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Abstract

In many applications, the heat flux at the surface is known instead of the surface
temperature. In addition, in some applications, like vacuum drying or high
altitude flights, the pressure is below atmospheric pressure, so the rarefaction
effects become important, and therefore, the Navier-Stokes-Fourier equations
fail to predict gas thermal behavior. In this paper, a constant heat flux boundary
condition is developed and implemented in the frame of the Shakhov model
kinetic equation, with the possibility to simulate the diffuse-specular reflexion
of the molecules from the surface. The developed technique is implemented for
the simulation of gas heat transfer in a two concentric cylinders configuration,
similar to vacuum drying of used nuclear fuel canisters. The numerical results
obtained using developed approach are compared with experimental data of
heat transfer through rarefied gas between two concentric cylinders.

1. Introduction

Thermal management is important in many application and may take place
under low-pressure conditions, such as in vacuum drying, re-entry flights and
development of thermal protection systems. In other applications, such as elec-
tronics as well as MEMS/NEMS systems, where the characteristic scale of the
devices is small, thermal management is also important. Often, for these types
of systems, a constant heat flux needs to be maintained at the boundary. In both
type of applications, the Knudsen number (i.e. the ratio between the molecular
mean free path and the characteristic flow dimension) is usually larger then 0.1.
Under such conditions, specific effects, such as temperature jump or velocity
slip, appear at the interface between gas and solid surface. In practice, often,
the surface temperature is unknown, and only the heat flux through the inter-
face can be measured or estimated. To obtain the information about the surface
temperature, the constant heat flux boundary condition has to be developed.
This type of condition is largely applied in case of continuum flow described in
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the frame of the Navier-Stokes-Fourier model. However, when the gas becomes
rarefied, the kinetic models need to be applied. Several applications of the
constant heat flux boundary conditions in the frame of the Direct Simulation
Monte Carlo (DSMC) method were discussed in Refs. [1, 2]. However, up to
now, we found only one paper where a constant heat flux boundary condition,
namely the constant zero heat flux at the solid surface, i.e. adiabatic condition,
is implemented for the kinetic equation, which was numerically solved using the
Discrete Velocity Method [3].

In this paper, we apply the constant heat flux boundary condition in the
frame of the Shakhov model (S-model) kinetic equation [4] for two infinite con-
centric cylinders geometry. We do not restrict our study to the zero heat flux
condition. In addition, the diffuse-specular reflexion of the molecules from the
solid surface is implemented to better describe the gas-solid surface interaction.
First, some general behaviors of the temperature and heat flux between the two
concentric cylinders as a function of pressure are obtained under constant heat
flux condition at the inner cylinder surface. Second, a comparison with the
analytical solution of the Fourier equation is conducted in the continuum and
slip regimes. Finally, the developed approaches are employed to simulate heat
transfer in an experimental configuration, consisting of two concentric cylinders,
and the results are compared with the experimental data.

2. Problem Formulation

In this paper, conduction heat transfer between two concentric cylinders
separated by a rarefied gas at rest is considered, see Fig. 1. The radii of the
inner and outer cylinders are R′1 and R′2, respectively. The temperature of the
outer cylinder wall, T ′w2, is known and maintained constant. Both cylinders
are assumed to have an infinite length, so this heat transfer problem can be
considered as one dimensional. Therefore, the heat flux has only one component
in the direction normal to the surfaces, q′ = (q′r, 0, 0), which is denoted in
following as q′, by omitting r subscript. A constant heat flux, q′1, is imposed at
the inner cylinder.

The flow between the two cylinders is determined by the following parame-
ters, the aspect ratio between the cylinders’ radii, R = R′1/R

′
2, the temperature

of the outer cylinder surface, T ′w2, and the heat flux on the inner cylinder sur-
face, q′1. The gas rarefaction is characterized by the rarefaction parameter, δ,
defined as

δ =
R0

`
, where ` =

µ0υ0

p0
, υ0 =

√
2kBT0

m
. (1)

In this expressions, R0 is the reference space dimension, ` is the equivalent
molecular free path at reference pressure p0, υ0 is the most probable molecular
velocity at reference temperature, T0, µ0 is the gas viscosity calculated at the
reference temperature: µ0 = µ(T0), m is the molecular mass of the gas, and kB

is the Boltzmann constant. It is convenient to take the distance between the
cylinders as the reference space dimension, R0 = R′2 −R′1. The temperature of
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Figure 1: Cross-section of two concentric cylinders configuration: dimensions (r, θ) in physical
space, dimensions (υr, υθ) (or (υp, ϕ)) in molecular velocity space.

the outer cylinder is used as the reference temperature, T0 = T ′w2
. It should be

noted that the rarefaction parameter is inversely proportional to the commonly
used Knudsen number, δ ∼ 1/Kn.

