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Abstract:  

While the Covid-19 crisis has shown how high-frequency data can help tracking the economy 

in real-time, we investigate whether it can improve the nowcasting accuracy of world GDP 

growth. To this end, we build a large dataset of 718 monthly and 255 weekly series. Our 

approach builds on a Factor-Augmented MIxed DAta Sampling (FA-MIDAS) which we 

extend with a pre-selection of variables. We find that this pre-selection markedly enhances 

performances. This approach also outperforms a LASSO-MIDAS – another technique for 

dimension reduction in a mixed-frequency setting. While we find that a FA-MIDAS with 

weekly data outperform other models relying on monthly or quarterly data, we also point to 

asymmetries. Models with weekly data have indeed performances similar to other models 

during “normal” times but can strongly outperform them during “crisis” episodes, above all 

the Covid-19 period. Finally, we build a nowcasting model for world GDP annual growth 

incorporating weekly data which give timely (one per week) and accurate forecasts (close to 

IMF and OECD projections but with 1-3 months lead). Policy-wise, this can provide an 

alternative benchmark for world GDP growth during crisis episodes when sudden swings in 

the economy make usual benchmark projections (IMF’s or OECD’s) quickly outdated. 
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Introduction 

The sudden shock of the Covid-19 crisis – with some economies shutting down almost entirely 

in a matter of days – has put new emphasis on high-frequency data (Bricongne et al., 2020). 

Weekly, daily, or even hourly data have been extensively used to assess in real-time the 

impact of the Great Lockdown. A number of innovative dataset have emerged: for example 

real-time marine traffic was used to track world trade (Cerdeiro et al., 2020), hourly electricity 

consumption to estimate the loss of industrial activity in Europe (Chen et al., 2020), daily credit 

card spending to quantify the consumption shock (Carvalho et al., 2020), or weekly labour 

market statistics to model changes in US employment (Coibion et al., 2020). 

In the meantime, world GDP forecasts provided by international organizations such as the 

OECD or the IMF – widely used by economists as “benchmark” projections – have appeared 

to be lagging behind. These institutions assembled scenarios and released projections, but 

which could only be updated every two or three months, making them rapidly outdated given 

large and sudden changes in economic conditions. Thus, OECD projections as of March 2020 

still assumed a positive figure (+2.4%) for world GDP growth in 2020. Two weeks later when 

most Western countries entered a strict lockdown, this scenario was already outdated. Mid-

April, IMF’s WEO projected world GDP at -2.9% for 2020. Forecasts were then not updated 

before mid-June, where they stood at -6.0% (OECD) and -4.9% (IMF). Most macroeconomists 

– “projections-takers” – were then facing a lack of “benchmark” projection for world GDP as 

those of usual “projection-issuers” (IMF and OECD) became quickly obsolete. 

The purpose of this paper is to assess if high-frequency data can enhance the nowcasting of 

world GDP growth and therefore provide a timely alternative “benchmark” projection. To 

that aim, we build a large dataset of 718 monthly and 255 weekly indicators. Our approach 

builds on the Factor-Augmented MIxed DAta Sampling (FA-MIDAS) proposed by Marcellino 

and Schumacher (2010) which consists in using a principal component analysis to extract the 

common trends from large datasets (here one monthly and one weekly) and in running a 

MIDAS regression using the extracted factors. This set-up suits since: (i) we mix multiple 

frequencies when forecasting annual/quarterly world GDP growth with monthly and weekly 

series; and (ii) we rely on the aggregation of multiple national variables to make up for the 

lack of global variables.  

We extend the FA-MIDAS approach with a pre-selection of variables. This pre-selection step 

aims at identifying variables that are the more informative to forecast the target variable – in 

our case world GDP growth. Principal components are then extracted from the selected subset 

of variables. Literature has shown that this pre-selection improves the forecasting accuracy of 

factor models – see Boivin and Ng (2006) or Bair et al. (2006)’s “supervised PCA”. Following 

Bai and Ng (2008), we adopt a soft thresholding procedure under which only the top ranked 

predictors are kept. We consider three alternative techniques based on:  the correlation 

between the target variable and each predictor (sure independence screening of Fan and Lv, 
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2008), the t-statistic associated with the coefficient in the univariate regression of the target 

variable on each predictor (similar to Jurado et al., 2015), and LARS ordering (Bai and Ng, 

2008). We also compare the performances of this approach with the sparse-group LASSO-

MIDAS (Babii et al., 2021), another dimension reduction technique for mixed-frequency data. 

Comparing across different specifications for the FA-MIDAS, we find evidence that high-

frequency data can significantly improve nowcasting performances, but only during very 

specific “crisis” episodes. Models with weekly data indeed show greater predictive accuracy 

compared with an AR model during “crisis” episodes – but have similar performances during 

“normal” periods. This is in line with the literature pointing out asymmetries in forecasting 

performance across expansions and recessions, e.g. Chauvet and Potter (2013) or Siliverstovs 

and Wochner (2021) who test a wide range of specifications and find that such asymmetries 

in forecasting performance across the business cycle phases are rather common. Our results 

notably confirm Siliverstovs (2021) showing that while the New York FED’s nowcasting 

models are at least as good as an AR model during expansions, they entail substantial gains 

in accuracy during recessions. In our paper, we show that the predictive accuracy for models 

with weekly data is largely greater during the Covid-19 crisis than for models relying solely 

on monthly data , but that both exhibit similar performances in other periods: “normal” times 

and also the Great Financial Crisis. 

These findings contribute to the on-going debate on whether high-frequency data enhance 

forecasting performances. Ferrara et al. (2020) showed that a nowcasting model based on high-

frequency data produced more accurate forecasts for US growth as of end-March 2020 in Q1 

than models based on standard macroeconomic information, but on the other hand, the INSEE 

(2020) find no significant accuracy gains when including high-frequency data. Our paper 

shows that while the timely signal provided by weekly data allows for substantial accuracy 

gains when the activity experiences dramatic swings, its contribution is only of second order 

when economic conditions are stable. It should be kept in mind that these findings are 

obtained in a strict data-driven procedure – with no intervention of the forecaster in the 

selection of series – and in a set-up very close to real-time, with the entire nowcasting 

framework (pre-selection, factors, MIDAS model) re-estimated and re-calibrated at each date. 

As regards variable selection, we find that pre-selecting fewer but more targeted predictors 

markedly enhances the forecasting performances of the FA-MIDAS – in line with Boivin and 

Ng (2006), Bai and Ng (2008), and Schumacher (2010) among others. Upon testing different 

techniques, we find that the LARS technique yields more substantially gains. This extends the 

literature on the FA-MIDAS by adding a variable pre-selection, showing also that this step 

yields significant accuracy gains when using a high-dimensional dataset. More broadly, we 

contribute to the literature on forecasting in a mixed-frequency set-up by comparing a FA-

MIDAS with the LASSO-MIDAS, respectively a dense and a sparse approach for dimension 

reduction. Our results show that the FA-MIDAS outperforms the latter, even more when the 

FA-MIDAS is combined with variable pre-selection. This might appear in line with Giannone 
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et al. (2021) that showed that sparse modelling is outperformed by dense modelling when the 

data generating process is not of very low dimension.  

Finally, we build a model using weekly data to nowcast the annual growth of world GDP. A 

pseudo-real-time exercise during the Covid-19 crisis shows that this model provides timely 

estimates with a 1-3 months lead on IMF and OECD releases. It might therefore serve as an 

alternative “benchmark” during “crisis” episodes when institutional projections are rapidly 

outdated. This extends the literature on forecasting world GDP. In this strand, some papers 

have used bridge models (e.g. Golinelli and Parigi, 2014), but our paper is closer to those based 

on large datasets such as Matheson (2011) or Ferrara and Marsilli (2019). The two main 

additions to this literature, in particular to the latter paper, relate to the inclusion of weekly 

data – shown to significantly increase performances during “crisis” episodes – and of variable 

pre-selection – shown to also yield significant gains in predictive accuracy. 

The rest of paper is organised as follows: section 1 presents the data and statistical issues, 

section 2 presents the FA-MIDAS extended with pre-selection, section 3 details the strategy to 

compare models in a real-time set-up, and section 4 discusses results. 

 

Section 1: Data 

1.1. Use of high-frequency data 

The purpose of this paper is the nowcasting of global GDP quarterly (or annual) growth rate 

𝑦𝑡 by exploiting the infra-quarterly (or infra-annual) information available through monthly 

or weekly indicators as represented in Figure 1. The red square figures a given date – around 

May 10th in this example – and available information appear in red. Official GDP data for Q1 

are not yet available (they are published around 2 months after quarter end); monthly 

indicators are available only until month 3 (they are published at best around 20 days after 

month end) but weekly data are available up to the preceding week. This illustrates how 

timeliness is a strong comparative advantage of weekly data and the main reason why one 

can consider incorporating it in a nowcasting model. 

