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Infrared (IR) diagnostics are used to measure plasma-facing components (PFC) surface temperature in 

fusion devices. However, the interpretation of such images is complex in all-reflective environments 
because of unknown emissivity and multiple reflections issues. In order to assess these challenges an 
iterative inversion method based on a fast photonic model, the radiosity method, has been developed. This 
method is applied to two different direct models based on different geometries, Sec-Tore and RADIOS, in 
order to estimate temperatures from experimental-like data simulated with a Monte Carlo ray-tracing code 
with diffuse reflective surfaces or specularly reflective surfaces. RADIOS allows retrieving temperature on 
colder targets (lower than 200°C) with errors of 33% and the peak temperatures with errors of 6%. 
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1. Introduction 
In fusion devices, infrared (IR) cameras are key 
diagnostics to monitor Plasma-Facing Components (PFC) 
submitted to high heat flux (10MW/m² in steady-state, up 
to 20MW/m²). Measuring accurately PFC surface 
temperature is also mandatory to ensure machine 
protection and optimize plasma operation. For example, 
the WEST device is equipped with 12 IR cameras looking 
at the First Wall (FW), the heating antennas and the 
divertor, the most critical component receiving heat flux 
up to 20 MW/m² [1]. 
Nevertheless, the use of all-metallic materials (mainly 
stainless steel, tungsten and beryllium) with low and 
variable emissivity (ε ~ 0.1-0.3 in the IR bandwidth 
considered [3µm, 5µm]) makes the surface temperature 
measurement difficult [1]. Indeed, the radiance collected 
by the IR camera includes both the thermal radiation 
emitted by the target and a parasitic radiation coming from 
the surroundings of the target. Furthermore, target 
emissivity changes with the surface temperature. This 
causes major errors on the surface temperature 
measurement that we need to address in order to achieve 
high power and safe plasma operation. 
IR synthetic diagnostic has been used to quantify 
accurately, for each camera, the impact on the surface 
temperature measurement of inaccurate emissivity, the 
reflections and camera resolution [2]-[4]. The use of this 
synthetic diagnostic has proven that this can lead to major 
errors on surface temperature measurement up to 100% 
for colder targets (temperature lower than 150°C) and 
50% for hot targets (maximum temperature around 
1300°C). 
This paper presents the results of an inverse method 
aiming to retrieve the true surface temperature of the PFC 
by solving low emissivity and additional parasitic flux 

coming from the reflections. This method relies on the 
comparison and the least squares minimization between 
the experimental IR image and a synthetic IR image 
(obtained through a direct model or forward model). Two 
reduced photonic models have been developed, tested and 
compared on WEST tokamak-like numerical prototype.  
 
2. Generating IR images 
In a first step, the inverse method proposed in this paper 
has been developed and tested from IR simulated images 
generated with a synthetic diagnostic. This synthetic 
diagnostic is based on a Monte Carlo ray-tracing (MCRT) 
code of ANSYS-SPEOS company [5] able to propagate 
rays in 3D geometry taking into account complex thermo-
radiative properties of materials and inhomogeneous 3D 
temperature fields as inputs. Geometrical camera 
parameters (focal length, detector size) are used to 
reproduce the 2D IR image and the collected radiance by 
each pixel. 
The MCRT code is currently the most sophisticated and 
reliable code to deal with complex geometrical and 
physics models and so generate realistic infrared images. 
Nevertheless, it is not so far adapted to deal with the 
forward relation between data and model parameters for 
the nonlinear inverse problem we want to address here; 
especially due to the required computing time (10 hour 
with 4 cores to generate a synthetic image with 2-3% 
precision). This leads to develop reduced direct models 
able to compute quickly the IR images under some 
assumptions and approximations described in section 3. 
In this paper the MCRT is used for generating 
experimental-like synthetic data as replacement of the 
experimental data in order to test the developed inverse 
method and its range of validity. 
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Figure 1 describes the thermal scene used as benchmark 
to test the proposed method aiming to retrieve the surface 
temperature by filtering reflections. In this first step, a 
simplified geometry of the vessel is considered without 
including specific components such as the heating 
antennas, the bumpers and so on. In the same way, a 
uniform temperature (fixed at 90°C) is considered for the 
first wall, the upper divertor and the baffle. The emissivity 
value is also assumed uniform and fixed for each 
component. Even though these considerations do not 
accurately reflect the reality, this first step is mandatory to 
demonstrate the method validity and performance. A 
temperature profile is applied on the lower divertor that 
roughly reproduces the heat loads in a tokamak with two 
strike points and a toroidal modulation of a 20° period to 
reproduce the ripple effect.  The considered materials are 
Tungsten for the lower divertor, the baffle and the upper 
divertor with an emissivity of 0.1 and Stainless Steel for 
the first wall with an emissivity of 0.3 fitting roughly with 
the literature [6]. The camera model reproduces the view 
of WEST standard divertor view [1] with a spectral IR 
range of ∆λ=4.3 µm – 4.4 µm. The precision of simulated 
IR map will depend on the number of rays launched in the 
MCRT code. The simulated experimental images are 
characterized by a statistic noise around 2% of the 
collected radiance for colder targets. 

