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Abstract: Maternal diet is the main source of fatty acids for developing offspring in-utero and in
breastfed infants. Dairy products (DP) are important sources of fat in the European population
diet. C15:0 and C17:0 fatty acids have been suggested as biomarkers of dairy fat consumption. This
study’s aim is to describe the associations between maternal DP (milk included) consumption during
pregnancy and C15:0, C17:0 and polyunsaturated fatty acid (PUFA) levels in perinatal biofluids.
Study populations were composed of 1763, 1337 and 879 French mothers from the EDEN (“Étude
des Déterminants pre- et post-natals de la santé de l’ENfant”) study, with data on maternal and cord
red blood cells’ (RBC) membrane and colostrum, respectively. Associations were assessed using
linear regression models adjusted for recruitment center, maternal age, healthy dietary pattern or
fish consumption. Greater adherence to a ”cheese” consumption pattern was associated with lower
linoleic acid level in colostrum and higher C15:0 and C17:0 levels but in a less consistent manner for
C17:0 across biofluids. Greater adherence to “semi-skimmed milk, yogurt” and “reduced-fat DP”
patterns was related to higher docosahexaenoic acid and total n-3 PUFA levels and lower n-6/n-3
long-chain PUFA ratio in maternal and cord RBC. Our results suggest that C15:0 could be a good
biomarker of maternal dairy fat consumption in perinatal biofluids.

Keywords: dairy product; pregnancy; fatty acids; maternal red blood cells; cord red blood cells;
colostrum

1. Introduction

Long-chain polyunsaturated fatty acids (LC-PUFAs), in particular eicosapentaenoic
acid (EPA, C20:5 n-3), docosahexaenoic acid (DHA, C22:6 n-3) and arachidonic acid (AA,
C20:4 n-6), contribute to placental function and to the development of the offspring’s
brain and retina [1,2]. Fetus and breastfed infant exposure to LC-PUFAs depends on
maternal dietary LC-PUFAs intake, adipose tissue storage and metabolism via the PUFAs
biosynthesis pathway [3]. Indeed, LC-PUFAs are also synthetized, mainly by the liver,
through series of desaturation and elongation from precursors, linoleic (LA, C18:2 n-6)
and alpha- linolenic (ALA, C18:3 n-3) acids, named essential fatty acids because they can
only be provided by diet [3,4]. LC-PUFAs are preferentially transported from maternal
circulation to the fetus through the placenta. After delivery, maternal LC-PUFAs are also
expressed in breastmilk and transferred to the breastfed offspring [3,5–7].

Excessive amount of dietary LA over a low dietary ALA intake reduces the conversion
of ALA to EPA and DHA due to a competition between n-6 and n-3 PUFAs for the same
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elongases and desaturases [8,9]. LA and ALA are mainly provided by vegetable oils,
nuts and seeds consumption. Evidence has suggested that greater maternal LA intake
during pregnancy was associated with higher LA level in colostrum but not necessarily
in cord blood [10,11]. In France, dairy products (DP) are the second largest contributor to
adult fat intake [12]. Interestingly, dairy fat is the most complex natural fat as it contains
approximately 400 different fatty acids [13]. Evidence from an animal study has shown that
having a diet with dairy lipids lead to higher n-3 LC-PUFAs levels in several tissues. Hence,
it was suggested that short- and medium-chain fatty acids from dairy lipids consumption
may be preferentially β-oxidized compared with ALA, which may favor the conversion
pathway of ALA to n-3 LC-PUFAs [14]. Randomized controlled trials have suggested that
greater maternal consumption of dairy fat was associated with lower LA level in breast
milk [15,16]. So far, only one observational study conducted on 55 Swedish mothers found
supporting results, but dairy products consumption was evaluated using 24-h recalls and
24-h food diaries [17].

Pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) levels, mainly in plasma
phospholipids and red blood cells (RBC) membrane, have been used in numerous studies as
biomarkers of dairy fat consumption [18–20]. Indeed, these odd-chain saturated fatty acids
(OCFAs) originate from rumen microbial fermentation and are excreted in the milk [13].
Another dietary source of OCFAs is fish and some evidence suggested that C17:0 can
be marginally derived from fiber-rich foods [21–25]. Results from animal studies have
suggested that dietary OCFAs are capable of passing through the placental barrier and into
the milk of mammals [26,27]. Yet, no study has been conducted in humans to confirm this
finding. In the present study, using data from the EDEN mother–child cohort study, we
aimed to describe maternal DP consumption during pregnancy and their associations with
OCFAs and PUFAs levels in maternal and cord RBC membrane and colostrum. Here, we
hypothesized that C15:0 and C17:0 in maternal or cord blood and colostrum are biomarkers
of maternal dairy fat consumption during pregnancy hence that C15:0 and C17:0 could be
transferred to the fetus and the breastfed infants. Second, we hypothesized that maternal
high-fat content dairy products consumption could influence n-6 and n-3 precursors and
LC-PUFAs levels (through the modulation of the precursors conversion rate to LC-PUFAs)
and hence, the n-6/n-3 LC-PUFA ratio in all perinatal biofluids.

2. Materials and Methods
2.1. Study Population

This study was conducted within the EDEN (“Étude des Déterminants pre- et post-natals
de la santé de l’ENfant”) study, an ongoing bicentric French mother-child cohort. The
detailed study design has been previously described [28]. Briefly, in two maternity hospital
units, in Nancy and Poitiers, 2002 pregnant women were recruited during their hospital
visit before 24 weeks of gestation, between 2003 and 2006. Women were eligible if they had
a singleton pregnancy, no diabetes prior to pregnancy, no intention of moving out of the
city within the following 3 years and were capable of reading and writing in French. For the
present analyses, study populations were restricted to women with complete data for DP
consumption during pregnancy, who provided perinatal biological samples afterwards and
whom biological samples had a valid fatty acid composition, i.e., all fatty acid level < 4 SD
in the biofluids (n = 1754 with maternal blood sample, n = 1337 with cord blood sample,
n = 879 with colostrum sample), as detailed in Figure 1.

2.2. Maternal DP Consumption

At birth, maternal diet over the last 3 months of pregnancy was assessed using a self-
administered validated food frequency questionnaire (FFQ) [29]. This FFQ was composed
of 137 items with 7 categories of frequencies ranging from “never” to “more than once
a day”. Food frequency were subsequently converted to be expressed on a daily scale.
Hence, DP comprised milk (3 items), cheese (7 items), yogurt (3 items) and added dairy fats
(4 items). Using frequencies of DP consumption and principal component analysis, three
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DP consumption patterns (“cheese”, “reduced-fat DP”, “semi-skimmed milk, yogurt”)
were derived, explaining 33% of the total variance (as described in Table 1). The number
of patterns retained were selected based on the scree plot and the interpretability of the
patterns. These patterns provide a holistic picture of DP consumption. However, since DP
patterns may differ from one population to another, this data-driven approach limits future
in between studies comparison. We hence had a secondary analysis using a quantitative
evaluation of DP consumption by calculating maternal daily DP consumption in grams. In
the FFQ, usual serving sizes were reported for milk consumption using pictures extracted
from SUVIMAX (“SUpplémentation en VItamines et Minéraux Anti-oXydants”) validated
pictures booklet [30]; otherwise, for remaining DP, middle size servings were assigned
based on SUVIMAX booklet. For each food item, serving sizes were multiplied by the
consumption frequency to obtain grams per day. As we were interested in distinguishing
dairy fat content within DP, we summed and grouped cheese and added dairy fats into
“higher-fat content” DP and milk and yogurt into “lower-fat content” DP. Due to the skewed
distribution of daily consumption of higher-fat and lower-fat content DP, in favor of heavy
consumers, consumers were grouped into tertiles (“low consumer”, “moderate consumer”,
“heavy consumer”). As there were less than 2% of non-consumer of higher-fat or lower-fat
content DP, non-consumers were grouped into “low consumer”.
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2.3. Biofluids Fatty Acids Composition Assessment

Maternal fasting and cord blood samples were collected at 24–28 weeks of gestation
and at delivery, respectively. RBCs membrane were isolated by centrifugation [31] and
stored at −80 ◦C until analysis. Colostrum samples of about 5 mL were collected at the
hospitals during the first week after delivery from one feed by manual expression and were
stored at −80 ◦C until analysis. RBC membrane and the colostrum fatty acids composi-
tion was assessed by gas chromatography following procedures published elsewhere [10].
Briefly, a direct methylation procedure was performed on 50 µL of RBC membranes or
100 µL of colostrum samples at 100 ◦C for 1 h using methanol/hexane and acetyl chlo-
ride. Fatty acid methyl-esters (FAME) were analyzed by gas chromatography (Clarus 680,
PerkinElmer, Waltham, MA, USA), flame ionization detector, Totalchrom software 6.3
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(PerkinElmer, Waltham, MA, USA), hydrogen as gas carrier) using a fused silica capillary
fast column (BPX 70, 10 m × 0.1 mm i.d., 0.2 mm film thickness (Sigma-Supelco, Bellefonte,
PA, USA)). Each fatty acid level was expressed as the proportion of total fatty acids present
in the chromatogram (weight percent).

