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Abstract: In the past ten years, artificial intelligence has encountered such dramatic progress that
it is now seen as a tool of choice to solve environmental issues and, in the first place, greenhouse
gas emissions (GHG). At the same time, the deep learning community began to realize that training
models with more and more parameters require a lot of energy and, as a consequence, GHG emissions.
To our knowledge, questioning the complete net environmental impacts of AI solutions for the
environment (AI for Green) and not only GHG, has never been addressed directly. In this article, we
propose to study the possible negative impacts of AI for Green. First, we review the different types of
AI impacts; then, we present the different methodologies used to assess those impacts and show how
to apply life cycle assessment to AI services. Finally, we discuss how to assess the environmental
usefulness of a general AI service and point out the limitations of existing work in AI for Green.

Keywords: artificial intelligence; sustainability; carbon footprint; LCA

1. Introduction

In the past few years, the AI community has begun to address the environmental
impacts of deep learning programs: Ref. [1] highlighted the impacts of training NLP models
in terms of energy consumption and in terms of carbon footprint, Ref. [2] proposed the
concept of Green AI, and the AI community created several tools to evaluate machine
learning energy consumption [3–6].

These impacts are mainly expressed in terms of energy consumption and associated
greenhouse gas (GHG) emissions. Yet, as we will discuss later, this energy consumption
represents only a part of the complete environmental impacts of such methods. Ref. [7], for
example, states that “it is in terms of their indirect effects on the global digital sector that AI
systems will have a major impact on the environment”. In the same spirit, Ref. [8] warns
that “optimising actions for a restricted set of parameters (profit, job security, etc) without
consideration of these wider impacts can lead to consequences for others, including one’s
future self as well as future generations”.

Evaluating the impacts of an AI service is not fundamentally different from doing
it for another digital service. However, AI presents specificities that must be taken into
account because they increase its environmental impacts.

First, AI—and in particular, deep learning—methods usually require large quantities
of data. These data have to be acquired, transferred, stored, and processed. All these
steps require equipment and energy and have environmental impacts. In the case of a
surveillance satellite, the data will probably be in large quantities, but the number of
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acquisition devices may be limited; in the case of a smart building infrastructure, the data
may be in smaller quantities, but many devices will be required.

Training deep neural models also takes a lot of computation time and resources, partly
because the model itself learns a comprehensive representation that enables it to better
analyze the data. Whereas with other models, a human will provide part of this information,
often in the form of a handcrafted solution. The computation cost can be even higher if the
model does continuous learning.

At the same time, AI’s popularity is increasing, and AI is often presented as a solution
to environmental problems with AI for Green proposals [9–11]. The negative environ-
mental impacts can be briefly evoked—and in particular, rebound effects [9,12] where
unitary efficiency gains can lead to global GHG increase—but no quantification of all AI’s
environmental costs is proposed to close the loop between AI for Green and Green AI. That
is why it is even more important to be able to assess the actual impacts, taking into account
both positive and negative effects.

Incidentally, those works often use the term AI to actually refer to deep learning
methods, even though AI has a much wider scope with at least two major historical
trends [13]. In this paper, we will also focus on deep learning methods, which pose specific
environmental issues and, as we have seen, are often presented as possible solutions
to environmental problems. We describe these impacts and discuss how to take them
into account.

Our contributions are the following:

• We review the existing work to assess the environmental impacts of AI and show their
limitations (Sections 2.1 and 2.2).

• We present life cycle assessment (Section 2.3) and examine how it can comprehensively
evaluate the direct environmental impacts of an AI service (Section 3).

• We discuss how to assess the environmental value of an AI service designed for
environmental purposes (Section 4).

• We argue that although improving the state of the art, the proposed methodology can
only show the technical potential of a service, which may not fully realize in a real-life
context (Section 5).

2. Related Work

This section reviews existing tools for evaluating environmental impacts of AI as
well as green applications of AI. It ends with an introduction to life cycle assessment, a
well-founded methodology for environmental impact assessment but still not used for
AI services.

2.1. Carbon Footprint of AI

Strubell et al. [1] has received much attention because it revealed a dramatic impact of
NLP algorithms in the training phase—the authors found GHG emissions to be equivalent
to 300 flights between New York and San Francisco. Premises of such an approach were
already present in [14] for CNN with less meaningful metrics (energy per image or power
with no indications on the global duration).