 

  
Figure 1 – Geometry used as input of the MCRT simulation 

(left) and the resulting simulated IR image (right) 
 
3. Inverse method 
3.1 Approach description 

 
Figure 2 – Illustration of the iterative inversion method 

developed to retrieve temperature or emissivity 
 

The inverse method relies on iterative loop as described 
in Figure 2 which consists in retrieving the model’s 
parameters (here temperature) by minimizing the 
difference between experimental and simulated data. The 
simulated data comes from a direct photonic model. In 
this paper, two direct models are tested and compared: a 
simplified model so-called Sec-tore (section 3.2.2) and a 
reduced model so-called RADIOS (section 3.3.3). In [7], 
the inversion method is tested in an inverse crime situation 
meaning that the synthetic data used to replace the 
experimental data come from the same forward model 
used for inversion, with an additive Gaussian white noise. 
In this paper, the experimental-like data are simulated 
with an independent and more sophisticated code 
described in section 2. We are interested in retrieving the 
surface temperature by solving the reflections but 
assuming that emissivity is known. Solving the emissivity 
is also mandatory in a fully reflective environment and is 
possible with such a method and a first feasibility study is 
proven in [4]. This assumes known and quite uniform 
temperatures on the components which can be achieved 
during specific operations (such as baking and machine 
conditioning). 
 
3.2 Forward Model 

A forward model includes the modeling of tokamak 
geometry, the thermal scene (3d temperature field), the 
optical and thermal-radiative properties of materials and 
the camera. The 3D geometry and the camera model are 
fixed whereas the 3D distribution of temperature and the 
optical properties of materials can change. The two 
developed forward models are based on the same radiosity 
method (section 3.2.1) to compute the collected flux by 
camera pixel. 
 
3.2.1 Radiosity Method 

The radiosity method is a common method for computing 
the inter-reflections of light assuming all diffuse 
reflecting surfaces or Lambertian reflection, meaning that 
the part of reflected flux is the same in all the directions 
of observation [8]-[10]. Considering a scene composed of 
N individual surfaces (patches), the method consists in 
computing the radiosity J vector [N] that contains the total 
radiation leaving each patch of the scene in all directions 
per unit area. This energy includes both the emitted 
energy and the reflected one coming from all the other 
patches in the enclosure as described in equation (1).  

1( ( ) ) ( )π−= − 0J I R ε F ε L T  (1) 
With, I is the identity matrix [N×N], R(ε) the diagonal 
reflectivity matrix [N×N] where each reflectivity is given 
by ρj=1-εj (j=1 to N), F = (FAj→Ak) the view factors matrix 
[N×N] and πεL0(T) the emissive power vector [N]  which 
is then called the “source term”. L0(T) is the black-body 
radiance at temperature T given by Planck function 
integrated in the spectral range of the IR camera. The view 
factor in the above equation is defined as the fraction 
(between 0 and 1) of flux leaving the surface Aj and 
reaching the surface Ak: 
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With υjk is the obstruction factor between patches j and k¸ 
θj the angle between the normal of the surface j and the 
closest distance between the surfaces j and k and θk the 
angle same angle for surface k, Aj is the area of the surface 
j[8]. For a given geometry, the view factors matrix is 
computed only once (12 hours with parallel computing). 
When all the radiosities Jj of the N patches are computed, 
the 3D to 2D projection is achieved with an OpenGL 
routine to provide the observable quantity, that is the 2D 
IR image (made of 640 x 256 pixels) for the given view 
of the simulated IR camera. 
 