Table 1. Factor loadings on each maternal DP consumption patterns from principal component
analysis (n = 1782).

Emmental, Gruyère, Comté, Beaufort in pieces 0.67 0.03 −0.11
Bonbel®, Babybel®, Gouda, Edam, Cantal, Tommes,
Saint-nectaire, Reblochon

0.67 0.10 −0.20

Brie, camembert, pont-l’évêque, Munster, Vacherin,
Saint-marcellin, Caprice des Dieux® 0.58 −0.02 −0.26

Emmental, Gruyère, Comté, Beaufort grated 0.49 −0.15 0.08
Goat cheese 0.49 −0.07 −0.27
Roquefort, blue cheese 0.47 −0.12 −0.19
Cottage cheese such as Tartare® or Kiri® 0.42 0.20 0.14
Strained yogurt 0% fat 0.18 0.60 0.17
Reduced-fat butter 0.07 0.59 0.05
Reduced-fat cream 0.15 0.40 0.14
Skimmed milk −0.02 0.38 −0.29
Full-fat milk 0.12 −0.16 −0.15
Cream 0.23 −0.52 0.11
Butter (added to a dish) 0.24 −0.54 0.26
Strained yogurt 20%, 40% fat 0.32 0.16 0.57
Yogurts (plain, flavoured, with fruits) 0.34 0.06 0.48
Semi-skimmed milk 0.01 −0.14 0.47
% explained variance 15 10 8
Component label “Cheese” “Reduced-fat DP” “Semi-skimmed milk, yogurt”

2.4. Covariates

During the 24–28 weeks of gestation, a face-to-face interview, maternal age and pre-
pregnancy weight were reported and maternal height was measured. Information about
maternal gestational diabetes was obtained from obstetrical records. Gestational age at
delivery was determined from the date of the last menstrual period and early standard
ultrasound fetal measurement. Maternal “healthy” dietary pattern during pregnancy was
derived previously from the aforementioned FFQ [32]. The frequency of fish consumption
during pregnancy was extracted from the FFQ based on 5 items (fresh fish, oil-preserved
fish, smoked or salt-preserved fish, breaded fish, fish-based dish).

2.5. Statistical Analysis

We described all variables using univariable statistics, i.e., means/standard deviations
and percentages. Characteristics of each study population that potentially undergo a differ-
ential participants retention was tabulated. Comparison between included and excluded
participants was performed using Student t-test and Chi-square tests in Table S1.

Analyses on the association between maternal DP consumption and perinatal biofluids
fatty acids levels were run using non-adjusted and adjusted linear regression. Fatty acids
level was standardized to enable comparison between their regression coefficients. Three
models were successively built using either DP consumption patterns or DP consumption
tertiles as exposure. When analyzing DP consumption patterns, all patterns were included
simultaneously in each model, since they are independent from each other by design.
Similarly, “higher-fat content” and “lower-fat content” DP consumption tertiles were
studied simultaneously within the same model. Model 1 included adjustments for non-
dietary covariates (study center, sampling day (for colostrum analysis), maternal age at
delivery). “Higher-fat content” DP (except butter) consumption contributes greatly to
maternal “healthy” dietary pattern, similar to fish and fruits and vegetables consumption,
that are also potential sources of OCFAs [32]. Hence, greater “higher-fat content” DP
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consumption associations could be partly explained by having a healthier diet in overall.
For these reasons, model 2 was additionally adjusted for maternal “healthy” dietary pattern
during pregnancy. To distinguish the important contribution of fish consumption to
LC-PUFAs and possibly to OCFAs intake but not as part of a healthy diet, model 3 was
adjusted on model 1 covariates and for the frequency of fish consumption during pregnancy
(instead of maternal “healthy” dietary pattern as in model 2).