The influence of the gas-surface interaction is taken into account by the
thermal accommodation coefficient, denoted as

α =
Ti − Tr
Ti − Tw

, (2)

where Ti and Tr are the temperature of the incident and reflected molecules,
respectively, and Tw is the wall temperature.

3. Continuum and Slip Flow Regimes

In the slip and continuum (hydrodynamic) flow regimes, the steady-state
temperature distribution between two concentric cylinders is obtained from the
energy balance

∂

∂r′

(
r′κ′

∂T ′

∂r′

)
= 0, (3)

where r′ is the radial coordinate of the annular region between the cylinders and
κ′ is the gas thermal conductivity. It is to note that the hypothesis of zero flow
velocity is used, and only conduction heat transfer is considered. The Fourier
law can be applied to calculate the radial heat flux as

q′ = −κ′ dT
′

dr′
. (4)

For monoatomic gases, the gas thermal conductivity is related to the gas
viscosity as follows

κ′ =
15

4

kB

m
µ′. (5)
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The power-law temperature dependency of the viscosity coefficient is used [5]
and is defined as

µ′ = µ0

(
T ′

T0

)ω
, (6)

where ω is the viscosity index, which is equal to 0.5 for the Hard Sphere model
and 1 for the Maxwell model.

In the continuum flow regime, the temperature continuity condition may be
assumed on the cylinders’ walls. However, in the slip flow regime, the temper-
ature jump [6] must be used as boundary condition at the gas-surface interface
for Eq. (3)

T ′g = T ′w + ξT`
dT ′

dr′

∣∣∣
w
, (7)

where T ′g is the gas temperature near the wall, T ′w is the wall temperature, and
ξT is the temperature jump coefficient [7], which depends on the gas nature and
surface state through the thermal accommodation coefficient, α. The authors
of Ref. [8] proposed the following expression for polyatomic gases,

ξT =

(
2− α
α

+ 0.17

) √
π

Pr

γ

γ + 1
, (8)

which was obtained by applying a variational method to the Morse equation [9]
and to the Holway model [10]. In Eq. (8), γ is the gas specific heat ratio and
Pr is the Prandtl number. For monatomic gases, this expression is reduced to
the one proposed by Welander [11]. For the case of complete accommodation
(α = 1) and a monatomic gas (γ=5/3 and Pr=2/3), the value of the temperature
jump coefficient is ξT ∼ 1.94.

It is convenient to introduce the dimensionless variables as follows

r =
r′

R0
, t =

t′

t0
, T =

T ′

T0
, p =

p′

p0
, q =

q′

p0υ0
, µ =

µ′

µ0
, (9)

completed by the equation of state p′ = n′kBT
′. The dimensionless form of the

temperature jump boundary conditions on the cylinders’ walls becomes

Tg =

{
Tw1 + ξT1

δ T
ω+1/2 dT

dr , r = R1,

Tw2 − ξT2

δ T
ω+1/2 dT

dr , r = R2.
(10)

In these expressions, ξT1 and ξT2 are the temperature jump coefficients on the
inner and outer cylinder surfaces, respectively. The assumption of a constant
pressure between the cylinders is used to obtain the previous expressions. It is
to note that the dimensionless value of the outer cylinder temperature is equal
to 1, but in the following, the notation Tw2 is retained for the convenience of
presentation.

Using the dimensionless variables (9) and under the hypothesis of a constant
pressure between the cylinders, Eq. (3) may be written as

∂

∂r

(
µr
∂T

∂r

)
= 0. (11)
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Using the expression for heat flux (4), we obtain the energy conservation equa-
tion in the dimensionless form as

∂(rq)

∂r
= 0, where q(r) = −15

8δ
µ
dT

dr
. (12)

The solution of Eq. (12) subjected to the temperature jump boundary condition
(10) in the case of two known surface temperatures can be found in Ref. [12]. In
order to write the completely explicit expression of the temperature distribution
between the cylinders, a linearization of the temperature is carried out and the
terms of the order of ε2 are neglected, where ε = (Tw − Tg)/Tw, Eq. (7). If the
heat flux on the inner cylinder is fixed, Eq. (12) can be solved to obtain the
temperature profile between the cylinders with the accuracy ε2 as

T (r) =

(
Tω+1

g2 +
8δ

15
q1R1 (ω + 1) ln

R2

r

) 1
ω+1

, (13)

with

Tω+1
g2 = Tω+1

w2 (1− (ω + 1)B2) , B2 = −ξT2

δ

A
R2

√
Tw2

, (14)

and

A =
8

15
δR1q1. (15)

The radial heat flux profile between the cylinders can be calculated as

q(r) = q1
R1

r
(16)

and it deceases with the increase of r.
As it was mentioned above, in the slip flow regime the surface temperature

can be different from the gas temperature near the surface. To find the internal
surface temperature, Tw1, the following equation has to be solved by the Newton
method

A =
(Tω+1

w1 − Tω+1
w2 )/(ω + 1)

ln(R2/R1) + ξT2

δR2
T
ω+1/2
w2 + ξT1

δR1
T
ω+1/2
w1

, (17)

where the value of A is calculated from Eq. (15).

