
HAL Id: hal-03647174
https://amu.hal.science/hal-03647174

Submitted on 20 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Estimation of Energy Losses in Nanocrystalline
FINEMET Alloys Working at High Frequency
Lucian-Gabriel Petrescu, Maria-Catalina Petrescu, Emil Cazacu,

Catalin-Daniel Constantinescu

To cite this version:
Lucian-Gabriel Petrescu, Maria-Catalina Petrescu, Emil Cazacu, Catalin-Daniel Constantinescu. Esti-
mation of Energy Losses in Nanocrystalline FINEMET Alloys Working at High Frequency. Materials,
2021, 14, �10.3390/ma14247745�. �hal-03647174�

https://amu.hal.science/hal-03647174
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


materials

Article

Estimation of Energy Losses in Nanocrystalline FINEMET
Alloys Working at High Frequency

Lucian-Gabriel Petrescu 1,* , Maria-Catalina Petrescu 1, Emil Cazacu 1 and Catalin-Daniel Constantinescu 2,*

����������
�������

Citation: Petrescu, L.-G.; Petrescu,

M.-C.; Cazacu, E.; Constantinescu,

C.-D. Estimation of Energy Losses in

Nanocrystalline FINEMET Alloys

Working at High Frequency. Materials

2021, 14, 7745. https://doi.org/

10.3390/ma14247745

Academic Editors: Joan-Josep Suñol

and Francisca G. Caballero

Received: 11 October 2021

Accepted: 10 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, Faculty of Electrical Engineering, University “POLITEHNICA” of
Bucharest, 313 Splaiul Independentei, RO-060042 Bucharest, Romania; catalina.petrescu@upb.ro (M.-C.P.);
emil.cazacu@upb.ro (E.C.)

2 Laboratoire LP3/UMR 7341, CNRS, Aix-Marseille Université, F-13009 Marseille, France
* Correspondence: lucian.petrescu@upb.ro (L.-G.P.); constantinescu@lp3.univ-mrs.fr (C.-D.C.);

Tel.: +40-(21)-4029614 (L.-G.P.); +33-(755)-645-645 or +33-(491)-829-382 (C.-D.C.)

Abstract: Soft magnetic materials are at the core of electromagnetic devices. Planar transformers are
essential pieces of equipment working at high frequency. Usually, their magnetic core is made of
various types of ferrites or iron-based alloys. An upcoming alternative might be the replacement
the ferrites with FINEMET-type alloys, of nominal composition of Fe73.5Si13.5B9Cu3Nb1 (at. %).
FINEMET is a nanocrystalline material exhibiting excellent magnetic properties at high frequencies, a
soft magnetic alloy that has been in the focus of interest in the last years thanks to its high saturation
magnetization, high permeability, and low core loss. Here, we present and discuss the measured and
modelled properties of this material. Owing to the limits of the experimental set-up, an estimate of the
total magnetic losses within this magnetic material is made, for values greater than the measurement
limits of the magnetic flux density and frequency, with reasonable results for potential applications
of FINMET-type alloys and thin films in high frequency planar transformer cores.

Keywords: FINEMET; soft magnetic alloy; Steinmetz losses estimation; nanocrystalline ribbon;
planar transformers; high frequency applications

1. Introduction

Soft magnetic materials are an essential part of electromagnetic devices, in bulk or as
thin films [1–4]. Their magnetic core must withstand easy magnetization and exhibit low
energy losses, the most common demands for any soft magnetic materials [5,6]. Nowadays,
devices that work at high frequencies, e.g., such as thin film and/or planar transformers,
also require high resistivity of the magnetic core to reduce losses [7,8]. Current technology
in high frequency switching planar transformers involves the use of soft ferrites, for the
core, with various chemical composition [9–11]. This class of ceramic materials fulfil the
main requirements, such as high saturation flux density, high permeability (even for kHz
frequencies), and low core losses. In addition, the ferrite cores have a typical efficiency of
up to 97–99%, which offers a great heat dissipation [12].