3.2.2 Sec-Tore 

Sec-Tore is a simplified model based on a 20° toroidal 
sector of a numerical prototype of the WEST tokamak 
closed by two black-body surfaces at the environment 
temperature. This geometry has been designed in order to 
prevent any obstruction between two patches of the 3D 
scene to compute simple view factors (through an integral 
contour [11]). Sec-Tore is made of N=11.787 patches that 
lead to a computation of over 69 million view factors. 
Figure 3 shows the geometry of Sec-Tore and the 
corresponding modeled image (67.122 pixels) used in the 
inversion method. 
 

 
Figure 3 – Illustration of the 3D model of Sec-Tore with a 
thermal field applied to the mesh (right) and the resulting 

modeled image after the OpenGL projection (right) 
 
The emissivities of the environment and the lower 
divertor are assumed known (see Figure 1) as well as the 
temperature of the environment and the black body 
surfaces. The 8.796 patches of the lower divertor are 
regrouped in 1.560 bigger patches. The parameters to be 
estimated are the 1.560 temperatures of the lower divertor. 
 
3.2.3 RADIOS 

RADIOS is a reduced model based on a hierarchical 
adaptive method [12] allowing to compute only the most 
important view factors of the scene at the last level of 
resolution. This criterion of importance is related to the 
Region of Interest (RoI) of the 3D scene on which are 
located the parameters to be estimated. The idea is that 
some initially coarse patches in the whole tokamak are 
refined (and the corresponding shape factor are 
computed) only if their contribution to the radiosity of the 

ROI patches is important (at a given precision level). Such 
a  method allows considering the whole torus (contrary to 
the Sec-Tore considering only 20° of the tokamak) as well 
as the obstructions between patches enabling to add more 
components to the model such as the baffle. Typically, the 
geometry used in the MCRT code is made of meshes 
constituted of 2 million elementary surfaces. Without the 
classical method used in Sec-Tore, 2.1012 view factors 
should be computed, whereas 7.8 million view factors are 
computed with the hierarchical adaptive method. 
Figure 4 shows the mapping of a temperature field on the 
last level of resolution of the meshes with the ROI 
identified. The RoI is composed of 1.391 patches, which 
corresponds to the number of parameters to be estimated 
in  the 3D scene. 

 
Figure 4 – Illustration of the last level of resolution for a 

numerical prototype of WEST with the corresponding mapping 
of temperature 

 
The reduced method RADIOS uses also Gebhart factors 
as an additional criterion of refinement of the meshes as 
presented in [13]. As Figure 5 shows, Gebhart factors are 
a “generalized” version of the view factors taking into 
account the radiative properties of the patches [14]-[15]. 
The Gebhart factors between Sj and Sk, also called 
absorption factors, represent the fraction of the energy 
initially emitted by Sj that is absorbed finally by Sk, taking 
into account all the possible reflecting paths in the scene.  

 
Figure 5 – Usual view factors compared to Gebhart factors 
taking into account all radiative paths (direct and indirect) 

 
To complete the direct model package the same projection 
based on OpenGL used for Sec-Tore is applied to 
RADIOS to produce the final synthetic IR image of the 
scene. 
 
3.3 Parameters Estimation Problem 

The parameters estimation is based on Ordinary Least 
Squares (OLS) method [17]. The minimization will occur 
on a RoI of IR images of m pixels. This RoI can be a 
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profile, an area of image, a list of some particular pixels, 
etc.   
The OLS minimization uses a Gauss-Newton algorithm to 
update the parameters at each iteration. That is based on 
the inversion of the STS information matrix [p×p] with p 
the numbers of parameters to be estimated: 

