding spectral range will
be selected for model construction. Discrimination power of vari-
able selection procedure is estimated from the number of correctly
classified samples.

2.5.3. Software
The chemometric applications were performed by the

UNSCRAMBLER software version 9.6 from CAMO (Computer
Aided Modelling, Trondheim, Norway).

3. Results
3.1. Classification of crude petroleum oils according to their
geographical origins

Crude petroleum oils extracted from different petroleum fields
[Algeria (ALG), South America (S.A.), Equator (EQU), and Venezuela
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Fig. 5. PCA of the virgin olive oil spectra on PC1 (48%) and PC3 (17%). AP: Aix-en-Provence; HP: Haute-Provence; NI: Nice; NY: Nyons; VB: Vallée des Baux.

Table 1
Percentage of well classified petroleum oils for each statistical treatment in the 700–3400 cm−1 spectral range.

Origins SIMCA PLS2-DA PLS2-DA-SIMCA PLS1-DA

%CC PC %CC LV %CC LV-PC %CC LV

Algerian (ALG) 100 2 100 5 100 4–1 100 1
South American (S.A.) 100 1 100 5 100 4–1 100 3

% .
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Equator (EQU) 100 1 100
Venezuelan (VEN) 100 5 100

CC: correct classification percentage; PC: principal component; LV: latent variable

VEN)] were analyzed by MIR spectroscopy. In spite of their dif-
erent locations, these samples have similar MIR spectra (Fig. 1)
nd display characteristic bands of aliphatic hydrocarbons: �asCH3:
952 cm−1, �asCH2: 2922 cm−1, �sCH2: 2853 cm−1, ıasC–H in CH3
nd CH2 groups: 1456 cm−1, ısC–H in CH3 group: 1376 cm−1, ıCH2
n –(CH2)n (n > 3): 721 cm−1. Absorption bands describing aromatic
ompounds occur at 3052 cm−1 (� C–H), 1602 cm−1 (�C C) and in
he range 900–746 cm−1 (�C–H) characteristic of the number of
djacent hydrogen atoms on the aromatic ring.

Fig. 2 shows the PCA performed on the full MIR spectra (1402
ariables) of crude petroleum oils that constitute four perfectly
istinct groups. Prediction samples are highlighted in the score
lot projection. The score plots are projected in the PC1-PC2 plane.
hese PCs explain respectively 53% and 32% of the spectral variance.
hree groups are narrowed, and another group (EQU) is farthest.
n the light of this PCA overview (85% of the spectral variance is
xplained with only 2 PCs), a good classification of crude petroleum
ils was expected. In our previous work [8], the first principal com-
onent was attributed to the aliphatic part of the oil and the second
ne to oxidised and aromatic compounds.

The samples belonging to ALG, S.A. and VEN groups are very
losed to each other unlike the EQU samples which have a large

ispersion. This could be explained by an American Petroleum

ndustry (API) degree and chemical compositions more disparate
n the EQU group than in the other ones [31].

The data were treated by different chemometric methods in
rder to predict their geographic origins. Table 1 shows the best
5 100 4–1 100 1
5 100 4–1 100 1

classification results obtained in prediction by each method to
predict crude petroleum oil groups according to their geographi-
cal origin (ALG, S.A., EQU and VEN). These results were obtained
on normalized spectra; spectral treatments as Multiplicative Sig-
nal Correction (MSC) or Standard Normal Variate (SNV) have not
improved the results. The results of each classification model were
100% satisfactory with all methods. The number of principal com-
ponents (PCs) and latent variables (LVs) were compared according
to the percentage of correct classification. The PLS2-DA method
used more LVs than PLS1-DA. The number of LVs in PLS1-DA is
lower than the number of PCs used in SIMCA analysis except for
S.A. group. Model built on SIMCA analysis of PLS2-DA results was
good only with one principal component. Whatever the model, the
number of variables (PCs or LVs) allowing to obtain good results is
smaller than 5 and almost the same for each.