In [2], the authors observed a more general exponential evolution in deep learning
architecture parameters. Therefore, they promoted “Green AI” to consider energy efficiency
at the same level as accuracy in training models and recommend, in particular, to report
floating-point operations. Other authors [15] have also reviewed all the methods to estimate
energy consumption from computer architecture. They distinguish between different
levels of description, software/hardware level, instruction/application level, and they
consider how those methods can be applied to monitor training and inference phases in
machine learning.

In the continuity of [1,2], several tools have been proposed to make the impacts of
training models more visible. They can be schematically divided into



Sustainability 2022, 14, 5172 3 of 14

• Integrated tools, such as Experiment Impact Tracker (https://github.com/Breakend/
experiment-impact-tracker, accessed on 27 February 2022) [4], Carbon Tracker (https:
//github.com/lfwa/carbontracker, accessed on 27 February 2022) [3], and CodeCar-
bon (https://codecarbon.io/, accessed on 27 February 2022), which are all Python
packages reporting measured energy consumption and the associated carbon footprint.

• Online tools, such as Green Algorithms (http://www.green-algorithms.org/, ac-
cessed on 27 February 2022) [6] and ML CO2 impact (https://mlco2.github.io/impact/
#compute, accessed on 27 February 2022) [5], which require only a few parameters,
such as the training duration, the material, and the location but are less accurate.

AI literature mostly addresses a small part of direct impacts and neglects production
and end of life, thus not following recommendations such as [16]. In [12,17], the authors
point out the methodological gaps of the previous studies, focusing on the use phase. In
particular, manufacturing would account for about 75% of the total emissions of Apple
or of an iPhone 5, just to give examples of various scales. Their study is based on a life
cycle methodology, relying on sustainability reports with the GHG protocol standard.
Ref. [18] provides a list of the carbon emission sources of an AI service, which gives a more
comprehensive view of the direct impacts in terms of carbon footprint only. Ref. [19] also
advocates the need for taking indirect impacts (e.g., behavioral or societal changes due to
AI) into account when evaluating AI services.

Some works focus on optimizing the AI processes regarding runtime, energy consump-
tion, or carbon footprint. For example, in [20], the authors update the results from [1] and
reveal a considerable reduction of the GHG impact—by a factor of 100—if one considers
the location of the data center used for training (low-carbon energy) and the architecture
of the deep network (sparsity). Nevertheless, as they recognize, their study evaluates the
GHG emissions of operating computers and data centers only and limits the perimeter
by excluding the production and the end-of-life phases of the life cycle. Their work also
considers a highly optimized use case, which may not be representative of real case sce-
narios. The energy efficiency of machine learning has also been the subject of dedicated
workshops, such as the Workshop on Energy Efficient Machine Learning and Cognitive
Computing (https://www.emc2-ai.org/virtual-21, accessed on 27 February 2022).

2.2. AI for Green Benefits

When designing an AI for Green method, i.e., a method using AI to reduce energy
consumption or to benefit other environmental indicators, complete AI’s impacts should
also be considered to build meaningful costs/benefits assessments. Ref. [21] proposes a
framework for such cost–benefit analysis of AI foundation models to evaluate environ-
mental and societal trade-offs. We discuss this framework in Section 4. Most AI solutions
for the environment lack a rigorous evaluation of the cost/benefit balance, and one of our
contributions is to advance this issue.

2.3. Life Cycle Assessment

LCA is a widely recognized methodology for environmental impact assessment, with
ISO standards (ISO 14040 and 14044) and a specific methodology standard for ICT from
ETSI/ITU [16]. It quantifies multiple environmental criteria and covers the different life
cycle phases of a target system. Ref. [22] clearly states that “to avoid the often seen problem
shifting where solutions to a problem creates several new and often ignored problems,
these decisions must take a systems perspective. They must consider [...] the life cycle of
the solution, and they need to consider all the relevant impacts caused by the solution.” The
LCA theoretical approach exposed in [23] describes the system of interest as a collection of
building blocks called unit processes, for example “Use phase of the server” on which the
model is trained. The set of all unit processes is called the technosphere, as opposed to the
ecosphere. Each unit process can be expressed in terms of flows of two kinds:

• Economic flows are the directed links between the unit processes or said differently
exchanges inside the technosphere.

https://github.com/Breakend/experiment-impact-tracker
https://github.com/Breakend/experiment-impact-tracker
https://github.com/lfwa/carbontracker
https://github.com/lfwa/carbontracker
https://codecarbon.io/
http://www.green-algorithms.org/
https://mlco2.github.io/impact/#compute
https://mlco2.github.io/impact/#compute
https://www.emc2-ai.org/virtual-21
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• Environmental flows are the links from the biosphere to the technosphere or vice versa.