Magnetic materials capable of operating at higher operating frequencies have the
potential to greatly reduce the size of megawatt level power electronics. In the last decades,
a new class of materials became more common for applications operating at high frequency:
magnetic nanocrystalline compounds [13]. These are formed by an assembly of regions of
coherent crystal structure (grains), with an average grain diameter of 1 to 50 nm. Exhibiting
a magnetic order, they may also be embedded in a magnetic or non-magnetic matrix.
Ribbons of nanocrystalline alloys are made by rapid solidification techniques, deposition,
and solid state reactions, where the initial material can be in the amorphous state and then
crystallize. The composition of the alloy, its crystalline structure, the microstructure, and
the morphology will thus determine the magnetic properties of the material.
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The name FINEMET® is a commercial brand that has high saturation flux density
and high permeability, and that exhibits stable temperature characteristics [14–17]. The
alloy is a met-glass-like, nanocrystalline soft magnetic material developed in Japan by
Hitachi Corporation, which can hold up to 2 kG of magnetic flux intensity. It is usually
made into a crystalized alloy ribbon, with a main chemical composition of Fe. Starting
from conventional Fe-Si-B systems, and by adding minor quantities of Cu and Nb, the
Fe-Si-B-Nb-Cu type alloy, i.e., FINEMET [18,19], can be achieved. Its phase characteristics
are far better than conventional core materials, such as Ni- and Co-based amorphous metals
and/or alloys. Such an alloy can be produced by precipitation of the nanocrystalline α-Fe
dispersed in an amorphous matrix, with saturation magnetic flux densities over 1.2 T,
relative permeability higher than 1000 at frequencies of kHz, a low coercive field, and very
low magnetic losses [20]. Owing to its low magnetostriction effects, it is less affected by
mechanical stress and aging, and thus suitable for high frequency applications.

Typically, this nanocrystalline alloy is made of grains that are highly uniform (about
10 nm in size), prepared by single roll melt spinning technique [17,21]. Using this procedure,
the alloys are rapidly cooled from the molten state to the non-crystalline (amorphous) state,
thus crystallization is prevented from occurring. The resulting amorphous ribbons reach
a thickness of up to 20 µm and a width that can vary, depending on the application for
which they are prepared, from a few millimetres to centimetres [22]. For obtaining a
nanocrystalline material, the velocity of the cooling roller is reduced.

Here, we present and discuss results on a selection of experimental determinations, for
a maximum of 300 mT and 900 kHz, for a FINEMET ribbon. The experimental set-up used
prevents the readings of magnetic characteristics at high magnetic flux density and high
frequencies. Owing to such aspects, it is not possible to have the specific losses determined
at magnetic flux densities over 300 mT. The novelty of our approach, presented in this
work, is to use the Steinmetz loss modelling procedure [5] in determining a series of fitting
relationships for specific parameters. In this way, we are able to estimate and discuss the
total magnetic energy losses in this material and for magnetic flux densities up to 1 T, in
ribbons (bulk) and for thin films.

2. Materials and Methods

FINEMET-D is a commercial nanocrystalline material (Fe73.5Si13.5B9Nb3Cu1), which
suffers a mechanical treatment to reduce its thickness. Amorphous and nanocrystalline
ribbons are obtained by rapid quenching and the main difference between these materials
is imposed by the velocity of the cooling roller (see Figure 1). Finally, different techniques
are used to obtain the ribbons, with a thickness of approximately 18–23 µm [23].
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Figure 1. Rapid quenching method for obtaining amorphous/nanocrystalline ribbon materials. Figure 1. Rapid quenching method for obtaining amorphous/nanocrystalline ribbon materials.

The experiment set-up presented in Figure 2 was developed at the INRIM Laboratories
in Torino, Italy. Two voltage signals u1(t) and u2(t) are acquired from the magnetic core.
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The first one is proportional with the magnetic field strength H, while the second one is
with the magnetic flux density B [24]. N1 and N2 represent the number of turns of the two
windings that build the transformer having as core the FINEMET band.
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Figure 2. Experimental setup for measuring the magnetic properties of the FINEMET ribbon placed
as the transformer core.

The voltage provided by the random function generator is denoted by e(t). Using
some amplifiers, all data are converted to magnetic quantity, thus the hysteresis loops
are obtained.