Interaction of maternal preconception overweight status on our associations was
tested as fatty acid metabolism might be altered in overweight (and obese) individu-
als [33]. Gestational diabetes and hypertensive disorders is also known to impair fatty acid
metabolism [34]. As only 6 and 5% of mothers in our study samples had gestational dia-
betes or hypertensive disorders, respectively, we removed these mothers in our sensitivity
analyses. We also excluded mothers with extreme values for energy intake (<1000 kcal/day
or >5000 kcal/day) reflecting under- or over-reporters that could yield or mask spuri-
ous associations. Finally, we further removed preterm delivery (defined as a gestational
age < 37 weeks), in our analyses regarding cord RBC and colostrum, as it could affect fatty
acids levels in the aforementioned perinatal biofluids [35,36]. Significance level was set at
alpha = 0.05 for all tests except for interaction test (alpha = 0.10). No imputation on the
outcomes, the exposures, the confounders and the moderator (missing data = 1–2% for
covariates) was performed. As all our tested associations were hypothesis driven and as
the studied fatty acids are not independent of each other (% of total fat level in a given
biofluid), we did not perform any correction for multiple testing.

Analyses were performed using SAS (version 9.4; SAS Institute, Cary, NC, USA)
and forests plots were obtained using R software (version 4.1.1; R Core Team (2017).
R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/, accessed on 16 March
2022). The analysis plan was pre-registered online on OSF (Open Science Framework) [37].

3. Results

Study populations characteristics are presented in Table 2. On average, in all study
populations, mothers were aged 29 (± 5) years old. About one third of the mothers had a
university degree higher than 2 years. One quarter of the mothers were overweight before
pregnancy (obesity included), smoked during pregnancy or breastfed at least 6 months.
There was no substantial difference between the characteristics of the participants with
maternal blood and those with cord blood. Study populations on maternal or cord RBC
membrane composition did not differ largely with the EDEN full cohort, even if included
participants had higher educational attainment (Supplementary Table S1). Compared with
the other study populations and EDEN full cohort, participants that provided a colostrum
sample were more likely to be highly educated, have higher household income, have lower
body mass index before pregnancy, were a nonsmoker during pregnancy and have longer
breastfeeding duration. Same differences were observed once we compared characteristics
of included and non-included participants (Supplementary Table S1). Importantly, no large
difference in DP consumption was observed between study populations (Supplementary
Table S2).

In overall, for the same fatty acids, levels across perinatal biofluids were positively
correlated (Figure S1). Maternal ALA level was therefore negatively correlated with the
one in cord RBC membrane. The levels of C15:0 and C17:0 in cord RBC membrane did not
correlate with the ones in colostrum. Maternal RBC membrane, cord RBC membrane and
colostrum OCFAs and PUFAs levels are presented in Table S3. C15:0 and ALA levels were
higher in colostrum than in maternal or cord RBC membrane. C17:0 level was similar across
the three perinatal biofluids. DHA and total n-3 PUFA levels were lower in colostrum than
in RBC membrane. Similarly, AA level was lower in colostrum than in maternal or cord
RBC membrane. LA level in cord RBC membrane was the lowest. Total n-6 PUFA level and
the n-6/n-3 LC-PUFA ratio were lower in colostrum than in RBC membrane.

https://www.R-project.org/
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Table 2. Description of maternal characteristics in the study populations 1.

Study Populations

EDEN Full Cohort
(n = 2002)

Maternal Blood
(n = 1754)

Cord Blood
(n = 1337)

Colostrum
(n = 879)

Age at delivery (years) 29 (5) 29 (5) 29 (5) 29 (5)
Educational attainment,%

<high school diploma 29 (549) 27 (478) 27 (357) 22 (189)
high school diploma 18 (340) 18 (314) 17 (232) 15 (135)
2-year university degree 22 (414) 22 (384) 23 (305) 25 (214)
>2-year university degree 32 (607) 32 (565) 33 (432) 38 (334)

Monthly household income, %
<1500 € 17 (327) 16 (287) 17 (225) 13 (111)
1500–2300 € 30 (568) 29 (506) 29 (390) 27 (240)
2301–3000 € 26 (501) 27 (466) 27 (354) 27 (237)
>3000 € 27 (517) 28 (485) 27 (358) 33 (285)

BMI before pregnancy (kg/m2), %
<18.5 9 (161) 8 (146) 9 (120) 10 (83)
18.5–24.9 65 (1227) 66 (1134) 66 (866) 70 (602)
25.0–29.9 18 (330) 17 (298) 17 (221) 14 (120)
≥30.0 9 (166) 9 (149) 8 (103) 7 (61)