Fig. 3a shows the percentage of correct classification (%CC) as a
function of the number of PCs used in the SIMCA model for each
origin. When one principal component is used for all the models,
100% of good classifications are obtained for two origins (EQU and
S.A.), 92% of good classification is obtained for ALG and 67% for VEN.
The increase of PCs number conduced to 100% of good classification
for all the origins. The VEN model obtained with 2 PCs provided to

92% of good classified samples, that represents only 4 misclassi-
fied spectra of the 65 analyzed. One hypothesis is that to get good
results, it is necessary to have more PCs for models for near groups
(ALG and VEN, according to the projection on PC1, Fig. 2) than for
other groups that are more distant.
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Fig. 6. Percentage of correct classification (%CC) for each virgin olive oil origin as
function of: (a) the number of principal component used in the SIMCA model; (b)
the number of latent variable used in the PLS2-DA model; (c) the number of latent
variable used in the PLS1-DA model.

Fig. 7. Ratio of InterSP/IntraSP of each class of petroleum oils. (a) Algerian; (b) South Am
each class and Fc.
roscopy 55 (2011) 132–140 137

Fig. 3b shows the %CC as a function of the number of latent vari-
ables (LVs) used in the PLS2-DA model. The best model contained 5
LVs even if only 1 LV was necessary for S.A. and EQU origins to well
predict all samples, because in PLS2 the same number of LVs must
be chosen for all the origins.

Fig. 3c shows the %CC as a function of the number of LVs used
in the PLS1-DA model. The number of LVs necessary to obtain the
best model for PLS1-DA method was lower than the number of LVs
used in PLS2-DA method, and comparable to the number of PCs
used in SIMCA analysis. When the number of LVs for the PLS1-DA
models increases the results of prediction are altered because of
over fitting.

In this case, the variable selection was not necessary because all
the petroleum crude oils are correctly classified.

3.2. Classification of virgin olive oils according to their
geographical origins

NIR spectra obtained for all virgin olive oil samples seem to
be similar (Fig. 4). Band assessments were realized according to
the literature [32,33]. Bands A (4500–4800 cm−1) are attributed
to combination of CH stretching vibrations with other vibrational
modes, bands B (5300–6100 cm−1) are attributed to first overtone
of CH2 stretching vibrations (methyl and methylene groups), bands
C (6700–7450 cm−1) are attributed to combination of CH stretching
vibrations, and bands D (7900–9000 cm−1) are attributed to sec-
ond overtone of CH stretching vibrations (D: methyl and methylene
groups).

Fig. 5 shows the PCA performed on the full NIR spectra (2853
variables) of the virgin olive oils, which constitute five groups
with high overlapping because of the very close RDO origins of
the samples. The score plot which allow obtaining the best RDO
group separation, are projected in the plane PC1, PC3 and explain
48% and 16% of the spectral variance. Even though the other PCs
explain 35% of the spectral variance, plots of PC1 vs. PC2 (19%),
PC2 vs. PC3, etc., do not allow a better group separation. The diffi-
culty of obtaining five perfectly distinct groups comes from some
similarities of the compositions of these virgin olive oil RDOs.

For instance, Aglandau is one of principal cultivars in AP, HP and
VB RDOs and Salonenque is the second principal cultivar in AP
and VB RDOs with, however, different ratios. NI and NY RDOs are
mono-varietal oils constituted respectively by Cailletier and Tanche
cultivars.

erican; (c) Equator; (d) Venezuelan and (e) superposition with the mean spectra of
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ig. 8. Ratio of InterSP/IntraSP of each class of virgin olive oil. (a) Aix-en-Provence;
ean spectra of each class and Fc.

Table 2 shows the best classification results obtained by each
ethod to predict virgin olive oil groups according to the RDO ori-

in (AP, HP, VB, NI and NY). Best result was obtained with PLS1-DA
ethod, significantly better than SIMCA classification and PLS2-
A method. The results obtained using SIMCA classifications were
oor for two origins (AP and VB); the percentage of correct classifi-
ations (%CC) was never more than 58% for VB and 68% for AP. The
esults obtained with PLS2-SIMCA are in the same order than the

nes obtained with PLS1-DA, for VB and HP only one spectrum lead
o bad classification.