The detailed description of such a system is called the life cycle inventory (LCI) and it
can be formulated in terms of linear algebra. The goal of a life cycle assessment consists in
computing the sum of the environmental flows of the system associated with a functional
unit. To be concrete, if one considers a heating system in a smart building, the functional
unit could be “heating 1 m2 to 20 ◦C for one year”.

Of course, very often, the LCI does not correspond exactly to the functional unit.
The size of economic flows may not match (e.g., the functional unit may partially use
shared servers and sensors), and a process may be multifunctional, i.e., producing flows of
different types at the same time (e.g., storage capacity and computational power). Both
these problems can be solved using, for instance, allocation methods according to a key. A
typical allocation key for network infrastructures would be the volume of data. For a data
center, it could be the economic value of storage and computational services when they
cannot be physically isolated.

Even though LCA is widely used in many domains, it has rarely been applied to
AI services.

3. Life Cycle Assessment of an AI Solution

When it comes to quantifying the impacts of digital technologies and, in particular, AI
technologies, one faces several methodological choices that deserve a specific definition
of the studied system. For instance, assessing the global impacts of the AI domain—if
we could circumscribe it precisely—is not the same as assessing the impacts of an AI
algorithm or service. The emerging field of AI’s impacts quantification still suffers from
a lack of common methodology, and, in particular, it very often focuses only on the Use
phase of devices involved in an AI service. To perform meaningful quantification, we
strongly suggest following the general framework of life cycle assessment (LCA, detailed
in Section 3.2). We will show how it can be adapted to an AI service, i.e., in this case, a deep
learning code used either alone or in a larger application.

With AI being part of the Information and Communication Technology (ICT) sector,
and following the taxonomies from [24,25], its impacts can be divided into first-, second-,
and third-order impacts. In this section, we focus only on first-order impacts, while we will
discuss second and third orders in Sections 4 and 5.

We will use the term AI service for all the equipment (sensors, servers, etc.) used by
the AI and the term AI solution for the complete application using AI. In the case of the
smart building, the AI solution is the smart building itself, while the AI service is the digital
equipment needed for the smart infrastructure.

3.1. First-Order Impacts of an AI Service

First-order—or direct—impacts of the AI service are the impacts due to the different
life cycle phases of the equipment:

• Raw material extraction, which encompasses all the industrial processes involved in the
transformation from ore to metals;

• Manufacturing, which includes the processes that create the equipment from the
raw material;

• Transport, which includes all transport processes involved, including product distribution;
• Use, which includes mostly the energy consumption of equipment while it is be-

ing used;
• and End of life, which refers to the processes to dismantle, recycle, and/or dispose of

the equipment.

For simplicity reasons, we will merge the first three items into a single production phase
in the rest of the paper.

For example, an AI solution in a smart building may need sensors and servers that
require resources and energy for their production, operation, and end of life.
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Figure 1. LCA dimensions: the first dimension corresponds to the phases of life cycle and the second
one to the environmental impacts (see Section 3 for more details on this last dimension).

A second dimension is necessary to assess the impacts, with a set of environmental
criteria considered. Indeed, each life cycle phase has impacts on different environmental
indicators: Greenhouse Gases emissions (usually expressed as Global Warming Potential,
GWP), water footprint, human toxicity, or abiotic resource depletion (ADP) for instance.
In general, evaluating the environmental impact of a service requires multiple impact
criteria [16]. ISO states that “the selection of impact categories shall reflect a comprehensive
set of environmental issues related to the product system being studied, taking the goal
and scope into consideration”. Additionally, “the selection of impact categories, indicators
and models shall be consistent with the goal and scope of the LCA study”. Hence, the costs
must take into account at least the criteria that are supposed to be tackled by the AI solution
in the case of AI for Green—if the AI solution is applied to reduce energy consumption,
for example, the main expected gain will probably be in terms of carbon footprint, so at
least the carbon footprint of using the model should be considered. For an application
monitoring biodiversity, the most relevant criterion may be natural biotic resources (and
not carbon footprint), which includes wild animals, plants, etc.