Gestational diabetes, % 6 (123) 6 (110) 6 (85) 6 (49)
Hypertensive disorders during pregnancy, %

Gestational hypertension 3 (56) 3 (51) 3 (36) 3 (30)
Preeclampsia 2 (40) 2 (37) 2 (26) 1 (12)

Smoking during pregnancy, % 26 (484) 26 (450) 27 (351) 23 (199)
Any breastfeeding duration (months), %

Never 27 (514) 27 (477) 29 (384) 0 (1)
<3 27 (502) 27 (464) 26 (346) 34 (296)
3–5 23 (435) 23 (398) 23 (301) 32 (284)
≥6 23 (440) 23 (410) 23 (303) 34 (294)

1 Values are the mean ± SD or % (n).

3.1. Associations between Maternal DP Consumption and Fatty Acids Levels in Maternal
RBC Membrane

Associations between maternal DP patterns and fatty acids levels in maternal RBC
membrane are shown in Figure 2. Greater adherence to “cheese” consumption pattern was
associated with higher C15:0, C17:0, and ALA level across all models. Greater adherence to
“cheese” consumption pattern was also related to higher DHA and total n-3 PUFA levels
and to lower total n-6 PUFA and n-6/n-3 LC-PUFA ratio; however, they did not remain
significant after adjustment for either maternal healthy dietary patterns or fish consump-
tion during pregnancy. Higher adherence to “reduced-fat DP” consumption pattern was
associated with lower C15:0, C17:0, LA, total n-6 PUFA levels and n-6/n-3 LC-PUFA ratio;
and with higher ALA, DHA and total n-3 PUFA level that remained significant even after
additional adjustment for maternal dietary variables. Finally, higher adherence to the “semi-
skimmed milk, yogurt” consumption pattern was associated with higher C15:0, DHA, total
n-3 PUFA level and with lower LA, total n-6 PUFA levels and n-6/n-3 LC-PUFA ratio.

3.2. Associations between Maternal DP Patterns and Fatty Acid Levels in Cord RBC Membrane

Associations between maternal DP patterns and fatty acids level in cord RBC mem-
brane are presented in Figure 3. Higher adherence to “cheese” consumption pattern was
associated with greater C15:0 level and lower total n-6 PUFA levels throughout successive
adjustment. Higher adherence to “reduced-fat DP” consumption pattern was associated
with lower C17:0, ALA, total n-6 PUFA levels and n-6/n-3 LC-PUFA ratio and with higher
DHA and total n-3 PUFA levels even after accounting for either maternal healthy dietary
pattern or fish consumption during pregnancy. Lastly, higher adherence to the “semi-
skimmed milk, yogurt” consumption pattern was associated with higher DHA, total n-3
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PUFA levels but these associations did not remain significant after adjustment for maternal
fish consumption during pregnancy. Greater adherence to the “semi-skimmed milk, yogurt”
consumption pattern was associated with lower n-6/n-3 LC-PUFAs ratio. In overall, no
associations were observed with OCFAs, LA and AA level.
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3.3. Associations between Maternal DP Consumption and Fatty Acids Level in Colostrum

Associations between maternal DP patterns and fatty acids composition in colostrum
are presented in Figure 4. Greater adherence to the “cheese” pattern was associated with
higher C15:0 level and lower LA, total n-6 PUFA across all models.
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the frequency of fish consumption during pregnancy. All DP patterns were studied simultaneously
within each model.

Higher adherence to “reduced-fat DP” pattern was only associated with lower C15:0
level. Finally, greater adherence to “semi-skimmed milk, yogurt” pattern was associated
with higher C15:0, C17:0 levels and with lower total n-6 PUFA and n-6/n-3 LC-PUFA
ratio; however, associations with the total n-6 PUFA level and the ratio were not significant
after accounting for either maternal healthy dietary pattern or fish consumption during
pregnancy. No association was observed with AA and n-3 PUFAs (ALA, DHA).

In summary, fatty acids levels were associated with “higher-fat content” and “lower-fat
content” DP consumption tertiles in the same direction as with “cheese” and “semi-
skimmed milk, yogurt” consumption patterns, respectively (Figures S2–S4). From our
further analysis, maternal DP consumption was poorly associated with EPA and n-3 docos-
apentaenoic acid (DPA n-3) levels across perinatal biofluids (data not shown).