( ) ( ) ( ) ( )( )( )11ˆ ˆ ˆ
−+ = + −

kk k T T
OLS OLS mes OLSmox x S S S y y x  (3) 

where ˆOLSx  is the vector of the p parameters to be 
estimated (temperature here), ymes the vecor of m data, ymo 
the vector of the m outputs of the direct model and k the 
iteration number. 
The specificity of this method is that it estimates 3D 
parameters (temperatures of the patches of the divertor) 
from a 2D observable which are the pixels of the IR 
camera. The number of parameters p is not necessarily 
equal to the number of measurements m as it depends on 
the resolution of the camera. Additionally, certain patches 
that share the same properties (in reality or by assumption) 
can be regrouped in macro patches covered by several 
pixels, hence different pixels bear the same information 
regarding one parameter of the model. 
Each column j of the sensitivity (or Jacobian) matrix S 
[m×p] contains the sensitivity coefficient of the model to 
the parameter xj (j=1 to p) computed along pixels of 
interest si (i=1 to m) given by equation (4) [16]-[17]: 

( , )
( ) , 1 , 1

k

mo i
j i

j x for k j

y s
S s j to p i to m

x
≠

∂
= = =

∂
x  (4) 

Nevertheless, as proven in [7], the temperature estimation 
becomes a linear problem by considering the radiance 
parameters L0(T) (related to the temperature T via the 
Planck function) in equation (3). Then, the radiance 
parameters can be directly computed with equation (5):  

( ) ( )10ˆ −
= −T T

OLS
0

r r r mes c cL S S S y S L  (5) 

with, L0 the black body radiance of target from which the 
temperature will be deduced, Sr the sensitivity matrix for 
the estimated parameters, (SrTSr)-1SrT the inversion 
operator, ScL0c the reduced sensitivities of the forward 
model with respect to the known parameters (that is 
L0(Tenv) where Tenv is the temperature of all components in 
the tokamak except the lower divertor). The vector yshift= 
ymes- ScL0c is called the shifted data. As a result, the 
solution is quickly computed without any iterations since 
the problem is linear (four seconds with 16 G0 RAM and 
3.5 GHz CPU). 
The solution takes also into account the standard deviation 
σi of noise measurement. The noise measurement is 
considered additive with zero mean and a Gaussian 
distribution. The standard deviation of the noise is 
assessed as a constant fraction (typically 2% as indicated 
in section 2 such as the values obtained from the MCRT 
simulations) of the radiance collected by each pixel. The 
noise covariance matrixΨ  is given by (6)(7): 

2 2 2
1 2 =   mdiag σ σ σΨ  (6) 

The solution of the Maximum Likelihood (ML) 
estimation [16] is given by equation (7): 

0 1 1 1ˆ ( ) ( )− − −= −T T
ML

0
r r r mes c cL S Ψ S S Ψ y S L  (7) 

The covariance matrix of ML estimator is given by: 
0 1 1ˆcov( ) ( )− −= = T
ML r rC L S Ψ S  (8) 

The 95% confidence intervals associated to the ith 
estimated parameters (j=1 to p) are computed from the 
diagonal components of this covariance matrix:

0 1/2
,

ˆ 1.96 ( )± ⋅ML j jjL C . 
Table 1 summarizes the main figures for the temperature 
estimation for Sec-Tore and RADIOS models. The 
temperature estimation is carried out on a sector of 20° 
(67.122 pixels for Sec-tore, 49.527 pixels for RADIOS). 
The estimation with Sec-Tore aims to retrieve the 
temperature of 1.560 “macro-patches” located on the 
lower divertor whereas the estimation with RADIOS aims 
to estimate 1.391 parameters of the patches of 3D ROI of 
the hierarchical method. RADIOS allows identifying less 
parameters because some parameters on the outer side of 
the lower divertor are not monitored by the camera due to 
the baffle obstruction. The temperature of these patches is 
assumed equal to the last patches monitored next to the 
baffle’s edge. 
 