Figure 1 sums ups these two dimensions. As it has been previously stated, in the
literature, only part of the global warming potential due to the use phase has generally
been considered when evaluating AI, which corresponds to the shaded area in the figure.

3.2. Life Cycle Assessment Methodology for AI

In this section, we focus on life cycle assessment of the AI solution and the associated
ICT equipment. We aim at proposing a methodology for applying the general framework
of LCA to AI services. For LCA of all other processes, we refer to LCA standards and [22],
for example. In order to concretely apply the methodology presented for an AI service, we
use the ITU recommendation [16] for environmental evaluation of ICT.

Figure 2 shows two sides of the life cycle of an AI service. The top part of this figure
shows the different tasks involved in an AI service from a software point of view (data
acquisition, inference, etc.). For each task, one or several devices is used. The bottom part
of the figure shows the life cycle phases of each of these devices from a hardware point of
view. The environmental impacts of the AI service will stem from the life cycle phases of
the devices. Note that all devices involved in the AI tasks should be taken into account.

A remark on terminology: in the paper, the term “Use phase” refers to the use phase
of the life cycle of equipment, corresponding to the devices provided for the AI service (box
“Use of device” of the lower part in Figure 2). We call “Application phase” the inference
phase of the AI service (green box of the upper part in Figure 2).
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AI service

AI enhanced application
(electric vehicle,
smart building...)

Data acquisition Data production Learning Inference

Data storage

device1
(sensors...)

device2
(computer...)

device3
(supercomputer...)

device4
(mobile...)

device5
(hard drive...)

(a) Different tasks involved in an AI service

Production
of devicei

Use
of devicei

End of life
of devicei

Production
of electricity

Resources
(metals, etc.)

Emissions (pollution, abiotic resources depletion...)

(b) Life cycle phases of each devicei used by the service

Figure 2. Diagram representing the Life Cycle Inventory of an AI service: Above: an AI for green
application corresponds to the inference step that depends on other unit processes that require
various devices. Below: the use of devices is located in a more global environment, including
production of resources and impacts. In both schemes colored boxes correspond to unit processes,
black arrows correspond to economic flows (bold: material, dashed: energy) and red arrows to
environmental flows.

Concerning the system boundaries, we refer to [26] to consider the equipment for
three tiers:

• terminals. In the case of the smart building, this can include: user terminals used to
develop, train and use the AI service; terminals in the facility where the AI service is
trained dedicated to IT support; smart thermostats.

• network. For the smart building case, network equipment used for training the AI
model in the facility, and network equipment in the buildings where the thermostats
are used.

• data center/server. For the smart building case, servers on which the model is trained
and used; training and inference can be done on the same server or not.

Figure 2. Diagram representing the Life Cycle Inventory of an AI service. Above: an AI for Green
application corresponds to the inference step that depends on other unit processes that require
various devices. Below: the use of devices is located in a more global environment, including
production of resources and impacts. In both schemes, colored boxes correspond to unit processes,
black arrows correspond to economic flows (bold: material, dashed: energy), and red arrows to
environmental flows.

Concerning the system boundaries, we refer to [26] to consider the equipment for
three tiers:

• terminals. In the case of the smart building, this can include: user terminals used to
develop, train, and use the AI service; terminals in the facility where the AI service is
trained and dedicated to IT support; and smart thermostats.

• network. For the smart building case, this includes network equipment used for
training the AI model in the facility and network equipment in the buildings where
the thermostats are used.
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• data center/server. For the smart building case, this includes servers on which the model
is trained and used; training and inference can be done on the same server or not.

For each tier, all support equipment and activities may also be considered. For example,
the power supply unit and HVAC of the data center should be taken into account.

The life cycle stages to consider are the ones previously mentioned: production, use,
and end of life. In particular, Refs. [16,26] give classifications of unit processes according to
the life cycle stages, which can be applied to AI services, as shown in Table 1.

Table 1. Application to AI services of ITU recommendation [16] regarding the evaluation of life cycle
stages/unit processes.