Facing a lack of “world” variables – or their lack of timeliness when such series exist, our 

approach rely instead on pooling national statistics across multiple countries. We build a large 

cross-national dataset from which we can aggregate the information into a few factors by 

principal component analysis (PCA). To that aim, we gather a dataset of 718 monthly and 255 

weekly series covering a wide range of economic activities and countries (accounting for 

around 90% of world GDP in PPP terms) described in Table A2.1 in Annex 2. 
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Figure 1. Approach to nowcasting annual / quarterly world GDP growth 

 

The 718 monthly series pertain to various aspects of the economy: households’ consumption 

(retail sales, consumer confidence, car registrations), housing, labour market (number of 

employees, unemployment rates), industrial production and trade. It also covers the nominal 

side with CPI, PPI, M2 aggregate, and real effective exchange rates. It finally includes the 

Purchase Managers’ Indices (PMI) which have a double advantage of timeliness – they are 

released the day after month end – and significant predictive power (Harris, 1991; d’Agostino 

and Schnatz, 2012). Notably, Lahiri and Monokroussos (2011) find evidence that PMIs 

improve forecast accuracy in factor models. In addition to the “headline” indices, sub-indices 

for trade (“new export orders”) and those capturing tensions in the production apparatus at 

an early stage (“new orders”, “suppliers’ delivery time”, “output”, and “output prices”) are 

included.  

As regards weekly data, while the literature generally only considers financial variables at 

such high frequency (e.g. Andreou et al., 2013), several series in our dataset relate to the “real” 

economy. We include China housing price indices, commodity prices, trade indices (e.g. Baltic 

Dry Index), and various indices for the US economy (e.g. new jobless claims, gasoline 

consumption, steel production, US business condition index of Aruoba et al. (2009)). While 

more weekly data from countries besides US and China would have been desirable, no data 

with sufficient timespan was available to the best of our knowledge. In addition, gains in 

forecasting accuracy from US-/China-centric data might still be valuable given their major role 

in global dynamics. In this vein, Kindberg-Hanlon and Sokol (2018) have documented a high 

correlation between US data and world GDP growth.1 Chiu et al. (2020) have also 

demonstrated a high correlation between the Baltic dry index and business cycles in BRICS, 

suggesting that this series can account for dynamics in emerging economies.  

As is more standard in the literature, our weekly dataset also includes financial variables: 

stock market indexes, nominal effective exchange rates, 3-month interbank rates, and 10-year 

sovereign rates. The term spread, computed as the difference between the latter two, is 

included as well as other global or aggregate financial indices (e.g. Standard & Poor’s Global 

 
1 The authors show that only PMIs and industrial production data – included in our monthly dataset – display a 

higher degree of correlation with world GDP growth than the indicators for the US economy. 
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1200, VIX). All these variables are retrieved for around 40 countries accounting all together 

for around 90% of world GDP in PPP terms. 

1.2. Handling high-frequency data 

An issue arising for monthly data with asynchronous publication lags is that the dataset has 

a “ragged-edge” pattern: monthly indicators can have different missing elements at the end 

of the sample – making the monthly dataset unbalanced. To address this, we use the “vertical 

realignment” procedure of Altissimo et al. (2006). For every series, the last available point is 

taken as the contemporaneous value and the entire series is realigned accordingly. Formally, 

for a series 𝑥𝑡 whose last observation at a contemporaneous date 𝑇 is at 𝑇 − 𝑘, the series 

becomes �̅�𝑡 =  𝑥𝑡−𝑘.2 While several issues may be induced by this method – most notably that 

the availability of data determines dynamic cross-correlation between variables and can then 

change over time, Marcellino and Schumacher (2010) empirically test other methods and find 

no substantial changes on the nowcasting performance across these methods.3  

While the “ragged-edge” pattern does not affect our timely weekly dataset, ensuring 

stationarity and seasonality are concerns given the absence of well-established method for the 

seasonal adjustment of weekly series. Both issues might be alleviated by taking the annual 

growth rate of the series as in Lewis et al. (2020). But while statistically correct, this approach 

introduces a base effect which might be problematic for our objective: as most indicators 

suffered a dramatic drop in March 2020, the jump in March 2021 will be symmetrically 

dramatic and might put at risk the viability of the nowcasting. More broadly, Ladiray et al. 

(2018) discuss the drawbacks of taking annual growth for weekly data and point out that it 

not only includes a phase shift by design but also can introduce spurious cycles. 

To alleviate these concerns, we use a two-step procedure to obtain de-seasonalised and 

stationary weekly indicators. In the first step, non-stationary series are transformed in their 

average weekly variation over the last four weeks.4 This transformation – equivalent to a 

moving monthly growth – have the double advantage of making the series stationary and 

correcting for infra-monthly seasonality. Then the transformed series is regressed on monthly 

dummies; the final series is the residual of this regression. This last step allows us to correct 

for any monthly (or lower frequency) seasonality. To avoid potential distortions that could be 

caused by the unusual behaviour of some variables during the Covid-19 crisis (e.g. the peak 

 
2 We impose a maximum lag of 12 months so that the number of observations deleted at the beginning of the 

sample – due to the vertical realignment – is at most 12 (i.e. 4 in quarterly terms). 
3 Specifically, the authors also test for the EM-algorithm of Stock and Watson (2002) and the Kalman smoother 

estimates of Doz et al. (2006). 
4 This transformation is not applied to series that are already stationary, notably interest rates (3-month interbank 

and 10-year sovereign), spreads and some US indicators (e.g. VIX, US National Financial Conditions Index of the 

Chicago Fed, US business condition index of Aruoba et al., 2009). 
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at 6.6 million initial jobless claims in the US in the last week of March 2020 vs. a maximum of 

660,000 over 2001-2019), the regression with monthly dummies is estimated over 2001-2019.  

 

Section 2: Extending the FA-MIDAS model with variable pre-selection 

2.1. The FA-MIDAS model 

Our econometric framework is based on the two-step FA-MIDAS approach proposed by 

Marcellino and Schumacher (2010). The first step is a principal component analysis, run on 

both the monthly and weekly datasets. Doing so, we extract the common trends at both 

frequencies. Formally, we assume that the dataset 𝑋𝑇 can be represented according to a factor 

structure with a 𝑟-dimensional factor vector 𝐹𝑇, Λ the loadings matrix and an idiosyncratic 

components 𝜉𝑇 not explained by the common factors. The common components (Λ ⋅ 𝐹𝑇) and 

the idiosyncratic components are mutually orthogonal. 

𝑋𝑇 = Λ ⋅ 𝐹𝑇 + 𝜉𝑇 

Once monthly and weekly factors have been extracted, the second step is the modelling in a 

MIDAS specification in which the dependent variable 𝑦𝑡 is the quarter-on-quarter growth rate 

of world GDP at quarter t. MIDAS regression builds on the seminal work by Ghysels et al. 

(2004) showing that this specification – by allocating different weights to the different lags of 

high-frequency regressors – performs better than a flat aggregation where high-frequency 

regressors are averaged at lower-frequency. Explanatory variables are a quarterly constant 

𝛽0 as well as the monthly 𝑓𝑡
3⁄

𝑚  and weekly 𝑓𝑡
13⁄

𝑤 factors. 𝐾 represents the number of high-

frequency lags and 𝜃 is a vector of parameters of the MIDAS weighting function 𝑔.  

𝑦𝑡 =  𝛽0 + 𝑔 (𝑓𝑡
3⁄

𝑚 , 𝜃𝑚, 𝐾𝑚, … ) + 𝑔 (𝑓𝑡
13⁄

𝑤 , 𝜃𝑤, 𝐾𝑤 , … ) + 𝜀𝑡 

The MIDAS weighting function (𝑔) used is a “Almon” polynomial of degree 𝑝 = 3. The 

coefficients for the lags of the high-frequency regressor are modelled through a polynomial 

function of degree 𝑝 − 1. This specification is the most parsimonious since only 𝑝 parameters 

are estimated. Formally, the weighting function is: 

𝑔(𝑓𝑡, 𝜃, 𝐾, 𝑝) = ∑ 𝑐(𝑘, 𝜃) ⋅ 𝑓𝑡−𝑘  

𝐾

𝑘=0

𝑤ℎ𝑒𝑟𝑒 𝑐(𝑘, 𝜃) = ∑ 𝑘𝑗 ⋅ 𝜃𝑗 

𝑝−1

𝑗=0

 

The optimal number of lags is determined by minimizing the in-sample sum of squared 

residuals while fixing an upper limit of 4 lags for monthly factor and 8 for weekly factor. The 

number of high-frequency lags can be different between the monthly and the weekly factors. 
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2.2. Pre-selection of regressors 

When forecasting with a high-dimensional dataset, the literature (Bai and Ng, 2008; 

Schumacher, 2010) concludes that the accuracy of factor models is significantly improved 

when selecting fewer but more informative predictors. On a more theoretical ground, Boivin 

and Ng (2006) find that larger datasets lead to poorer forecasting performances when 

idiosyncratic errors are cross-correlated or when the variables with higher predictive power 

are dominated.  