Fig. 6a shows the %CC as a function of the number of PCs used
n SIMCA model for each origin. Four components were enough
o obtain the best %CC for VB prediction, but 7 PCs were used

able 2
ercentage of well classified virgin olive oils in the prediction set for each statistical treat

Origins SIMCA PLS2-DA

%CC PC %CC

Aix-en-Provence (AP) 68 7 93
Haute-Provence (HP) 91 7 100
Nice (NI) 89 8 96
Nyons (NY) 89 7 100
Vallée des Baux (VB) 58 4 96

CC: correct classification percentage; PC: principal component; LV: latent variable.
ute-Provence; (c) Nice; (d) Nyons; (e) Vallée des Baux, and superposition with the

for the prediction of AP, NY and HP and 8 PCs were used for the
prediction of NI. The high numbers of PCs necessary to predict ori-
gin can be explained by the overlapping showed in the PCA score
plots.

Fig. 6b shows the %CC as a function of the number of LVs used in
the PLS2-DA model. The best model contained at least 8 LVs. More
LVs did not significantly increase the %CC.

Fig. 6c shows the %CC as a function of the number of LVs used

in the PLS1-DA model. The number of LVs necessary to obtain the
best model for PLS1-DA method was between 5 and 9 according to
the RDO.

For all the models, prediction of the AP and VB origins were the
most difficult, because these oils came from the same cultivars with

ment in the 4500–10,000 cm−1 spectral range.

PLS2-DA-SIMCA PLS1-DA

LV %CC LV-PC %CC LV

8 97 8–1 100 9
8 99 8–2 100 6
8 100 8–1 100 6
8 100 8–1 100 2
8 99 8–3 100 8
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F e for AP models by (a) PLS1-DA and (b) PLS2-DA. (c) First principal component obtained
f st regression coefficient obtained by PLS2-DA in the 6500–5500 cm−1 spectral range and
( 5500 cm−1 spectral range.
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Table 3
Percentage of well classified virgin olive oils in the prediction set for each statistical
treatment in the 5500–6500 cm−1 spectral range.

Origins SIMCA PLS2-DA PLS2-DA-SIMCA

%CC PC %CC LV %CC LV-PC

Aix-en-Provence (AP) 70 5 100 8 96
Haute-Provence (HP) 99 5 100 8 100 8–1
ig. 9. First regression coefficients obtained in the 10,000–4500 cm−1 spectral rang
or the AP group by SIMCA analysis in the 10,000–4500 cm−1 spectral range, (d) fir
e) first principal component obtained for AP model by SIMCA analysis in the 6500–

ifferent rates. All the methods based on PLS-DA analysis give good
esults and the use of SIMCA classification performed on the scores
btained with PLS2-DA method do not improve the classification
esults significantly.

.3. Classification optimization by spectral selection

According to literature [34], the variable selection conduces to
mproved results for quantitative analysis. The variable selection
ould be done on the basis of the study of spectral variance, which
ay directly influence classification. Two points are important, the

rst one is spectral variance in one group (IntraSP), the second
ne is spectral variance for all data (InterSP). The Fisher–Snedecor
est is used to compare the two variances. Fig. 7 shows ratios of
nterSP/IntraSP as function of the wavenumbers calculated for each
lass of crude petroleum oils, in this case according to the different
egrees of freedom Fc = 1.8. Ratios were higher to the Fc threshold
or three origins ALG, S.A., VEN (Fig. 7a, b and d), which explain
ood results obtained for the classification of crude petroleum oils.
he spectral ranges where interSP/intraSP ratios are higher than
c correspond to the regions with significant bands, except for the
ater absorption bands at the spectral ranges (3300–3100 cm−1,

700–1600 cm−1, 750–700 cm−1). Some crude petroleum oil sam-
les contained a small amount of water which explained the high
ariance in these spectral ranges. The zones where the Fc is close to
oise do not present absorption bands. For EQU (Fig. 7c), ratios were
igher than Fc only in the 900–1500 cm−1 and 2700–3000 cm−1
pectral ranges. This observation is in good agreement with Fig. 2
here PCA shows high dispersion. The spectra used in this study

re recorded in a spectrometer without any purge system, so it is
ot surprising to see some bands due to water vapor and carbon
ioxide in the ratio.
Nice (NI) 92 2 100 8 100 8–1
Nyons (NY) 95 5 100 8 100 8–1
Vallée des Baux (VB) 68 2 96 8 96 8–1

%CC: correct classification percentage; PC: principal component; LV: latent variable.