With respect to the frequency of the signal, and thus the effective value of the supply
voltage, it was necessary to make an adjustment, i.e., to determine the number of coil
turns. The experimental set-up has a technical limitation, and one can manage to obtain
the hysteresis loops at frequency up to 200 kHz only and for low magnetic flux densities
(lower than 300 mT). However, at lower frequencies (i.e., up to 50 kHz), the saturation
value of the magnetic flux density can be obtained.

The major magnetic properties of the ribbon (first magnetization curve and the relative
permeability), obtained for an operating frequency of 500 Hz, are depicted in Figure 3.
A complete characterization of this material was presented in a previously published
study [24]. Figure 4 presents a comparison between the experimental hysteresis loops
obtained for the FINEMET ribbon at 100 kHz and different values of the magnetic flux
density. In Figure 5, a comparison is shown for the same magnetic flux density (300 mT),
but for different values of the frequency.
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Figure 5. Comparison between experimental loops for different values of the frequency obtained at
300 mT.

3. Steinmetz Losses Estimation

Steinmetz was one of first scientists that developed a model to estimate the magnetic
losses in electrical steels [25]. In the following decades, this model was further modified
and improved in order to consider the evolution of soft magnetic materials [26–28]. Thus,
the initial Steinmetz relation (1) indicated the magnetic losses’ proportionality with the
hysteresis energy losses and of the value of the magnetic polarization:

Wtot = khBα
p , (1)

where kh is the Steinmetz hysteresis coefficient and α is a numerical coefficient for a certain
value of the peak magnetic flux density, Bp.

The empirical parameters from (1) were determined for various types of materials,
considering the saturation value of the magnetic flux density, the relative permeability, and
other factors [29,30]. For example, the authors of [31] indicate that the coefficient α has a
value of 1.64 for magnetization lower than 1 T and 2.60 for higher values, in the case of
MnZn and FeSi alloys (here, it was considered that switching point of 1 T is the knee of
the magnetization curve). In [31], different values of the temperature and pressure were
considered for the Somaloy 3P 700 sample and the α is between 1.64 and 1.71. For these
reasons, in this paper, α will be considered as 1.64.

The Steinmetz model has suffered many alternations over the years, but recently only
two versions have been adopted. A first one considers that the total energy losses are
divided in hysteresis losses (WH) and dynamic losses (WD) [32,33]:

Wtot = WH + WD = kh·B1.64
p + kD· f ·B2

p, (2)

where kD is the Steinmetz coefficient for dynamic phenomena and f is the frequency of
the signal.
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More often, it is common to consider that the dynamic magnetic phenomena can be
divided into eddy current losses (WE) and excess (abnormal) losses (WA) [33]:

Wtot = WH + WE + WA = kh·B1.64
p + ke· f ·B2

p + ka· f 0.5·B1.5
p , (3)

where ke is the Steinmetz eddy current coefficient and ka is the excess losses coefficient.
Separation of the total energy losses in three terms indicated the three levels of the

magnetization processes: geometry for the sample is associated with the classical energy
losses (the macroscopic scale); the pinning of the domain walls in the lattice’s impurities
is associated with the hysteresis energy losses (the microscopic scale); and the magnetic
domains scale is directly connected with the excess energy losses (the mesoscopic scale) [1].
A graphical interpretation of the energy losses separation procedure can be followed in
Figure 6 [32–35].
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flux density.

In conclusion, in the final form, in order to estimate the total energy losses, it is
necessary to determine three coefficients (kh, ke, ka). The separation of losses presented
above is also supported by Bertotti’s theory [36]. Here, too, measuring the area of the
hysteresis loop at the lowest possible frequency (close to DC) will provide one with the
hysteresis losses, WH. Then, by knowing some data about the sample (i.e., the thickness,
d; the electrical conductivity, σ; and the mass density, δ) one can determine the losses due
to the eddy currents, WE. Experimentally, it was found that the sum of these two terms
do not represent the total energy losses. For this reason, abnormal and/or excess losses
are introduced, WA. Considering these aspects, the total magnetic energy losses can be
calculated as the following equation:

Wtot = WH + WE + WA = WH +
π2 · σ · d2 · B2

p · f
6 · δ

+ 8
√

σGSV0·B1.5
p f 0.5, (4)

where S is the section of the sample, V0 is an intrinsic parameter of the material depending
on its microstructure, and G is a dimensionless parameter determined by Bertotti [36,37]
with the value 0.1356.
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4. Results and Discussion