Against this background, we extend the FA-MIDAS approach by adding a preliminary step 

to select the regressors with the highest predictive power. The initial dataset is 𝑋𝑡 =

(𝑥1,𝑡, 𝑥2,𝑡, … , 𝑥𝑁,𝑡)′ with 𝑡 = 1, … , 𝑇 and 𝑁 variables (𝑁𝑚 = 718 for the monthly dataset and 𝑁𝑤 

= 255 for the weekly dataset). Both figures largely exceed the number of observations 𝑇 = 81 

(2001Q1-2021Q1). The idea underlying pre-selection is to rank the potential regressors 

𝑥𝑖,𝑡 based on a measure of their predictive power with respect to the target variable. In the 

following, three main techniques are used:  

- t-stat ranking (t-stat): each potential regressor 𝑥𝑖,𝑡  is ranked based on the absolute value 

of the t-statistic associated with its coefficient estimates in a univariate regression of 

𝑥𝑖,𝑡  on the target variable 𝑦𝑡. The univariate regression also includes four lags of the 

dependent variable to control for the dynamics of the dependent variable. While 

originating in genetic studies (Bair et al., 2006), this pre-selection technique has found 

its way to economics – see for example Jurado et al. (2015). 

- “Sure Independence Screening” (SIS) of Fan and Lv (2008): regressors are ranked 

based on their marginal correlation with the target predictor. In their theorem 1, Fan 

and Lv (2008) provide theoretical ground for this approach by demonstrating that it 

has the sure screening property that “all important variables survive after applying a 

variable screening procedure with probability tending to 1”. This approach has been used 

for nowcasting in Ferrara and Simoni (2019) or Proietti and Giovannelli (2021). 

- Least-Angle Regression (LARS) algorithm (Bai and Ng, 2008): while the two methods 

above are based on univariate relationships of the regressors with the target variable, 

this one provides a ranking of the predictors when the presence of the other predictors 

is taken into account. Essentially, the LARS – developed by Efron et al. (2004) – is a 

computationally efficient iterative forward selection algorithm, less aggressive than 

peer techniques in eliminating too many predictors correlated with the ones included. 

Another key advantage of LARS is its generality as Efron et al. (2004) showed that the 

LASSO (Tibshirani, 1996) is in fact a special case of the LARS. By extension, the LARS 

algorithm can also be used to solve the optimization criterion of the Elastic Net (Zou 

and Hastie, 2005). The algorithm is formally defined in Annex 3 but briefly, starting 

from no predictors, it adds one at each step by proceeding equiangularly between the 
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variables in the most correlated set. The algorithm adds one regressor at each step, 

meaning that if we end after 𝑘 steps, it provides an active set of 𝑘 predictors. By 

continuing until the max number of predictors, the algorithm then provides an 

ordering of potential regressors 𝑥𝑖,𝑡 according to the iteration at which they join the 

active set. This approach had been used in several nowcasting studies such as 

Schumacher (2010), Bulligan et al. (2015) or Sousa and Falagiardia (2015).  

Once a ranking of the potential regressors 𝑥𝑖,𝑡 is obtained, pre-selection is about defining the 

optimal number 𝑘∗ of regressors to include into the regression. In practice, 𝑘∗ is chosen by 

testing over different values and electing the one optimizing the criterion set by the forecaster. 

In our FA-MIDAS approach, this means estimating different factor models using different 

subsets 𝑋𝑡
𝑘 = (𝑥1,𝑡

∗ , 𝑥2,𝑡
∗ , … , 𝑥𝑘,𝑡

∗ ) consisting of the 𝑘 predictors with the highest scores. In our 

case with distinct monthly and weekly factors, the optimal numbers of monthly and weekly 

regressors (respectively 𝑘𝑚,∗ and 𝑘𝑤,∗) are obtained simultaneously by testing over different 

combinations of (𝑘𝑚, 𝑘𝑤). 

  

Section 3:  Comparing performances across models 

3.1. Set of FA-MIDAS models 

To test whether high-frequency data improves predictive accuracy of the nowcasting, we 

compare performances for three different FA-MIDAS models described below. In addition, 

we also test an AR model with the latest available data for quarterly world GDP. 

- Model 1 includes the monthly factor (𝑓𝑡
𝑚) and the weekly factor (𝑓𝑡

𝑤).  

- Model 2 includes a factor at monthly frequency, but which incorporates also weekly 

series averaged over the month (𝑓𝑡
𝑚,𝑤).5 Comparing model 1 vs. model 2 allows us to 

test whether a three-frequency model performs better than a two-frequency model 

where weekly indicators are averaged at a monthly frequency. 

- Model 3 includes the monthly factor (𝑓𝑡
𝑚). Comparing model 1 (model 2) vs. model 3 

allows us to test whether weekly data can improve nowcasting performances.  

Model comparisons are based on the root mean squared errors (RMSE). Out-of-sample errors 

are computed over 2005Q2-2021Q1 to capture both the Great Financial Crisis and the Great 

Lockdown. Nowcasts are one-period ahead forecasts: the initial estimation sample is 2001Q1 

 
5 In this case, it should be noted that the ranking of potential regressors is made over the joint sample of monthly 

series and weekly series averaged over the month: in other words, this is a common ranking of both weekly and 

monthly variables. 
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to 2005Q1 and the first forecast is 2005Q2; and so on with the estimation sample extended by 

one quarter following an “expanding window” procedure. 

3.2. Real-time exercise 

To reflect the fact that the nowcasting would be done in real-time, we run estimations for the 

first, second, and third months of the quarter. The information taken into consideration differs 

for each month 𝑚𝑖 to reflect what would have been available to the forecaster in real-time. We 

generally consider that the nowcast takes place around the 25th day of month 𝑚𝑖 + 1:6 last 

quarter growth is then available only from the 3rd month onwards – in line with an average 

publication lag of 2 months for GDP statistics; monthly variables are available up to the month 

𝑚𝑖, 7 and weekly variables up to the 3rd week of month 𝑚𝑖 + 1 given their timeliness. Data 

availability is recapitulated in Table 1.8  

 

To further mimic a real-time set-up, the ranking of regressors and the calibration of the 

optimal number of regressors are re-estimated at each date, following the procedure shown 

 
6 For example, it means that the nowcasting for “1st month” is performed around day 25 of the 2nd month. The 

numbering relates to the availability of the monthly factor – rather than to the moment of the nowcast: “1st month” 

means that the monthly factor for 1st month is available, not that the nowcast takes place in the 1st month. 
7 The “vertical realignment” procedure of Altissimo et al. (2006) is particularly convenient at this stage since it 

transposes past publication lags. Indeed, if publication lags are constant over time, the value at any month 𝑚0 in 

the past of the factor estimated contemporaneously at 𝑚 = 𝑚0 + 𝜏 is the exact same value as what would have 

been estimated with information available at 𝑚0 – not accounting for the revisions between 𝑚0 and 𝑚. 
8 However, due to the data unavailability of the vintages for many series, the analysis can only be conducted in 

pseudo real-time: it is not based on vintages that would have reflected the exact information set available to 

forecasters at the time of forecasting but rather mimics the availability of series due to publication delays. Another 

difference between our approach and a “pure” real-time approach is that the seasonal adjustment is performed 

once over the entire sample – and not once at each point with the data that would have been available at the 

moment of the nowcasting. This first reflects the fact that most series in the dataset are retrieved already seasonally 

adjusted from the data sources (and for some, e.g. PMIs, without having the possibility to retrieve the unadjusted 

series). In addition, empirical checks show that the difference between the two approaches (once for the entire 

sample or progressively with data available up to this point) yields very similar profiles for the resulting series. 

Only the Covid-19 period is found to induce distortions for some weekly data whose behaviour has been hugely 

unusual in 2020 (e.g. US initial jobless claims which reached a peak at 6.6 million in the last week of March 2020, 

1,000 more than the maximum level over 1990-2019). The Covid-19 has therefore been excluded from the sample 

on which parameters for seasonal adjustment are calibrated. 

Table 1. Data availability for each “month” of the nowcasting 

 1st month 2nd month 3rd month 

Quarterly variable 2 quarters lag 2 quarters lag 1 quarter lag 

Monthly variables Up to 1st month  Up to 2nd month Up to 3rd month 

Weekly variables 
Up to 3rd week of 2nd 

month 

Up to 3rd week of 3rd 

month 

Up to final week of 

3rd month 
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in Figure 2. At date 𝑡, the ranking of regressors is performed over the in-sample period only 

(step 1 in Figure 2) mimicking the exact information that would have been available to the 

real-time forecaster at date 𝑡. This means that the correlation of potential regressors with the 

target variable over the out-of-sample period is not considered: while closer to a real-time set-

up, this approach however contrasts with most of the literature in which the ranking appears 

to be performed only once and over the full sample (e.g. Bulligan et al., 2015; Falagiarda and 

Sousa, 2015), thereby giving further advantage to pre-selection. In addition, to be fully 

consistent with a real-time exercise, the optimal number of regressors (𝑘∗) is also re-calibrated 

at each date, also only on the in-sample period. To do so, the in-sample period is split between 

“train” (2001Q1-2005Q1) and “test” (2005Q2 to 𝑡) samples. Then pseudo-out-of-sample 

nowcasts9 are made over the “test” sample: at each quarter 𝑞, the model is estimated from 

2001Q1 to 𝑞 − 1 and produce a one-period ahead forecasts for 𝑞. This gives a forecast error at 

𝑞; repeating this procedure over the whole “test” sample gives a pseudo-out-of-sample RMSE. 