In our sensitivity analysis and for all studied associations, removing mothers with an
energy intake lower than 1000 kcal/day or higher than 5000 kcal/day, those with gestational
diabetes or who delivered prematurely did not affect our results (data not shown). In
summary, no interaction of maternal overweight status on any association between maternal
DP consumption and fatty acids levels in perinatal biofluids was observed.

4. Discussion

In the present study, greater adherence to a “cheese” consumption pattern during
pregnancy was consistently associated with higher C15:0 level in maternal and cord RBC
membrane, and in colostrum, and with lower total n-6 PUFA level in cord RBC membrane
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and in colostrum and lower LA in colostrum only. Results were less consistent for C17:0
across DP patterns and biofluids while both C17:0 and C15:0 have been suggested as
biomarkers of dairy fat in the literature. Mainly, greater adherence to “semi-skimmed milk,
yogurt” and “reduced-fat DP” patterns was associated with higher DHA and n-3 PUFA
levels and lower n-6/n-3 LC-PUFA ratio in maternal and cord RBC membrane, and with
lower total n-6 PUFA level in maternal RBC membrane.

From our findings, greater dairy fat consumption was associated with C15:0 in all
perinatal biofluids analyzed herein even after accounting for other potential sources of
C15:0. Our results support the plausible transfer of C15:0 from maternal circulation to the
fetus via the placenta and to breastfed infants through breast milk [27]. This suggests that
C15:0 might be a good biomarker of maternal dairy fat consumption during pregnancy
in maternal, cord RBC membrane and colostrum. Dairy fat is a well-established source
of C15:0 (and C17:0), hence C15:0 has been extensively used as a biomarker of dairy fat
consumption in adult human biological samples but not yet in perinatal samples [18–20].
Beyond being a biomarker of dairy fat, C15:0, as an OCFAs, could be beneficial for many
health conditions. This hypothesis is supported by studies showing that higher C15:0 and
C17:0 levels in adult plasma phospholipids or RBC membrane was associated with lower
occurrence of metabolic diseases such as type 2 and gestational diabetes, and cardiovascular
disease [38–42]. From animal research, it was also suggested that C15:0 and C17:0 could
play a role in the offspring brain development in utero and during breastfeeding period
and hence on later cognitive development [26,27]. Studies on neurodegenerative diseases
and mental disorder have brought supportive evidence on the role of C15:0 in neuronal
membrane fluidity [43–45]. Yet, no observational study has been conducted during the early
human developmental period to confirm these findings. From our study, associations with
dairy fat consumption and C17:0 level are equivocal. Even if results are mostly in line with
C15:0 results, the associations with C17:0 and DP consumption were not consistent across
all DP patterns and perinatal biofluids. This may support previous evidence showing that
C17:0 may not be a genuine biomarker of dairy fat consumption [22,46–48]. For instance, the
C17:0 level was reported to be similar when comparing omnivorous, vegetarian, vegan and
semi-omnivorous individuals biological fatty acid status [25]. Some potential endogenous
synthesis pathways were proposed for both C15:0 and C17:0 [49]. Nevertheless, an animal
study has shown that C15:0 could be less readily made endogenously than C17:0 [50].
Future studies investigating the role of dairy fat consumption in early developmental
research are needed to confirm the relevancy of C17:0 over C15:0 as a biomarker of dairy
fat consumption in perinatal biofluids.