Temperature is one important parameter that influences the magnetic behaviour of a
material, simply by modifying its magnetic properties: a nonlinear evolution of magnetic
parameters (saturation magnetization, relative permeability, coercive field) as function of
temperature exists [38–43]. Heat dissipation is of paramount importance, as any change in
both permeability and coercivity with temperature is reflected on magnetic losses. This
influence on dynamic losses is related to eddy currents and wall motion effects. Eddy
currents (also called Foucault’s currents) are loops of electrical current induced within
conductors by a changing magnetic field in the conductor according to Faraday’s law of
induction. The term eddy current comes from analogous currents seen in water in fluid
dynamics, causing localised areas of turbulence known as eddies giving rise to persistent
vortices. The current flowing through the resistance of the conductor also dissipates energy
as heat in the material, and there is a compromise between the point of operation, size,
frequency, and temperature. Therefore, the dynamic and static magnetic behaviour of
materials is critical in order to decide their use in specific applications.

Losses in magnetic cores may be separated into three categories, with respect to the
physical mechanism: static hysteretic losses, the classical eddy current losses, and the
excess eddy current losses (or anomalous losses). The Bertotti–Fiorillo–Mazzetti model [44],
in which the energy dissipation in materials under alternating magnetic field is due to
eddy currents generated during motion of the magnetic domain, and the motion is non-
sinusoidal, non-uniform, and non-repetitive, considers domain structure to be the main
reason for the difference in excess eddy current losses. The magnetic domain structure was
examined by magneto-optical Kerr microscope and it was found that the main domains
are typically a few hundred of µm long and just a few µm wide, separated by 180◦ walls,
while some parts of the FINEMET ribbon have a labyrinth-like domain structure. Such
results are congruent with previous literature data [44,45]. It was previously shown that the
domain structure would suffer certain transformations owing to the sample size, induction
amplitude, as well as other conditions and/or parameters [45–48], leading to difficulties
concerning total magnetic losses separation. To recall, power losses in soft magnetic
materials are generated by hysteresis phenomenon and eddy currents, flowing in different
scales as in the whole material volume, around moving domain walls or micro-currents
related to the Barkhausen jumps. Some authors propose considering all types of power
losses separately [48], while others suggest that these should be considered as a total [49].
Modelling of power losses is thus an interesting issue both for scientists and researchers,
and there are many approaches to the modelling of power losses.

In this paper, we focus on the experimental results for FINEMET ribbon obtained with
the previously described set-up (Figure 2). Four data sets were recorded for the magnetic
flux densities (50 mT, 100 mT, 200 mT, and 300 mT, respectively) in a large frequency range
(from 5 Hz to 900 kHz). Performing a fitting procedure using Matlab [5], we determine the
three parameters in a first iteration. Table 1 presents these values.

Table 1. Steinmetz coefficients after initial iteration.

B [mT] kh [-] ke [-] ka [-]

50 1.67 × 10−4 2.18 × 10−8 8.65 × 10−6

100 2.54 × 10−4 2.67 × 10−8 1.02 × 10−8

200 3.90 × 10−4 3.54 × 10−8 1.20 × 10−8

300 5.06 × 10−4 4.39 × 10−8 1.46 × 10−8

The graphical results after implementing this procedure are depicted in Figure 7.
Here, we considered only the frequency range between 100 kHz and 900 kHz, because this
represents the working range of planar transformers.
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To evaluate the fitting accuracy, it is recommended to use the goodness-to-fit statistics.
From the Curve Fitting Toolbox of Matlab, we have considered the following parameters:

– SSE = sum of squares due to error;
– R-square;
– RMSE = root mean squared error.

Table 2 presents the values of these fitting parameters for the initial iteration.

Table 2. Parameters used for identifying the goodness of the fitting.