This procedure (step 2 in Figure 2) is repeated across all possible values 𝑘 of potential 

regressors. In the end, the optimal number of regressors 𝑘∗ chosen as the one minimizing the 

RMSE over the “test” sample.10 The FA-MIDAS model with 𝑘∗ regressors is then used to 

produce an out-of-sample one-period-ahead of world GDP growth at 𝑡 + 1 (step 3 in Figure 

2). This way, the optimal number of regressors varies at each date 𝑡, as well as the ranking of 

regressors.  

Figure 2. Real-time set-up for the pre-selection 

 

 

 

 
9 “Pseudo out-of-sample” since the ranking of regressors is made over the entire in-sample period, thereby also 

including the “test” period. 
10 For model 1 with both weekly and monthly factors, this procedure is applied across all possible couples (𝑘𝑚, 𝑘𝑤) 

indicating the number of respectively monthly and weekly series included in the factors. 

Train
Test

(n quarters)
Out-of-sample

2001 Q1 2005 Q1 t

…

Step 1

Step 2

Step 3

Step n

In-sample

2

RMSE for one-period ahead nowcasts over 
the “test” sample in order to calibrate the 
optimal number of regressors (k*)

One-period ahead nowcast (out-of-sample) based on the optimal 
number of regressors (k*) calibrated in-sample at step 2

3

1
Rank the potential regressors over the full in-sample 
period based on a pre-selection rule (t-stat, SIS, LARS)
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Section 4: Results 

4.1. Pre-selection techniques 

Results for the different pre-selection techniques are presented in Table 2.11 Pre-selection in a 

FA-MIDAS yields accuracy gains up to 13% in terms of out-of-sample performances, on 

average over the three months, against the alternative of no pre-selection. However, gains are 

only timid for the first month: in the case of the LARS, 6% accuracy gains at month 1 compared 

with around 18% at months 2 and 3. It is notable that such gains arise even with a strict real-

time set-up. When the pre-selection is not run in real-time (i.e. when the ranking of regressors 

is instead performed only once and over the entire sample, as in some of the literature), 

accuracy gains can reach up to 66% as shown in Table A1.1 in Annex 1.  

A second finding in Table 2 is that the LARS procedure (Bai and Ng, 2008) exhibits better 

performances than other techniques. In the rest of the paper, FA-MIDAS models are based on 

this pre-selection technique with, as described in section 3.2, the optimal number of regressors 

𝑘𝑚𝑖,𝑡,𝑗
∗  specific to each month 𝑚𝑖 of the quarter (𝑖 = {1,2,3}), each date 𝑡 (between 2005Q2 and 

2021Q1), and each model 𝑗 (𝑗 = {1,2,3}). In addition, for model 1 with both weekly and 

monthly factors, the optimal numbers of respectively monthly and weekly series is a couple 

(𝑘𝑚𝑖,𝑡,𝑗
𝑚,∗ , 𝑘𝑚𝑖,𝑡,𝑗

𝑤,∗ ) with 𝑘𝑚𝑖,𝑡,𝑗
𝑚,∗  possibly different from 𝑘𝑚𝑖,𝑡,𝑗

𝑤,∗ . 

Table 2. Out-of-sample RMSE across pre-selection techniques and months of the quarter 

 1st month 2nd month 3rd month Average 

FA-MIDAS 

No pre-selection 0.973 1.350 1.635 1.319 

LARS 0.913 1.107 1.365 1.147 

SIS 1.108 1.279 1.440 1.275 

t-stat  1.264 1.269 1.386 1.307 

LASSO-MIDAS 1.585 1.532 1.556 1.558 

Grey cells indicate best performance for a given month (or the average of the three months) 

 

The factors obtained for the monthly and weekly datasets at 𝑡 = 2021Q1 and for the month 𝑚3 

are displayed in Figure 3.12 Both appear to track adequately world GDP and to be leading 

indicators of turning points in the global economy with a 1-3 months lead.  

 

 
11 Results are reported for the model 1. While not reported, the results for other models are similar. 
12 Based on the Bai and Ng (2002) information criterion and on its modified version in Alessi et al. (2010), the optimal 

number of factors to include in the regression is determined to be one. 
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Figure 3. Factors and world GDP growth 
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Note: factors are computed using the optimal number of regressors for a LARS technique, for month 3, and at 

2021Q1 (meaning with ranking of regressors over 2001Q1-2020Q4 and calibration of optimal number of 

variables for one-period out-of-sample forecasts over 2005Q2-2020Q4, cf. section 3.2). the optimal number of 

regressors can be different for monthly (LHS) and weekly (RHS) frequencies. 

 

In the lower part of Table 2, we also compare performances of the FA-MIDAS with the 

LASSO-MIDAS, another dimension reduction technique suited for a mixed-frequency setting. 

LASSO is a sparse approach based on a penalized regression. Contrary to the FA-MIDAS, it 

performs both the selection of regressors and the estimation of the mixed-frequency equation 

in a single step. The LASSO-MIDAS is a recent addition to the literature (Marsilli, 2014; 

Uematsu and Tanaka, 2019; Mogliani and Simoni, 2021) and the model used in this paper is 

the sparse-group LASSO of Babii et al. (2021). The interest of the “group-LASSO” over the 

unstructured LASSO is that for a given regressor, either all high-frequency lags enter the 

regression, or all are set to zero. Said otherwise, it does not select only some of the lags of a 

high-frequency regressor while setting other lags of the same regressor at zero, as would do 

an unstructured LASSO-MIDAS. This approach is therefore more consistent with our FA-

MIDAS, and also more interpretable for a practitioner. Two other advantages of the group-

LASSO are its computational efficiency and – as shown by Babii et al. (2021) – the fact that it 

outperforms the unstructured LASSO.  

The comparison shows that the FA-MIDAS outperforms the LASSO-MIDAS. This might seem 

in line with Giannone et al. (2021) showing that “sparse” methods – such as the LASSO –

perform better than “dense” approaches – such as factor models – only if the data generating 

process is of very low dimension. In the case of this paper, where the prediction of a global 

variable relies on various national indicators, such sparsity might be unlikely.13 

4.1. Model comparison 

Model performances are reported in Table 3. Both in- and out-of-sample RMSE suggest that 

weekly data improve nowcasting accuracy. Models with weekly data (1 and 2) generally 

 
13 Also, very few variables are kept with the LASSO-MIDAS (2 monthly and 2 weekly for the last iteration with 

estimation up to 2020Q4), which might explain the limited performances of such a model. 



14 
 

outperform the model with only monthly data (3), and largely outperform the AR model. 

Among models with weekly data, it appears that model 1 which includes a separated weekly 

factor yields better performances – with the exception of month 1 in the out-of-sample exercise 

– than the model incorporating weekly series with monthly data in a unique factor (model 2). 

Table 3. Performances (RMSE) relative to the AR model 

 

FA-MIDAS 

AR model 
Model 1 Model 2 Model 3 

In-sample 

1st month 0.291 0.341 0.350 1.000 

2nd month 0.215 0.299 0.352 1.000 

3rd month 0.195 0.334 0.260 1.000 

Out-of-sample 

1st month 0.521 0.467 0.483 1.000 

2nd month 0.631 0.677 0.771 1.000 

3rd month 0.601 0.631 0.633 1.000 

Grey cells indicate best performance for a given month. Model 1 includes both a weekly and a monthly factor, 

model 2 includes a unique factor with both monthly and weekly data (averaged over the month), model 3 is 

based only on monthly data. 

 

We assess the significance of differences in predictive accuracy using the Diebold and Mariano 

(1995) test with the Harvey et al. (1997) corrected variance for small-sample bias. Results are 

reported in Table 4. Model 1 is found to have significantly better predictive accuracy than 

model 3 and the AR model at month 2, while also outperforming the AR model at month 1. 

No significant differences however arise at month 3. It confirms that relying on weekly data 

can drive significant improvements in accuracy against models that rely solely on monthly or 

quarterly data, though these gains are broad-based across all months of the quarter. Since 

nested models can weaken the inference in Diebold-Mariano tests (Clark and McCracken, 

2001), we complement this analysis with a Model Confidence Set (MCS) test of Hansen et al. 

(2011)14 in Table A1.2 in Annex 1: for months 2 and 3 of the quarter, the model 1 is always 

elected as the best model and the only remaining in the ℳ50
∗ . 