Table 1. Main figures for the temperature estimation for Sec-
Tore and RADIOS models 

Model Torus 
part 

View 
factors 

m 
Pixels 
used 

p 
Parameters 
estimated 

Sec-Tore 20° 69M 67.122 1.560 
RADIOS 360° 7.8M 49.527 1.391 

 
4. Results 
4.1. Diffuse Case 
The first temperature estimation is performed considering 
a diffuse surface.  The synthetic data are generated from 
the MCRT code, considering purely diffuse reflective 
materials (or Lambertian reflectance for which the 
apparent temperature is the same for any observer’s angle 
of view). Two simulated images are generated: one 
without the baffle for the estimation conducted with Sec-
Tore and one with a baffle for the estimation with 
RADIOS. The emissivities of the components are fixed to 
their value of the literature (0.1 for the lower divertor, the 
upper divertor and the baffle, 0.3 for the first wall as stated 
in section 2 and further to [6]). The temperature of the 
environment (all surfaces but lower divertor) is assumed 
known and fixed to its value of 90°C.  
 
Figure 6(a) shows the radiance profiles along the divertor 
simulated with MCRT considering or not baffle emission: 
the difference is not significant which allows comparing 
the results of Sec Tore and RADIOS without bias. This 
figure also shows the good convergence of the modeled 
radiance with the Sec-Tore model towards the simulated 
ones with the MCRT code. Figure 6(b) shows the 
estimated temperature profiles with both Sec-Tore and 
RADIOS compared to the true surface temperature used 
as input of the MCRT simulation.
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Figure 6 – (a): Synthetic noisy measurements (radiance profiles) built with the MCRT code in the case of diffuse reflective surfaces 
without baffle (red) and with baffle (green). Comparison with the optimal radiance profile obtained with the temperature estimated 

by the inverse method Sec Tore (blue). (b): 3D temperature profile estimated with Sec-Tore (blue) with the associated levels of 
confidence and with RADIOS (green) in the case of synthetic measurements with diffuse reflective surfaces. Profiles correspond to 

the green lines drawn on the 3D view of Figure 7, the origin being on the inner side. 
 
Sec-Tore enables to estimate the peak temperatures with 
an error lower than 1% for the maximum temperatures 
(around 800°C). However, the temperature of the colder 
part is estimated with an error higher than 166%. This is 
due to the black-body vertical closing surfaces at Tenv (see 
Figure 3) that appear to be a wrong boundary condition to 
model radiation exchange between the lower divertor and 
the complete tore (Sec-Tore is limited to a toroidal section 
of 20°). As expected, RADIOS (modeling the complete 
360° tore with hierarchical radiative method) enables to 
estimate the lower targets temperature with a much lower 
mean error of 32%. Nevertheless, RADIOS estimation of 
the peak temperatures is not as good as the Sec-Tore 
estimation: it is mainly due to the high sensitivity of 
RADIOS to the noise measurements (synthetized by the 
MCRT code here). To a slightly lesser extent, these errors 
can be due to approximations in the forward modeling 
(approximations of camera viewing and geometry) 
compared to the real world (here synthetic diagnostic). 
One should pay peculiar attention when real experimental 
data will be processed. 
 
Figure 7 shows the mapping of the estimated temperatures 
for RADIOS and Sec-Tore on the 3D surface compared to 
the true temperature used as input of the MCRT code. 

 
Figure 7 –3D mapping of the estimated temperatures with 

RADIOS (left) and with Sec-Tore (right) compared to the true 
temperature used as input of the MCRT code (middle) 

 
The black patches on RADIOS side are parameters that 
could not be estimated because the model is too sensitive 

to the noise contained in the simulated data. 110 
parameters over 1.391 parameters are not estimated. 
 
4.2. Specular case 
The second temperature estimation considers high 
specular reflectance surface. The synthetic data are 
generated considering a Bidirectional Reflectance 
Distribution Function (BRDF) which is a combination of 
2% Lambertian reflectance and 98% of specular reflection 
with a Gaussian distribution of 8° width around the 
specular direction. Figure 8 compares the simulated 
images with the MCRT code in case of diffuse and 
specular surfaces and considering the presence of the 
baffle. 
 