B [mT] SSE R RMSE

50 2.75 × 10−10 0.9945 3.59 × 10−6

100 3.17 × 10−9 0.9957 1.23 × 10−5

200 2.76 × 10−7 0.9842 1.12 × 10−4

300 2.26 × 10−7 0.9973 1.04 × 10−4

SSE represents the total deviation of the response values from the fit to the response
values. A value closer to 0 indicates that the model has a smaller random error compo-
nent [50]. In all four studied cases, this parameter is smaller than 10−7, so it is an indicator
of a good fitting procedure. R-square is the square of the correlation between the response
values and their predicted ones [50]. An R-square value over 0.98 means that the fit explains
98% of the total variation in the data about the average; this coefficient also indicates a
good fitting. RMSE is an estimate of the standard deviation of the random component in
the data [50]. An RMSE value closer to 0 indicates a fit that is more useful for prediction.

The next step was to identify a function for each parameter in order to estimate the
total energy losses for higher values of the magnetic flux density. Owing to the lack of
measured data (only four values for each parameter), we have chosen a linear variation for
each parameter:

kh(B) = 0.001343 × B + 0.000111 (5)

After this iteration, the results are also good and they are presented in Figure 8.
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By using such linear approximations, we were able to perform an estimation of the
total magnetic losses that occur at higher values of the magnetic flux densities. Figure 9
represents the first four curves (measured and modelled) and a family of three other curves
for 500 mT, 800 mT, and 1 T, respectively.
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Using Equation (4), we performed a losses separation procedure for 800 mT and
1 T, respectively. The following data for the investigated nanocrystalline ribbon were
considered: mass density δ = 7730 kg/m3, electrical conductivity σ = 141 µΩcm, and the
ribbon thickness d = 18 µm. The results are presented in Figure 10.
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The total magnetic losses separation is a procedure that offers us important informa-
tion about the contribution of each type of magnetic losses in a material. By extrapolation
to the frequency of 0 Hz, the hysteresis losses are determined. The eddy current losses can
also be calculated with the ration from the second term of the relation (4). What remains
of the total losses represents the excess losses. These become important with increasing
frequency (over 10 kHz) and they highlight the movement of the interdomenial walls of
the magnetic material. These losses depend significantly on the size and arrangement of
the magnetic fields. The high values of these losses for frequencies of the order of the tens
and hundreds of kHz indicate fairly large magnetic domains compared with the thickness
of a magnetic layer. Therefore, for such materials, these losses cannot be ignored.

Over a wide frequency range, the coefficient of inductance (i.e., µr) remarkably de-
creases as the stress is increased in the samples (data not shown here). The reason for the
observation of lower permeability in stress-annealed samples is that a transverse magnetic
anisotropy is induced in the nanocrystalline alloy after stress annealing and, consequently,
it becomes more difficult to magnetize the alloy in the direction of the magnetization field,
thus the magnetic permeability is diminished. However, the results are beyond the interest
of this study and will be further and thoroughly discussed elsewhere. To conclude in
brief, FINEMET-type alloys were measured and modelled, and the magnetic properties of
this material were further discussed using the Steinmetz procedure. This approach is also
suitable for thin films, such as in pulsed laser deposited films and multi-layered assemblies,
where accurate control of the nanocrystalline structuring may be achieved.

5. Conclusions

Determining the characteristics of soft materials that are used in electromagnetic
devices is a present issue. The characterization of the magnetic properties within the
limits offered by the experimental devices, followed by their modelling and estimation,
is the subject of this paper. The studied material is a FINEMET-type alloy that could be
characterized for magnetic inductions up to 300 mT and frequencies of 900 kHz. However,
in devices such as planar transformers, the core is subjected to magnetic flux densities
values of about 500 mT–1 T (considering that the saturation value for these materials is near
1.2 T). An estimation of the magnetic energy losses using the Steinmetz procedure was used
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for these values. The specific coefficients were adjusted using an iterative fitting procedure.
The results obtained for the values of the magnetic flux densities, where experimental
determinations were performed, offered very low relative errors in the range 100 kHz–
900 kHz. This aspect was highlighted by the analysis of some statistical parameters for
evaluating the goodness of the fitting procedure. This approach is also suitable for thin
films, such as in pulsed laser deposited films and multi-layered assemblies, where accurate
control of the nanocrystalline structuring may be achieved. Finally, a total loss separation
procedure was performed for two of the estimated values. These findings suggest that the
application of this procedure could be suitable for cases when the experimental set’s limits
must be over-fulfilled.
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