 
14 The MCS test estimates a set of superior models from an initial set of models where the “superiority” is defined 

by a user-specified loss function. It consists in a stepwise procedure in which the null hypothesis H0 of “all selected 

models perform identically” is repeatedly tested with respect to the expected loss function. Upon rejection, model 

is removed from the set and the procedure is the repeated. In addition to the issue of possibly nested models, one 

other advantage of MCS over pairwise tests – such as the Diebold-Mariano test – is that it allows for an asymptotic 

control of the family-wise error rate which might be problematic when conducting sequences of pairwise tests. 
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Table 4. Diebold-Mariano (1995) test results 

 Model 1 vs.  

model 2 

Model 1 vs.  

model 3 

Model 1 vs.  

AR model 

1st month 0.91 0.77 0.06 

2nd month 0.22 0.06 0.08 

3rd month 0.14 0.14 0.21 

Bold values indicate where the null hypothesis can be rejected at a 10% significance. Results 

report p-value for H0 = model A have lower accuracy than model B over 2005Q1-2021Q1. Model 

1 includes both a weekly and a monthly factor, model 2 includes a monthly factor incorporating 

monthly and weekly data (averaged over the month), model 3 is based only on monthly data. 

4.2. “Crisis” vs. “normal” periods 

A recent strand of literature has documented state-dependent performances of forecasting 

models (Chauvet et al., 2013; Siliverstovs and Wochner 2020; Siliverstovs 2020; 2021) which 

can differ depending on the state of the business cycle such as recessionary vs. expansionary 

period. The possibility of asymmetries in forecasting performances is even greater with high-

frequency data given the general trade-off between timeliness and accuracy (Ahnert and Bier, 

2001): such data provide a timely signal which can enhance nowcasting performance if 

economic conditions suddenly deteriorate but during “normal” periods, their contribution 

might be only of second order.  

Against this background, we distinguish our sample between “normal” and “crisis” episodes, 

and then compute the in- and out-of-sample RMSE for both sub-samples.15 Results are 

reported in Table 5 where it appears that models 1 and 2 with weekly data heavily outperform 

others during “crisis” episodes. During those periods, the upside of providing a very timely 

signal likely exceeds the downside of noise in the weekly data. However, during “normal” 

periods, those models have performances closer to those of models relying on monthly data 

(model 3) or on AR terms. In particular, the relative performances of FA-MIDAS models over 

the AR benchmark tend to be higher during “crisis” periods. For instance, model 1 entails on 

average a 42% improvement in predictive accuracy compared with the AR during “crisis” 

episodes, but 33% during “normal” episodes. 

 Table 5. Performances (RMSE) relative to the AR model – by sub-periods 

 FA-MIDAS 
AR model 

 Model 1 Model 2 Model 3 

Crisis episodes 

In-sample 

 
15 Regressions are still estimated over full sample – or for out-of-sample over the sample preceding target quarter.  
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1st month 0.257 0.317 0.324 1.000 

2nd month 0.146 0.279 0.325 1.000 

3rd month 0.089 0.255 0.199 1.000 

Out-of-sample 

1st month 0.518 0.461 0.477 1.000 

2nd month 0.633 0.680 0.777 1.000 

3rd month 0.599 0.630 0.631 1.000 

Non-crisis episodes 

In-sample 

1st month 0.595 0.535 0.586 1.000 

2nd month 0.649 0.512 0.576 1.000 

3rd month 0.760 0.978 0.763 1.000 

Out-of-sample 

1st month 0.595 0.635 0.648 1.000 

2nd month 0.563 0.566 0.541 1.000 

3rd month 0.845 0.805 0.867 1.000 

Grey cells indicate best performance for a given month. Model 1 includes both a weekly and a monthly factor, 

model 2 includes a unique factor with both monthly and weekly data (averaged over the month), model 3 is 

based only on monthly data. 

 

Following Welsh and Goyal (2008) or more recently Siliverstovs (2020; 2021), we complement 

this assessment with Cumulative Sum of Squared Forecast Errors (CSSFED). Unlike the 

analysis based on RMSE – which averages over several quarters, the CSSFED allows to follow 

the evolution of the relative forecasting performances of two models 𝑖 and 𝑗. A decreasing 

CSSFED indicates that model 𝑖 outperforms model 𝑗. When CSSFED is broadly stable, 

predictive performances of model 𝑖 and 𝑗 can be considered as similar. Formally if �̂�𝑖,𝑡 is model 

𝑖’s forecast error, the CSSFED is defined as follows: 

𝐶𝑆𝑆𝐹𝐸𝐷[0,𝑇] = ∑[�̂�𝑖,𝑡
2 − �̂�𝑗,𝑡

2

𝑇

𝑡=0

],  

 

 

 



17 
 

Figure 4. CSSFED (out-of-sample) of model 1 compared to other models 
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Panel B. Month 2 
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Panel C. Month 3 
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Figure 4 reports CSSFED based on one-period ahead out-of-sample forecast errors, comparing 

model 1 (as model 𝑖 in the definition above) with others. For the sake of visibility, we separated 

into pre- and post-Covid-19 samples. Compared with the AR benchmark (green line), the 

differences are highly visible at the moments of large crisis (2008-2009 and 2020-2021) and for 

all months of the quarter. Over other periods however, the line is broadly flat, indicating that 

performances of model 1 and the AR benchmark are broadly similar. This finding points to 

state-dependent relative performances of model 1 relatively to a simple AR benchmark, 

consistent with the aforementioned literature on asymmetries of forecasting performances 
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across the business cycle. When comparing model 1 with models 2 and 3, large differences 

arise only around the Covid-19 crisis. There are some differences around the GFC but whose 

magnitude is very limited. The differences jump in 2020Q2 and 2020Q3 with model 1 largely 

outperforming others at months 2 and 3 (and conversely for month 1).  

This suggests that high-frequency data would have markedly enhance accuracy during the 

Covid-19 crisis – but not during the GFC. It should be noted however that the above result is 

partly driven by our strict real-time set-up (see section 3.2). When this assumption is relaxed 

and the ranking of regressors is instead performed over the full sample, results for the CSSFED 

are shown in Figure A1.1 in Annex 1. It appears that under this alternative set-up, model 1 

appear to outperform other models during the Great Financial Crisis and that gains can be 

reached with model 1 also at month 1 of the quarter. This calls for caution when using pre-

selection since using a “pseudo real-time” set-up can lead to different results than a “real-

time” framework. 

4.3. Annual GDP forecasts 

Back to the issue highlighted in the introduction, the main concern for “projection-takers” 

macroeconomists during the Covid-19 crisis has been the rapid obsolescence of “benchmark” 

world GDP forecasts. Building on our results that weekly data significantly improve forecast 

performance during these crisis episodes, we construct a nowcasting model for the annual 

growth rate of world GDP based on a FA-MIDAS specification. This model predicts the annual 

growth rate of world GDP 𝑦𝑡
𝑎𝑛𝑛𝑢𝑎𝑙 using the carry-over 𝑐𝑡

𝑞
 provided by the known quarterly 

growth rates – and whose coefficient is fixed to 1 in the regression, the monthly factor (𝑓𝑡
𝑚) 

and the weekly factor (𝑓𝑡
𝑤).16 Formally: 

𝑦𝑡
𝑎𝑛𝑛𝑢𝑎𝑙 =  𝛽0 + 𝑐𝑡

𝑞
+ 𝑔 (𝑓𝑡

12⁄
𝑚 , 𝜃𝑚, 𝐾𝑚, … ) + 𝑔 (𝑓𝑡

52⁄
𝑤 , 𝜃𝑤, 𝐾𝑤 , … ) + 𝜀𝑡 

We start by comparing performances across different models to test if weekly data still 

enhance predictive accuracy for annual forecasts. In-sample RMSE are reported in Figure A1.2 

in Annex 1 where we compare the model described above with three alternatives: a model 

without the weekly factor; a model with only the carry-over; and an AR model. Our baseline 

model appears to outperform others for all weeks of the year. 

We finally compare in Figure 5 the pseudo real-time forecasts of our model with the 

projections released by the OECD and the IMF. We run a “pseudo real-time” comparison in 

which FA-MIDAS is re-estimated at the end of each week with the information available at 

this stage.17 It shows that the nowcasting has the advantage of greater timeliness and decent 

 
16 For the annual exercise, contrary to the quarterly exercise, the optimal number of variables is not selected for 

each week of the year. The monthly (weekly) factor is the principal component from the 60 (20) first series that 

LARS select.  
17 We however do not apply the full procedure described in section 3.2 at the annual frequency, since the very 

limited number of annual data points (22) would prevent any distinction of a train and test sample for the in-
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accuracy compared with IMF’s or OECD’s forecasts as the former seems to have a 1 to 3 

months lead on the latter. This suggests that a nowcasting based on high-frequency data can 

provide an alternative “benchmark” projection during crisis episodes. Fortunately, this is the 

moment when it is most needed (due the obsolescence of usual “benchmark” projections) and 

this coincides with the moment when high-frequency data most greatly enhance predictive 

performances. 