From our results, higher adherence to a “cheese” consumption pattern was associated
with lower LA and total n-6 PUFA levels in colostrum. This result is consistent with
previous literature [15,17]. In a randomized trial, breastfeeding mothers assigned to a
higher-fat content DP diet had a lower amount of LA in their breast milk compared with
the control group and their depleting period [15]. Additionally, from an observational study,
farming breastfeeding mothers with high intake of dairy full-fat milk during lactation,
had lower LA and n-6 PUFA level in their breast milk [17]. Regarding our results on
cord RBC membrane fatty acid level, higher adherence to a “cheese” and a “reduced-fat
DP” was associated with lower total n-6 PUFA level and n-6/n-3 LC-PUFA ratio. To
our knowledge, this is the first evidence on the association of maternal DP consumption
with cord RBC, making it hard to draw any firm conclusion. Lastly, maternal greater
consumption of lower-fat content DP, i.e., “semi-skimmed milk, yogurt” and “reduced-fat
DP”, was associated with lower total n-6 PUFA level and n-6/n-3 LC-PUFA ratio in maternal
RBC membrane. As a high n-6/n-3 LC-PUFA ratio has been linked to multiple chronic
disease [51], further investigations are needed to evaluate whether the relatively lower
n-6/n-3 LC-PUFA ratio in maternal RBC membrane in our study could be meaningfully
associated with better maternal and offspring health outcomes. However, the relevance
and meaning of this particular ratio has been seriously questioned, and a focus on the
marine n-3 LC-PUFAs alone may be more important to health [52].
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From our findings, higher adherence to the “semi-skimmed milk, yogurt” or “reduced-
fat DP” patterns (but not to a “cheese” pattern) was associated with higher DHA and n-3
PUFA levels either in maternal or cord RBC membrane but not in colostrum. To explain
these associations, as we are dealing with proportion of fatty acids rather than absolute
values, a lower contribution of dairy fat to total fat intake is balanced by the contribution of
other sources of fat, eventually richer in n-3 PUFAs such as vegetable oils or nuts and seeds,
and those supplying substantial amount of DHA. Inconsistent associations with DHA level
between colostrum and other perinatal biofluids may arise from additional origins of fatty
acids in colostrum beyond maternal diet, i.e., de novo fatty acid synthesis in the mammary
gland and mobilization from maternal adipose tissue storage [53]. As aforementioned,
there is a lack of existing evidence to better document our findings.

In the current study, limitations are present. Inherent to the use of a self-reported
FFQ, misreporting of maternal DP consumption can occur. In our sensitivity analysis, we
attempted to account for it by excluding mothers with extreme energy intake but it did not
change our results. Moreover, since our study population has mainly European ancestors,
we cannot extrapolate our results to any population as fatty acid metabolism might differ
by ethnicity [54]. DP consumption, and in particular higher-fat content DP consumption,
is important in our study population [12]. This may increase our likelihood to observe
an association compared with the population that has a low-consumption of higher-fat
content DP. As all our tested associations were hypothesis driven and as the studied fatty
acids are not independent of each other (% of total fat level in a given biofluid).

Our study is the first observational study to support the hypothesis of a placental
transfer of OCFAs and their excretion in human breast milk. Additionally, our findings
suggest that C15:0 over C17:0 may be a more reliable biomarker for maternal dairy fat
consumption during pregnancy in perinatal biofluids but more studies are warranted to
confirm those data. Our study also provides pioneering results on the association between
maternal DP consumption during pregnancy and PUFA levels in three different perinatal
biofluids. Having the fatty acid levels of three different perinatal biofluids, helps provide a
comprehensive picture of how maternal DP consumption could affect the offspring fatty
acid supply at different developmental stages. Lastly, maternal DP consumption was well
characterized in terms of diversity, as our FFQ covered a wide variety of DP which helps
us identify concisely different pattern of DP consumption.

5. Conclusions

To conclude, our results are in line with animal studies suggesting a potential transfer
of C15:0 from maternal circulation to both fetal circulation through the placenta and
the breastfed infant circulation through breast milk. The present study suggests that
C15:0 over C17:0 may be a more reliable biomarker for maternal dairy fat consumption
in maternal, cord RBC membrane and colostrum independently of other C15:0 dietary
sources. Finally, consistently with previous studies, we found that greater dairy fat intake
could be associated with lower LA levels in breast milk. As lower LA level in breast
milk was associated with better cognitive outcomes in the breastfed offspring [55,56],
further studies are warranted to determine whether maternal high consumption of full-fat
dairy products could be beneficial for breastfed children brain development and hence,
cognitive development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu14081636/s1, Table S1: Comparison of included and non-included participants characteristic,
Table S2: Description of maternal DP consumption in the studied samples, Table S3: Description
of maternal RBC membrane, cord RBC membrane and colostrum fatty acid composition, Figure S1:
Heatmap of the Pearson’s correlation between perinatal biofluids fatty acids level, Figure S2: Associa-
tions between maternal higher-fat and lower-fat content DP consumption tertiles and fatty acids level
in maternal RBC membrane (β (95%CI)), Figure S3: Associations between maternal higher-fat and
lower-fat content DP consumption tertiles and fatty acids level in cord RBC membrane (β (95%CI)),
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Figure S4: Associations between maternal higher-fat and lower-fat content DP consumption tertiles
and fatty acids level in colostrum (β (95%CI)).
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