Fig. 8 shows ratios of InterSP/IntraSP as a function of wavenum-
bers, calculated for each class of virgin olive oils in this case
according to the different degrees of freedom Fc = 1.5. The ratios
were not always higher than the Fc threshold, which is why
the SIMCA classification gives poor results. In order to confirm
these results, the virgin olive oils have been classified in the
6500–5500 cm−1 spectral range, where InterSP versus IntraSP is
higher than Fc for all virgin olive oil classes. The selected region
must be the same for all the origins in order to perform PLS2 anal-
ysis. So the 6500–5500 cm−1 (518 points) spectral range is used for
all the analyses.

Table 3 shows the best classification results obtained by each
method except for PLS1-DA (100% of good predictions in the pre-
vious results) to predict virgin olive oil groups according to the
RDO origin (AP, HP, VB, NI and NY). Hence, the percentage of cor-

−1
rect classified samples increased. In the 6500–5500 cm spectral
range, SIMCA analysis performance was increased. The %CC varied
between 68% and 99%. There is a clear improvement with regards
to the number of PCs used in each model. The decrease of PCs used
proves that models are now more robust. Both PLS2-DA and PLS2-
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A-SIMCA analysis performed a little better even if the results in
able 2 are good enough.

For AP models, Fig. 9 shows the first regression coefficient
btained by PLS1-DA (Fig. 9a), PLS2-DA (Fig. 9b) and the first prin-
ipal component obtained by SIMCA analysis (Fig. 9c). It shows
ome variations on the spectral information used in each case. As
matter of fact, the first regression coefficient obtained by PLS1-
A (Fig. 9a) is similar to the one obtained by PLS2-DA (Fig. 9b) in

he 6500–5500 cm−1 spectral range but it is very different in the
500–4500 cm−1 spectral range. The principal component (Fig. 9c)
resents high intensity in the 10,000–7000 cm−1 spectral range,
hich is correlated to instrumental deviation (baseline) and not

eally to chemical information. After the variable selection, the first
egression coefficient obtained in PLS2-DA model (Fig. 9d) and the
rincipal component obtained in the AP group for SIMCA analysis
Fig. 9e) are very close to the first regression coefficient obtained in
LS1-DA model (Fig. 9a).

The main difference between SIMCA and PLS-DA is the crite-
ion used to build models. While PCA submodels are computed
n SIMCA with the goal of capturing variations within each class,
LS-DA identifies directions in the data space that discriminate
lasses directly. Therefore, for these applications, SIMCA classifi-
ation always provides worse results than methods based on PLS
nalysis. The difference between PLS1-DA and PLS2-DA results is
ignificant. PLS2-DA is a version of the PLS-DA method in which
everal Y-variables are modeled simultaneously. Thus, PLS2-DA
akes advantage of possible correlations or collinearties between
-variables. In both cases, virgin olive oils and crude petroleum
ils, the classes are independent, so the Y variables are less per-
inent than in a PLS1-DA analysis where one model is calculated
ndependently from the others.

. Conclusion

In these two different applications – classification of crude
etroleum oils and virgin olive oils according to their origin – PLS-
A analysis provides better results than the SIMCA method. SIMCA
erformance may be improved when the spectral region is reduced
o the spectral range where the ratio of InterSP/IntraSP at each
avenumber is higher to the critical value of the Fisher–Snedecor

est (Fc). In this case SIMCA is performed with a reduced number
f principal components. PLS-DA methods are more efficient and
LS1-DA always gives better results than PLS2-DA. Therefore, the
atio InterSP/IntraSP compared to Fc is a good criterion for choosing
he best infrared spectral range and the most suitable classification

ethod for spectral analysis.
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