Figure 5. Pseudo real-time nowcast and forecasts for the annual world GDP growth in 2020
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Conclusion 

Our paper provides evidence that including high-frequency (weekly) variables can 

significantly improve the in- and out-of-sample performances in a FA-MIDAS specification, 

but only during specific “crisis” episodes. Further analysis reveals that performances of 

models with weekly data are broadly similar to those of an AR model during “normal” 

periods when activity remains broadly stable. Large differences in predictive accuracy 

between models with weekly data and AR models happen only during “crisis” episodes 

(2008-2009 and 2020-2021, i.e. 12 quarterly observations on a total estimation sample of 81 

observations). This finding points to strong asymmetries in nowcasting performances 

following the literature on state-dependent relative performances of sophisticated models vs. 

the AR benchmark (e.g. Siliverstovs, 2020; 2021). In addition, when comparing models with 

weekly data to models relying on monthly data, performances are alike during “normal” 

periods but also during the Great Financial Crisis (2008-2009). The only differences arise at the 

moment of the Covid-19 crisis. In other terms, weekly data greatly contributes to nowcasting 

period only during the Covid-19 episode when its timeliness could make up for the long 

 
sample period. Instead we rely on a ranking of regressors performed once – over the full sample – and a fixed 

number of regressors (see footnote above). Therefore, this is rather a “pseudo out-of-sample” exercise in contrast 

with the set-up for quarterly nowcasts. 
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publication lags in standard monthly indicators but does not yield significant benefits during 

other periods, even the Great Financial Crisis. Finally, the paper shows that higher accuracy 

can be reached when weekly data is introduced in a specific weekly factor rather than when 

it is averaged over the month and incorporated along monthly variables.  

The paper also provides evidence that a pre-selection of variables enhances markedly the 

forecasting performances of a FA-MIDAS. Among the different techniques tested in this 

paper, the LARS (Bai and Ng, 2008) gives more substantial gains than alternatives approaches 

based on univariate relations (SIS and t-stat).  

It should be kept in mind that the above results are obtained in a purely data-driven exercise 

with minimal intervention from the forecaster: large datasets are assembled by the forecaster 

(around 1,000 variables in total) but the pre-selection of variables and the calibration of the 

models – notably of the choice of the optimal number of regressors to include – are performed 

automatically. In addition to being purely data-driven, the set-up is strictly out-of-sample 

with pre-selection of variables and calibration of the model done only in-sample. Higher and 

more significant accuracy gains can be reached when relaxing these constraints, for example 

by running the pre-selection over the full sample: this calls for caution as results of pre-

selection under a “pseudo real-time” set-up can largely differ those in a “real-time” set-up. 

We also build a real-time nowcasting model for the annual growth of world GDP which has 

the double advantage of: (i) timeliness as it provides a forecast every week while institutional 

forecasts are updated maximum four times a year; (ii) accuracy as it produces forecasts close 

to IMF’s or OECD’s projections but with a 1 to 3 month lead. This can provide an alternative 

“benchmark” for world GDP growth projection to economists. Interestingly during “crisis” 

episodes, not only such an alternative “benchmark” is needed – since the usual “benchmarks” 

provided by institutions are rapidly outdated given large and sudden swings in activity – but 

it is also when high-frequency data would provide the greater gains in predictive accuracy. 

An avenue for future research could be the inclusion of further high-frequency data such as 

card transactions (Cerdeiro et al., 2020), satellite data (Bricongne et al., 2021a), marine traffic 

(Carvalho et al., 2020), or web-scrapped data (Bricongne et al., 2021b). Their limited timespan 

– e.g. Google mobility data only starts in January 2020 – or their high cost (e.g. using marine 

traffic requires several thousand euros) is however a strong limitation. Finally, our approach 

can be extended to nowcast GDP for a specific country or group of countries (e.g. euro area).  



21 
 

References 

d’Agostino A. and Schnatz B. (2012). “Survey-based nowcasting of US growth: a real-time 

forecast comparison over more than 40 years”, European Central Bank Working Paper Series, No 

1455 

Ahnert H. and Bier W. (2001). “Trade-off between timeliness and accuracy”, Economisch 

Statistische Berichten, No 4299 

Alessi L., Barigozzi M. and Capasso M. (2010). “Improved penalization for determining the 

number of factors inapproximate factor models”, Statistics & Probability Letters, 80(23–24), pp. 

1806-1813 

Altissimo F., Cristadoro R., Forni M., Lippi M., and Veronese G. (2006). “New Eurocoin: 

Tracking Economic Growth in Real Time”, CEPR Discussion Papers, No 5633 

Andreou E., Ghysels E., and Kourtellos A. (2013). “Should Macroeconomic Forecasters Use 

Daily Financial Data and How?”, Journal of Business & Economic Statistics, 31(2), pp. 240-251 

Aruoba S., Diebold F., and Scotti C. (2009). “Real-Time Measurement of Business Conditions”, 

Journal of Business and Economic Statistics, 27(4), pp. 417-427 

Babii A., Ghysels E., and Striaukas J. (2021). “Machine Learning Time Series Regressions with 

an Application to Nowcasting”, Journal of Business & Economic Statistics, online publication: 

https://doi.org/10.1080/07350015.2021.1899933  

Bai J. and Ng S. (2002). “Determining the number of factors in approximate factor models”, 

Econometrica, 70(1), pp. 191-221 

Bai J. and Ng S. (2008). “Forecasting economic time series using targeted predictors”, Journal 

of Econometrics, 146(2), pp. 304-317 

Bair E., Hastie T., Paul D., and Tibshirani R. (2006). “Prediction by supervised principal 

components”, Journal of the American Statistical Association, 101(473), pp. 119-137 

Bańbura M., Giannone D., Reichlin L., and Modugno M. (2013). “Now-casting and the real-

time data flow”, European Central Bank Working Paper Series, No 1564 

Boivin J. and Ng S. (2006). “Are more data always better for factor analysis”, Journal of 

Econometrics, 132, pp. 169–194 

Bulligan G., Marcellino M., and Venditti F. (2015). “Forecasting economic activity with 

targeted predictors”, International Journal of Forecasting, 31(1), pp. 188-206 

https://doi.org/10.1080/07350015.2021.1899933


22 
 

Bricongne J-C., Coffinet J., Delbos J-B., Kaiser V., Kien J-N., Kintzler E., Lestrade A., Meunier 

B., Mouliom M., and Nicolas T. (2020). “Tracking the economy during the Covid-19 pandemic: 

the contribution of high-frequency indicators”, Bulletin de la Banque de France, 231 

Bricongne J-C., Meunier B., and Pical T. (2021a). “Can satellite data on air pollution predict 

industrial production?”, Banque de France Working Papers, No. 847 

Bricongne J-C., Meunier B., and Pouget S. (2021b). “Web Scraping Housing Prices in Real-

time: the Covid-19 Crisis in the UK”, Banque de France Working Papers, No. 827 

Carvalho V., Garcia J., Hansen S., Ortiz Á., Rodrigo T., Rodríguez Mora J., and Ruiz J. (2020). 

“Tracking the COVID-19 Crisis with High-Resolution Transaction Data”, Cambridge-INET 

Working Papers, No 2016 

Cerdeiro D., Komaromi A., Liu Y., and Saeed M. (2020). “World Seaborne Trade in Real Time: 

A Proof of Concept for Building AIS-based Nowcasts from Scratch”, International Monetary 

Fund Working Papers, No 20/57 

Chiu C., Chen C., Kuo P.-L., and Wang M. (2020). “The Dynamic Relationships between the 

Baltic Dry Index and the BRICS Stock Markets: A Wavelet Analysis”, Asian Economic and 

Financial Review, 10(3), pp. 340-351 

Chernis T., Cheung C., and Velasco G. (2020). “A three-frequency dynamic factor model for 

nowcasting Canadian provincial GDP growth”, International Journal of Forecasting, 36(3), pp. 

851-872 

Chauvet, M. and S. Potter (2013). “Forecasting output”. In G. Elliott and A. Timmermann 

(Eds.), Handbook of Forecasting, Volume 2, pp. 1–56. Amsterdam: North Holland. 