Life Cycle Id Life Cycle Stage and Unit Processes Recommendation

A—Raw material acquisition Mandatory

B—Production
Device production and assembly Mandatory
Manufacturer support activities Recommended
Production of support equipment Mandatory
ICT-specific site construction Recommended

C—Use
Use of ICT equipment Mandatory
Use of support equipment Mandatory
Operator support activities Recommended
Service provider support activities Recommended

D—End of life
Preparation of ICT goods for reuse Mandatory
Storage/disassembly/dismantling/crushing Mandatory

If applied to our smart building use case, the unit processes that must be taken into
account would be:

• For equipment that is dedicated to the application, such as the smart thermostats:
Production, Use, and End of life.

• For the servers on which the AI service is trained and used and their environment
(network devices, storage servers, backup servers, user terminal, HVAC, and other
potential equipment not dedicated to the application):

– Production and End of life with an allocation of the impacts, with respect to the
execution time, for instance.

– Part of the use phase corresponding to the dynamic energy consumption, i.e.,
raise of consumption due to the execution of the program.

– Part of the use phase corresponding to the static consumption, with an allocation
(for example, if n programs are run simultaneously, 1/n of this consumption)
“since equipment is switched on in part to address the computing needs of the
(Machine Learning) model” [18].

The production phase is generally important for ICT equipment in terms of global
warming potential at least. Yet, when trying to assess this phase for deep learning methods,
we are faced with a lack of LCAs for Graphical Processing Unit (GPUs) (or Tensor Processing
Unit (TPUs) or equivalents). Ref. [27] yet showed that for a CPU-only data center in France,
around 40% of the GHG emissions of the equipment were due to the production phase.

The use phase is mostly due to the energy use, so the impacts of this part are highly
dependent on the server/facility efficiency and the carbon intensity of the energy sources.

The end-of-life phase is difficult to assess in ICT in general because of a lack of data
concerning this phase of equipment. In particular, the end of life of many ICT equipment
is poorly documented; globally, about 80% of electronic and electrical equipment is not
formally collected [28].
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4. Assessing the Usefulness of an AI for Green Service

Now that we have presented how the general framework of life cycle assessment can
be adapted to AI solutions, we propose to use it for evaluating the complete benefits of an
AI for Green service.

In this section, we will consider the following setting:

• A reference application M1 that corresponds to the application without AI. If the appli-
cation is a smart building, for example, M1 will be the building without smart capabilities.

• An AI-enhanced application M2 that corresponds to the application with an AI service
that is supposed to have a positive impact on the environment. In the previous case, it
would be the smart building.

4.1. Theoretical Aspects

When proposing an AI for Green method, one should ensure that the overall environ-
mental impact is positive; the positive gain induced by using the AI solution should be
higher than the negative impacts associated to the solution.

This requires to assess first-, second-, and third-order impacts of AI [24,25], as illus-
trated in Figure 3. As we detailed in the previous section, first-order impacts come from
the life cycle phases of all the equipment necessary to develop and deploy the AI service.

Figure 3. Overview of AI’s impacts. First-order or direct impacts result from the equipment life
cycle. Second-order impacts are the difference between the LCAs of the reference system and
the AI-enhanced system. Third-order impacts are changes in technology or society induced by
the application.

Second-order impacts correspond to the impacts due to the application of AI. AI can
optimize or substitute existing systems; energy consumption in a building can be optimized
using occupancy or behavior detection, energy profiling, etc.

Third-order impacts are all changes in technology or society due to the introduction of
AI solutions, possibly encompassing effects of very different scales, from individual behav-
ioral responses to systemic and societal transformations, and from short-term to long-term
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effects. Rebound effects fall into this category—an increase in efficiency does not necessarily
translate into a reduction of impacts of the same magnitude, and it can even lead to an
increase in these impacts [29]. Rebound effects occur because potential savings (in terms of
money, time, resources, etc.) are transformed into more consumption [30]. For example,
due to economic savings, smart building users may decide to increase heating temperature
for better comfort or to buy more flight tickets after an increase in energy efficiency.

Third-order impacts are beyond the scope of the methodology proposed here and are
briefly discussed in Section 5.