 
Figure 8 – Synthetics measured radiance maps provided by the 
MCRT code in the case of fully diffuse reflective surfaces (left) 
and mainly specular reflective surfaces (right) with logarithmic 

color bars 
 
Figure 8 shows that the specular reflective materials cause 
two patterns (halos) of reflections on both side of the 
strike points: on the inner side of the lower divertor and 
close to the baffle. These patterns are due to reflections of 
the environment (vessel wall) at 90°C. 
The estimation assumptions are the same as for the diffuse 
case (environment temperature and emissivities known). 
Figure 9(a) shows the simulated radiance profile with the 
MCRT code considering or not the baffle obstruction and 

(a) (b) 
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emission. The radiance profiles are quite similar except 
for the extreme pixels (number 160 and more) impacted 
by the presence of baffle. There is less signal near the 
baffle as well as more statistic noise. Concerning the 
noise, the specular simulations show that the statistic 

noise represents around 25% of the signal on the colder 
targets compared to the diffuse relative noise of 2%. 
Figure 9 also shows the convergence of the radiance 
optimal parameters profile (left) and the corresponding 
results of the estimated 3D temperatures (right). 

 

 
Figure 9 – (a): Synthetic noisy measurements (radiance profiles) built with the MCRT code in the case of specular reflective surfaces 
without baffle (red) and with baffle (green). Comparison with the optimal radiance profile obtained with the temperature estimated 

by the inverse method Sec-Tore (blue). (b): 3D temperature profile estimated with Sec-Tore (blue) with the associated levels of 
confidence and with RADIOS (green) in the case of synthetic measurements with specular reflective surfaces.  

Profiles correspond to the green lines drawn on the 3D view of Figure 7, the origin being on the inner side. 
.  

On one hand, Sec-Tore enables to retrieve all parameters 
to be estimated. The radiance profiles on Figure 9(a) show 
the halo of reflection on the inner side in the form of the 
bump on the left of the profiles (pixels 0 to 70). The 
convergence of the model regarding the radiances is still 
good however, the temperature estimation is not so good 
especially for the halo of reflection. Indeed, the bump on 
the radiance profile is interpreted by the model as an 
increased emission of the component in this area and not 
as a specular pattern of reflection. As a result, the 
estimated temperature is higher in the matching area (up 
to 300°C instead of 90°C). The estimated temperature on 
the colder targets (less prone to reflections) is around 
200°C, which represents an error of 120% compared to 
the previous errors of around 166%. Last, the increase of 
relative statistic noise on the measurement degrades the 
confidence levels associated to the temperature 
estimations (error bars larger than in diffuse case about 
2% of the value for Sec-Tore and 4% for RADIOS in 
diffuse case versus 12% for Sec-Tore and 10-50% for 
RADIOS in specular case). 

On the other hand, RADIOS enables to retrieve only 891 
parameters out of the 1.391 estimated parameters (around 
60% estimated parameters). This is due to an increase of 
statistic noise in the simulated experimental-like data 
when considering specular reflective surfaces. 
Nevertheless, the estimation of the peak is as good as the 
estimation considering diffuse reflective surfaces with 
errors from 1% to 8%. It is worth noting that retrieved 
parameters out of the peak are the ones located in the area 
prone to reflections where the halo of reflection is 
considered by the algorithm as a much hotter zone than it 
really is. 
 
Figure 10 shows the relative errors on the estimated 
surface temperature ((estimated-true)/true in %) with Sec-
Tore and RADIOS for diffuse reflective surfaces as well 
as specular reflective surfaces. The true temperature 
profile used as input of the MCRT code is also plotted to 
locate the position of the peaks. 

(a) (b) 
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Figure 10 – (a): Relative errors on the estimated temperatures with Sec-Tore for diffuse reflective surfaces (blue) and RADIOS 

(green) superimposed with the true temperature profile (black). (b): Relative errors on the estimated temperatures with Sec-Tore for 
specular reflective surfaces (blue) and RADIOS (green) superimposed with the true temperature profile (black).  

Profiles corresponds to the green lines drawn on the 3D view of Figure 7, the origin being on the inner side. 
 