Chen S., Igan D., Pierri N., and Presbitero A. (2020). “Tracking the Economic Impact of 

COVID-19 and Mitigation Policies in Europe and the United States”, International Monetary 

Fund Working Papers, No 20/125 

Clark T. E., and McCracken M. (2001). “Tests of equal forecast accuracy and encompassing for 

nested models”, Journal of Econometrics, 105(1), pp. 85-110 

Coibion O., Gorodnichenko Y., and Weber M. (2020). “Labor Markets During the COVID-19 

Crisis: A Preliminary View”, University of Chicago Working Papers, No 2020-041 

Diebold F. and Mariano R. (1995). “Comparing predictive accuracy”, Journal of Business and 

Economic Statistics, 13, pp. 253-263 

Doz, C., Giannone D., and Reichlin L. (2006). “A quasi maximum likelihood approach for large 

approximate dynamic factor models”, European Central Bank Working Paper Series, No 674 



23 
 

Efron B., Hastie T., Johnstone I. and Tibshirani R. (2004). “Least angle regression”, Annals of 

Statistics, 32(2), pp. 407-499 

Fan J. and Lv J. (2008). “Sure independence screening for ultrahigh dimensional feature 

space”, Journal of the Royal Statistical Society Series B, 70(5), pp. 849-911 

Ferrara L. and Marsilli C. (2019). “Nowcasting global economic growth: A factor‐augmented 

mixed‐frequency approach”, The World Economy, 42(3), pp. 846-875 

Ferrara L. and Simoni A. (2019). "When are Google data useful to nowcast GDP? An approach 

via pre-selection and shrinkage”, Center for Research in Economics and Statistics (CREST) 

Working Papers, No 2019-04 

Ferrara L., Froidevaux A., and Huynh T-L. (2020). “Macroeconomic nowcasting in times of 

Covid-19 crisis: On the usefulness of alternative data”, Econbrowser, 

https://econbrowser.com/archives/2020/03/guest-contribution-macroeconomic-nowcasting-

in-times-of-covid-19-crisis-on-the-usefulness-of-alternative-data  

Ghysels E., Santa-Clara P., and Valkanov R. (2004). “The MIDAS Touch: Mixed Data Sampling 

Regression Models”, CIRANO Working Paper, No 2004-20 

Giannone D., Lenza M., and Primiceri G. (2021). “Economic Predictions with Big Data: The 

Illusion of Sparsity”, European Central Bank Working Paper Series, No 2542 

Golinelli R. and Parigi G. (2014). “Tracking world trade and GDP in real time”, International 

Journal of Forecasting, 30(4), pp. 847-862 

Hansen P., Lunde A. and J. Nason (2011). “The model confidence set”, Econometrica, 79(2), pp. 

453-497 

Harris E. (1991). “Tracking the Economy with the Purchasing Managers’ Index”, Federal 

Reserve Bank of New York Quarterly Review, Autumn 

Harvey D., Leybourne S. and Newbold P. (1997). “Testing the equality of prediction mean 

squared errors”, International Journal of Forecasting, 13(2), pp. 281-291 

Hastie T., Tibshirani R. and Friedman J. (2008). The Elements of Statistical Learning, Springer 

Series in Statistics, 2nd edition 

INSEE (2020). “Les données « haute fréquence » sont surtout utiles à la prévision économique 

en période de crise brutale”, Note de conjoncture de l’INSEE, June 17th, 

https://www.insee.fr/fr/statistiques/4513034?sommaire=4473296  

Jurado K., Ludvigson S., and Ng S. (2015). “Measuring Uncertainty”, American Economic 

Review, 105(3), pp. 1177-1216 

https://econbrowser.com/archives/2020/03/guest-contribution-macroeconomic-nowcasting-in-times-of-covid-19-crisis-on-the-usefulness-of-alternative-data
https://econbrowser.com/archives/2020/03/guest-contribution-macroeconomic-nowcasting-in-times-of-covid-19-crisis-on-the-usefulness-of-alternative-data
https://www.insee.fr/fr/statistiques/4513034?sommaire=4473296


24 
 

Kindberg-Hanlon G. and Sokol A. (2018). “Gauging the globe: the Bank’s approach to 

nowcasting world GDP”, Bank of England Quarterly Bulletin, Q3 

Ladiray D., Palate J., Mazzi G., and Proietti T. (2018). “Seasonal Adjustment of Daily and Weekly 

Data”, in 16th Conference of the International Association of Official Statisticians, Paris, 

September 19th-21st, https://www.oecd.org/iaos2018/programme/IAOS-OECD2018_Item_1-A-

1-Ladiray_et_al.pdf 

Lahiri K. and Monokroussos G. (2011). “Nowcasting US GDP: The role of ISM Business 

Surveys”, University at Albany Discussion Papers, No 11-01 

Lewis D., Mertens K., and Stock J. (2020). “Monitoring Real Activity in Real Time: The Weekly 

Economic Index”, Liberty Street Economics, No 20200330b, Federal Reserve Bank of New York 

Matheson T. (2011). “New Indicators for Tracking Growth in Real Time”, International 

Monetary Fund Working Papers, No 11/43 

Marcellino M. and Schumacher C. (2010). “Factor-MIDAS for now- and forecasting with 

ragged-edge data: A model comparison for German GDP”, Oxford Bulletin of Economics and 

Statistics, vol. 72(4), pp. 518-550 

Marsilli, C. (2014). “Variable Selection in Predictive MIDAS Models”, Banque de France Working 

papers, No 520 

Mogliani M. and Simoni A. (2021). “Bayesian MIDAS penalized regressions: estimation, 

selection, and prediction”, Journal of Econometrics, 222(1), pp 833-860 

Proietti T. and Giovannelli A. (2021). “Nowcasting monthly GDP with big data: A model 

averaging approach”, Journal of the Royal Statistical Society: Series A, 184(2), pp. 683-706 

Schumacher C. (2010). “Factor forecasting using international targeted predictors: The case of 

German GDP”, Economics Letters, 107(2), pp. 95–98 

Siliverstovs B. (2020). “Assessing nowcast accuracy of US GDP growth in real time: The role 

of booms and busts”, Empirical Economics, 58, pp. 7-27 

Siliverstovs B. (2021). “New York FED Staff Nowcasts and Reality: What Can We Learn about 

the Future, the Present, and the Past?”, Econometrics, 9(1), pp. 1-11 

Siliverstovs B. and Wochner D. (2021). “State-dependent evaluation of predictive ability”, 

Journal of Forecasting, 40, pp. 547-574 

Sousa J. and Falagiarda M. (2015). “Forecasting euro area inflation using targeted predictors: 

is money coming back?”, European Central Bank Working Paper Series, No 2015 

https://www.oecd.org/iaos2018/programme/IAOS-OECD2018_Item_1-A-1-Ladiray_et_al.pdf
https://www.oecd.org/iaos2018/programme/IAOS-OECD2018_Item_1-A-1-Ladiray_et_al.pdf


25 
 

Stock J. and Watson M. (2002). “Macroeconomic Forecasting Using Diffusion Indexes”, Journal 

of Business and Economic Statistics, 20, pp. 147-162 

Tibshirani R. (1996). “Regression shrinkage and selection via the lasso”, Journal of Royal 

Statistical Society Series B, 58(1), pp. 267-288 

Uematsu Y. and Tanaka S. (2019). “High‐dimensional macroeconomic forecasting and 

variable selection via penalized regression”, Econometrics Journal, 22(1), pp. 34-56 

Welch I. and Goyal A. (2008). “A comprehensive look at the empirical performance of equity 

premium prediction”, Review of Financial Studies, 21(4), pp. 1455-1508 

Zou H. and Hastie T. (2005). “Regularization and variable selection via the elastic net”, Journal 

of Royal Statistical Society Series B, 67(2), pp. 301-320 

  



26 
 

Annex 1: Additional tables 

Table A1.1. Out-of-sample RMSE across pre-selection techniques and months of the quarter 

(alternative with pre-selection not done in a real-time manner) 

 1st month 2nd month 3rd month Average 

FA-MIDAS 

No pre-selection 0.973 1.350 1.635 1.319 

t-stat 0.834 0.432 0.856 0.644 

SIS 0.547 0.473 0.543 0.508 

LARS 0.493 0.382 0.971 0.677 

LASSO-MIDAS 1.585 1.532 1.556 1.558 

Grey cells indicate best performance for a given month (or for the average of the 3 months) 

 

Table A1.2. Model Confidence Set (Hansen et al., 2011) test results 

 FA-MIDAS 
AR model 

 Model 1 Model 2 Model 3 

1st month 0.493 1 0.480 0.109 

2nd month 1 0.317 0.329 0.199 

3rd month 1 0.398 0.364 0.491 

Results report p-values of the statistic 𝑇𝑚𝑎𝑥  of Hansen et al. (2011) based on a squared errors loss function. 

Model 1 includes both a weekly and a monthly factor, model 2 includes a monthly factor incorporating 

monthly and weekly data (averaged over the month), model 3 is based only on monthly data. 