According to [16], first- and second-order impacts of the AI service should be estimated
based on life cycle assessment (LCA), the difference between the two being the scope—for
first-order impacts, the scope is restricted to the equipment involved in the target AI service
(for example, the AI involved in a smart building), while second-order impacts consider
the whole solution (the smart building itself). Including second-order impacts requires
extending the scope to the whole application AI is supposed to enhance. More specifically,
the net environmental impacts considering both first- and second-order effects are obtained
by computing:

∆(M2|M1) = LCA(M2)− LCA(M1) ∈ Rd (1)

with:

• M1 the reference application without using the AI service,
• M2 the application enhanced by AI,
• LCA(x) a quantification of d types of environmental impacts (e.g., GHG emissions,

water footprint, etc.). The LCA methodology is described in Section 3.2. Note that
LCA(M2) includes the impacts of the AI service itself, i.e., LCAAI(M2).

A previous work [21] also gave a simplified scheme for assessing the cost–benefit of
deploying a foundation model, which also includes social benefits and costs but does not
explicitly state the direct environmental costs of using this model. We propose to relate our
methodology (Equation (1)) to their proposal. Adopting their equation but focusing on the
environmental impacts only, the overall value of a model can be assessed with:

V(M) = S(M)− E(M)−O(M) (2)

with:

• V(M) the value of using the model, i.e., the environmental gain induced by its use in
the practical application considered

• S(M) the environmental benefit that can be interpreted as the difference between the
initial impact of the application and its final impact (not taking into account the AI
solution, i.e., the Learning and Inference task in the top part of Figure 2)

• E(M) the energy cost of the model
• O(M) all other impacts, including chip production, waste, risks for biodiversity, and

third-order impacts (which are not discussed here).

Regarding the well-established framework of LCA, this approach suffers from several
weaknesses. First, in the equation, all the values are expressed in dollars. This formally
allows performing addition of several kinds of impacts but with an arbitrary consideration
to the diversity of environmental issues. By definition, LCA considers multiple criteria for
the impacts, previously described at the beginning of Section 3 (GHG emissions, water foot-
print, etc.). LCA may aggregate several impacts but with specific weights not necessarily
dependent on an economic value. As noted in [22], “there is no scientific basis on which to
reduce the results of an LCA to a single result or score because of the underlying ethical
value-choices”.

Besides, if one considers, for instance, the case of an AI service dedicated to biodiversity
(see, for instance, 8.1 in [9]), one would expect to precisely quantify the positive impact of
this service on biodiversity (schematically, how many species can be saved?), balanced by
the negative ones (producing chips for GPUs has an impact on the biodiversity through
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several sources of pollution [31]). Adopting Equation (2) will mix several impacts together
and may dilute the value of interest (e.g., biodiversity) that could be burdened by negative
impacts regarding energy to train the models, for instance.

Last, even if the equation is not wrong per se, the expression in terms of benefit/costs
is questionable, and practical means for its computation are missing in [21].

We thus believe that Equation (1) should be used. Terms of Equation (2) can be related
to the methodology proposed in our paper as follows:

V(M2)︸ ︷︷ ︸
−∆(M2|M1)

≈ S(M2|M1)−E(M2)−O(M2)︸ ︷︷ ︸
LCAAI(M2)

(3)

where ∆(M2|M1) and LCAAI(M2) are defined in Equation (1). The negative impacts of an
AI solution M2 compared to the reference solution M1 are not always restricted to its AI
part (i.e., to E(M2) and O(M2)). For example, compared to a standard vehicle, the negative
impacts of an autonomous vehicle are not only due to the life cycle of (additional) ICT
equipment, but also to additional aerodynamic drag due to the presence of LIDAR on the
roof [32]. Hence, the nature of the impacts in S(M2|M1) (positive or negative) cannot be
stated a priori and depends on complete LCA results for both applications M2 and M1. It
may also depend on the target environmental criteria.

4.2. Case Studies

In order to review the kind of evaluation that is usually made in the AI for Green
literature, we analyzed the references for several domains of [9], which identifies potential
applications of machine learning for climate change adaptation of mitigation (this review
was documented in a csv file, which is given as supplementary material to the paper).

We mostly chose domains that had been flagged as having a High Leverage and noted
for each paper cited in the corresponding section the kind of environmental evaluation,
with the following categories:

a. No mention of the environmental gain.
b. General mention of the environmental gain.
c. A few words about the environmental gain but no quantitative evaluation or only

indirect estimation.
d. Evaluation of the energy gain without taking the AI service into account.
e. Evaluation of the energy gain taking the use phase of the AI service into account.
f. Comprehensive evaluation of the environmental gain (comparison of LCAs).