RADIOS allows estimating less parameters than Sec-Tore 
because of the presence of the baffle and because some 
parameters cannot be estimated due to the statistic noise 
of the simulated data.  
Figure 10 shows the mean error of the temperature 
estimation. As expected the temperature peak at 800°C, 
which is less affected by parasitic reflections, is retrieved 
with a good accuracy (better than 1% both for diffuse and 
specular surfaces). The advantage of the RADIOS model 
(considering the whole torus) is quite proven for colder 
targets (temperature around 90°C) in the diffuse case 
since it allows reducing the surface temperature error to 
33% from 166% with the Sec-Tore model. The specular 
case is more complicated to analyze. Indeed, the 
additional parasitic light coming from specular reflection 
is not uniform along the target due to angular dependence 
of reflectivity. As a result, a kind of bump is observed 
along the luminance profile (Figure 10b). As the model 
used for the inversion assumes Lambertian reflections, the 
bump is interpreted as an increase of emittance and so the 
algorithm finds a solution with a higher temperature than 
expected. This leads to larger temperature errors using 
both models Sec-Tore and RADIOS up to more than 
200%.This illustrates and quantify the limits of the 
radiosity method considering diffuse reflecting surfaces to 
retrieve temperatures of specular reflecting surfaces. The 
next step should be to enhance the direct model taking into 
account the specular behavior of the reflectance model 
based on previous studies as described in [19]. 
 
Table 2 summarizes the results of the temperature 
estimation with both Sec-Tore and RADIOS for diffuse 
reflective surfaces and specularly reflective surfaces. 
RADIOS gives results of temperature estimation with a 
mean error of 32% on the colder targets and 1 to 8% error 
for the peak temperature. As mentioned in section 4.1 this 
degradation of the peak temperature estimation is due to 
approximations in the modeling of RADIOS and noise 
statistic. 
 
 

Table 2. Comparison of the results estimation with Sec-Tore and 
RADIOS. 

Reflection 
model 

Temperature 
location Sec-Tore RADIOS 

Diffuse Hot Peak 1% 6% 
Cold targets 166% 33% 

Specular 
Hot Peak < 1% / 

Cold targets 106%-
223% / 

 
 
5. Conclusion 
This paper presents the results of an inverse method 
aiming to retrieve the true surface temperature from IR 
measurements solving low emissivity and the additional 
parasitic flux coming from the reflections. In the inverse 
method presented here, the temperature estimation is 
carried out with two different forward radiative models, 
both using radiosity calculations but based on two 
different geometries: Sec-Tore and RADIOS. On one 
hand, Sec-Tore only considers a toroidal 20° sector of a 
tokamak closed by two black-body surfaces with very 
simple components and no obstructions between 
elementary patches. On the other hand, RADIOS 
considers a whole torus and can deal with obstructions 
between patches and then can include more realistic 
components such as the baffle into the model. To test the 
method, the IR measurements are replaced by synthetic 
experimental-like data simulated with a MCRT code 
considering diffuse or highly specular reflective surfaces. 
In the case of diffuse reflective surfaces, Sec-Tore gives 
good results for the peak temperature estimation with 
error of 1%. However, due to the boundary condition of 
black body surfaces closing the 20° sector, the error on 
colder targets temperature estimation reaches 166%. 
RADIOS gives better results for the colder targets 
temperature estimation with a mean of error of 32% but 
the peak temperature estimation is degraded by 
approximations in the modeling, with respect to the 
MCRT code that generated the synthetic data (geometry 
sometimes simplified to limit the number of total 

(a) (b) 
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patches). The temperature estimations with RADIOS is 
also currently limited by the sensitivity of the inversion 
process to the noise existing on the synthetic 
measurements. This leads to the impossibility to estimate 
some parameters. These issues should be reduced by 
improving the conditioning of the model by using 
regularization methods (such as Tikhonov regularization 
[20]), optimization under constraints or with a priori 
values of some parameters. 
In the case of specular reflective surfaces, the temperature 
estimation with Sec-Tore and RADIOS still gives good 
results for the peak temperature, but the temperature 
estimation of colder targets, prone to reflections, is more 
chaotic with great errors. This result was expected as the 
radiosity method assumes diffuse surfaces and cannot 
interpret specular patterns of reflection. The next 
challenge will be to take into account specular surfaces in 
RADIOS. 
Nevertheless, the developed inverse method has proved 
very promising for retrieving the true temperature by 
filtering reflections. Furthermore, as the temperature 
estimation problem is linear and relies only on a matrix 
product based on the pre-computed and stored Jacobian 
(eq. (7)), this inverse method could be compatible with 
real-time application. 
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