 

Figure A1.1. CSSFED (pseudo out-of-sample) of model 1 compared to other models 
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Panel B. Month 2 
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Panel C. Month 3 
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Figure A1.2. In-sample RMSE across models and weeks of the year  
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Annex 2: Data  

Table A2.1. Description of data 

 
Number  

of series 

Seasonally 

adjusted1 
Sources  

Quarterly dependent variable 

GDP growth - Yes ECB macroeconomic projections 

Monthly regressors (total = 718) 

EPU 26 No Bloom et al. (2016) and others 

Housing (e.g. new buildings) 22 Yes National statistics, Eurostat 

Car registrations 35 Yes National statistics, ACEA2 

Retail sales 33 Yes National statistics, OECD 

Number of employees 23 Yes National statistics 

Unemployment rates 30 Yes National statistics, Eurostat 

Industrial production 34 Yes National statistics, Eurostat, OECD 

Consumers Prices Inflation 37 Yes National statistics, Thomson Reuters, OECD 

Producers Prices Inflation 35 Yes National statistics, Eurostat, IMF, OECD 

Household confidence 33 Yes National statistics, OECD, EU Commission 

World trade 4 Yes Centraal Plan Bureau 

REER 37 No BIS 

M2 money aggregate 36 Yes National statistics 

PMI composite headline 20 Yes IHS Markit, ISM, NBS 

PMI manuf. headline 40 Yes IHS Markit, ISM, NBS 

PMI manuf. new export orders 35 Yes IHS Markit, SIM, NBS 

PMI manuf. new orders 39 Yes IHS Markit, ISM, NBS 

PMI manuf. output 39 Yes IHS Markit, NBS 

PMI manuf. delivery time 40 Yes IHS Markit, ISM, NBS 

PMI services headline 18 Yes IHS Markit, NBS 

PMI services new export orders 16 Yes IHS Markit, NBS 

PMI services new orders 6 Yes IHS Markit, NBS 

PMI services output prices 17 Yes IHS Markit 

PMI “whole” headline 13 Yes IHS Markit 

PMI “whole” new export orders 11 Yes IHS Markit 

PMI “whole” new orders 13 Yes IHS Markit 
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PMI “whole” output 13 Yes IHS Markit 

PMI “whole” delivery time 13 Yes IHS Markit 

Weekly regressors (total = 255 – incl. 30 spreads as the difference between 3-month and 10-year rates) 

Financial sub-set 

Stock market indices 29 No National statistics 

3-month interbank rates 30 No National statistics 

10-year sovereign yields 30 No National statistics 

NEER 31 No JP Morgan 

Other financial indices 12 No Standard & Poor’s, CBOE, MSCI 

“Real” economy sub-set 

China housing indices 72 Yes National statistics 

Commodity prices 7 No Thomson Reuters, Standard & Poor’s  

Trade indices 5 No Thomson Reuters 

US economy indices 9 No Thomson Reuters 

Notes: (1) the seasonal adjustment column indicates whether the series are retrieved already seasonally adjusted 

from the data source; (2) European Automobile Manufacturers' Association 
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Annex 3: Least-Angle Regression (LARS) algorithm of Efron et al. (2004) 

Suppose the objective is to regress a target variable 𝑦 on a dataset 𝑋 containing a large number 

𝑁 of variables. The LARS algorithm starts with no variables selected. 

- The first step is to identify the predictor 𝑥𝑗 most correlated with the target variable 𝑦, 

then move its coefficient 𝛽𝑗 from 0 to the direction given by its least-squares coefficient. 

This causes the correlation of this regressor 𝑥𝑗 with the evolving residual (𝑦 − 𝛽𝑗 ∙ 𝑥𝑗) 

to decrease in absolute value. As soon as another regressor 𝑥𝑘 has as much correlation 

with the evolving residual, the process is paused and 𝑥𝑘 joins the active set. 

- Then coefficients 𝛽𝑗 and 𝛽𝑘 are moved equiangularly in the direction of their least-

squares coefficients until another predictor 𝑥𝑙 has as much correlation with the 

updated evolving residual (𝑦 − 𝛽𝑗 ∙ 𝑥𝑗 − 𝛽𝑘 ∙ 𝑥𝑘). 

- This procedure is continued until all predictors entered the active set, formally noted 

𝔸𝑘. The size of the latter increases by one at each step. After 𝑘 steps, 𝑘 variables are in 

𝔸𝑘 or in other words, the coefficients corresponding to the remaining 𝑁 − 𝑘 predictors 

are set to zero in the regression. 

More formally, at step 𝑘:  

- Let’s note �̂�𝔸𝑘
 the current estimate of 𝑦 with the regressors corresponding to the active 

set 𝔸𝑘. 

- The vector of current correlations is �̂� = 𝑋′(𝑦 − �̂�𝔸𝑘
). By definition, the active set 𝔸𝑘 is 

the set of indices corresponding to predictors with the highest absolute correlation 

noted �̂� = 𝑚𝑎𝑥𝑗{|�̂�𝑗|}, i.e. 𝔸𝑘 = {𝑗 ∶ |�̂�𝑗| = �̂�}.  

- The active set 𝔸𝑘 defines the matrix of predictors corresponding to this set 𝑋𝔸𝑘
=

(𝑠𝑗𝑥𝑗)𝑗𝜖𝔸𝑘
 with 𝑠𝑗 = 𝑠𝑖𝑔𝑛(�̂�𝑗). 

- 𝑢𝑘 = 𝑋𝔸𝑘
𝑤𝑘 is the equiangular vector: the name “least angle” arises from a geometrical 

interpretation of this process as 𝑢𝑘 makes the smallest and equal angle with each of 

the predictors in 𝔸𝑘.  

o 𝑤𝑘 is defined as 𝑤𝑘 = 𝐴𝔸𝑘
(𝑋𝔸𝑘

′𝑋𝔸𝑘
)−11𝔸𝑘

 with 𝐴𝔸𝑘
= (1𝔸𝑘

′ (𝑋𝔸𝑘
′𝑋𝔸𝑘

)−11𝔸𝑘
)−1/2 

with 1𝔸𝑘
 a vector of ones equalling the size of 𝔸𝑘.  

o We also define the inner product 𝑎𝔸𝑘
= 𝑋′𝑢𝑘. 

The next step is to move the estimation �̂�𝔸𝑘
 in the direction set by the equiangular vector 𝑢𝑘 

until another regressor from 𝔸𝑘
𝑐 (i.e. the complement of 𝔸𝑘 or in other words the regressors 

that are not yet included in the active set) joins the active set. Formally noted, estimation will 

reach �̂�𝔸𝑘
+ = �̂�𝔸𝑘

+ 𝛾 ∙ 𝑢𝑘 with 𝛾 minimizing the following criterion: 
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(𝐴5.1) 𝛾 = 𝑚𝑖𝑛𝑗∈𝔸𝑘
𝑐

+ (
�̂� − �̂�𝑗

𝐴𝔸𝑘
− 𝑎𝑗

,
�̂� + �̂�𝑗

𝐴𝔸𝑘
+ 𝑎𝑗

) 

where the 𝑚𝑖𝑛+ indicates that the minimum is taken over only positive components of each 

choice of 𝑗.  

The interpretation is that �̂�𝔸𝑘
 is moved in the direction of 𝑢𝑘 so that 𝜇𝔸𝑘

(𝛾) = �̂�𝔸𝑘
+ 𝛾 ∙ 𝑢𝑘. Then 

the correlations for the active set (which are all equal and have the highest absolute value 

among all potential predictors) all decline equally to 𝑐𝑗(𝛾) = 𝑥𝑗
′ (𝑦 − 𝜇𝔸𝑘

(𝛾)) = �̂�𝑗 − 𝛾 ∙ 𝑎𝑗 and 

therefore in absolute value |𝑐𝑗(𝛾)| = �̂� − 𝛾 ∙ 𝐴𝔸𝑘
.  

Equating these two last equations provides the criterion for 𝛾 set in equation (A5.1). 𝛾 can be 

interpreted as the smallest positive value of 𝛾 so that a new index 𝑙 joins the active set (i.e. 

whose absolute correlation with the residual will equal the absolute correlation of the 

variables in the active set). 𝑙 is the minimizing index for (A5.1) and the new active set becomes 

𝔸𝑘+1 = 𝔸𝑘 ∪ {𝑙} and the new maximum correlation becomes �̂� − 𝛾 ∙ 𝐴𝔸𝑘
  

A main difference with the traditional forward stepwise algorithm is that 𝛾 in the updating 

rule is endogenously chosen in the LARS algorithm, so that it proceeds equiangularly between 

the variables in the active set (“least angle direction”) until the next variable to be added in 

the active set is found. By contrast, in the forward stepwise algorithm, the updating rule is 

�̂�𝑘+1 = �̂�𝑘 + 𝛾𝑠𝑖𝑔𝑛(�̂�𝑗)𝑥𝑗 with 𝛾 = |�̂�𝑗|. In other terms, it updates the least squares fit to include 

active regressors. LARS only enters predictors only by “as much” as needed before another 

regressor is achieve as much correlation with the residual. This way, regressors mildly 

correlated with other variables already in the active set have a chance to enter – correcting the 

excessive parsimony of forward stepwise selection (Bai and Ng, 2008; Hastie et al., 2008; 

Bulligan et al., 2015). 

Finally, Efron et al. (2004) show that the LARS algorithm encompasses other shrinkage 

methods, including LASSO (Tibshirani, 1996) and the Elastic Net (Zou and Hastie, 2005. The 

LASSO modification of the LARS algorithm is that if a non-zero coefficient for a regressor in 

the active set hits zero, then this regressor is dropped from the active set and the current joint 

least squares direction is recomputed. Bai and Ng (2008) also show that, in order to 

reformulate the Elastic Net as a LASSO problem, it is sufficient to apply a variable 

transformation, which can therefore be obtained through the LARS algorithm. 