The results of the review are shown in Figure 4.
The central node is “Rolnick et al. citations”. On its left are the domains of the citations.

For example, the Smart building section contained 15 relevant citations.
On its right, the first flows show the partition into general machine learning appli-

cations (ML), deep learning applications (DL), and other methods (other). For example,
20 papers corresponded to deep learning applications.

The last flows on the right show the kinds of environmental evaluation. We can note
that about half of the papers do not include any environmental evaluation, although the
focus is on applications to tackle climate change. Many papers also give a distant proxy for
evaluation, such as detailing the possible impacts without quantification or indicating the
execution time of the program.

A few citations evaluate the environmental gain, mostly in terms of energy gain, but
none of the papers considered took into account the AI service impacts.

It can be noted that other papers that include an evaluation of part of these impacts,
can be found in the literature. Ref. [33], for example, present an intelligent control system
that takes into account the expected occupancy in order to adapt the thermostat and save
energy. They do not take into account learning the occupancy model, but take into account
the LCA of the smart thermostats and show that the energy needed for these devices across
their whole life cycle will almost always be lower than the energy saved.
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Figure 4. Sankey diagram of parts of Rolnick’s paper references in terms of environmental evaluation
(created with the Sankey Diagram Generator by Dénes Csala, based on the Sankey plugin for D3 by
Mike Bostock; https://sankey.csaladen.es; accessed 27 February 2022).

5. Discussion

In this paper, we have analyzed the environmental impacts of AI solutions, in par-
ticular, in the case of AI for Green applications and proposed a framework to evaluate
them more completely. The proposed methodology compares, through life cycle assess-
ment, the impact of a reference solution with the AI one (1) for the appropriate types of
environmental impacts. The analysis of literature on AI solutions has made the following
issues/problems salient.

5.1. Current Environmental Evaluation of AI Services is Under-Estimated

We have shown that AI for Green papers only take into account a small part of the
direct environmental impacts.

Several reasons can explain this under-estimation. The narratives about dematerial-
ization that would correspond to a dramatic decrease in environmental impacts permeate
AI as a part of ICT [34]. However, these narratives have proven to be false until now.
Attention to AI’s GHG emissions has focused on electricity consumption (energy flows).
At the moment, material flows receive less attention in AI. However, it is beginning to be
considered [12,17].

5.2. AI Research should Use Life Cycle Assessment to Assess the usefulness of an AI Service

Life cycle assessment is a solid methodology to evaluate not only global warming
potential, but also other direct environmental impacts. LCA considers all the steps from
production to use and end of life. However, it has several well-known limitations due to the
complexity of processes involved in material production. Obtaining all the information to
assign reliable values to each edge of the life cycle inventory also proves difficult, e.g., there
is very little information on manufacturing impacts of GPU either from manufacturers or
in LCA databases. To solve this problem, we could encourage the AI community to lobby
companies to open a part of their data. This approach would be in the same spirit as what
is happening for open science but would also require taking legal issues into account.

5.3. AI for Green Gains Are Only Potential

Even when a properly conducted LCA concludes that an AI solution is environmen-
tally beneficial, such a result should be considered with caution. Environmental benefits
computed by the LCA-based methodology proposed in this paper correspond to a technical
and simplistic view of environmental problems: it assumes that AI will enhance or replace

https://sankey.csaladen.es
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existing applications, all other things being equal. The ambition to solve societal problems
using AI is praiseworthy, but it should probably be accompanied by socio-technical con-
cerns and an evaluation of possible third-order effects. For example, autonomous vehicles
are often associated with potential efficiency gains (such as helping car sharing or allowing
platooning) and corresponding environmental benefits [32]. However, autonomy could
also profoundly transform mobility in a non-ecological way [35].

5.4. AI Services and Large Deployment

Evaluating third-order effects is even more critical when large-scale deployment of the
proposed solution(s) is projected, e.g., to maximize absolute gains. This case requires special
attention even in LCA since large-scale deployment may induce societal reorganizations
for producing and operating the solution(s). For example, the generalization of AI may
lead to a substantial increase in demand for specific materials (such as lithium or cobalt) or
energy. This increase may have non-linear environmental consequences, e.g., opening new
and less performing mines, increasing the use of fossil fuel-based power plants, etc. Hence,
in this case, the attributional LCA framework we suggest using in this paper needs to be
replaced by the much more complex consequential one [22].
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