4. Free Molecular Flow Regime

In the free molecular regime, the collisionless Boltzmann equation is solved
to obtain the analytical expressions for number density, temperature, and heat
flux. General formulation of all solutions can be written in dimensionless form
as
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• dimensionless number density

n(r) =
n′(r)

nav
=

1−Kα1KT1KR1

1−Kα1KT1KR2
, (18)

• dimensionless temperature

T (r) =
T ′ (r)

Tw2
=

1−Kα1KT2KR1

1−Kα1KT1KR1
, (19)

• dimensionless heat flux

q (r) =
q′ (r)

navkBTw2

√
2kBTw2/m

=
1√
π
Kα2KT3KR3

1

1−Kα1KT1KR2
,

(20)

where Kαi
and KTi

, i = 1, 2, are the coefficients determined by the accommo-
dation coefficients, α1 and α2 of each surface, and temperature of the hotter
and colder surfaces,

Kα1 =
α1 (2− α2)

α1 + α2 − α1α2
, Kα2 =

α1α2

α1 + α2 − α1α2
,

KT1 = 1−
√
Tw2

Tw1
, KT2 = 1−

√
Tw1

Tw2
, KT3 =

Tw1

Tw2
− 1.

(21)

The coefficients KRi
, i = 1, 3, are determined by the geometry of the problem

as

KR1 =
1

2

arcsin (R1/r)

π/2
, KR2 =

1

2

{
1− 1

π/2

[
arccos (R)

1−R2
− 1√
R−2 − 1

]}
,

KR3 =
R1

r
.

(22)
The average number density is used in expressions (18) and (20) to normalize
the number density. This averaged value is calculated as

nav =
2

R2
2 −R2

1

∫ R2

R1

nrdr. (23)

For known cylinders’ radii ratio, and fixed accommodation coefficients, the tem-
perature of the inner cylinder surface can be found from the heat flux expression
(20) calculated at the inner surface, r = R1, by using the Cardano’s formula to
solve the depressed cubic equation [13].

5. Transitional Flow Regime

For the simulation of heat transfer in the transitional and near free molec-
ular flow regimes, the S-model kinetic equation [4] is used. Considering the
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axial symmetry of the problem, the S-model kinetic equation in the completely
conservative form may be written as [14, 15, 16]

∂

∂t′
(r′f ′) +

∂

∂r′
(r′f ′υp cosϕ)− ∂

∂ϕ
(f ′υp sinϕ) = r′ν′

(
fS

′
− f ′

)
. (24)

In this expression, f ′(t′, r′,v) is the one-particle molecular velocity distribution
function, v = (υp cosϕ, υp sinϕ, υz) is the molecular velocity vector with polar
coordinates, υp and ϕ, which are the magnitude and orientation of velocity
vector, respectively, and ν′ is the molecular collision frequency. The equilibrium
distribution function fS

′
in Eq. (24) has the form

fS
′

= fM
′

[
1 +

2mvq′

15n′ (kBT ′)
2

(
mv2

2kBT ′
− 5

2

)]
(25)

with

fM
′
(n′, T ′) = n′

(
m

2πkBT ′

)3/2

exp

[
− mv2

2kBT ′

]
, (26)

where fM
′

is the local Maxwellian distribution function. The bulk velocity is
equal to zero for this problem, and the heat flux vector has only one non-zero
component along r-axis. In the frame of this model, the molecular collision
frequency is supposed to be independent of the molecular velocities, and it is
calculated as ν′ = p′/µ′ [4]. The most probable molecular velocity υ0, Eq.
(1), is used to non-dimensionalize the molecular velocity c = v/υ0, where the
dimensionless molecular velocity vector c is (cp cosϕ, cp sinϕ, cz). Using the
dimensionless variables, Eq. (24) becomes

∂(rf)

∂t
+
∂(rfcp cosϕ)

∂r
− ∂(fcp sinϕ)

∂ϕ
= rδnT 1−ω(fS − f). (27)

Equation (27) is one-dimensional in the physical space, but three-dimensional
in the molecular velocity space. The dependence of the distribution function
on the cz component of the molecular velocity vector is eliminated using the
projection procedure, by introducing two reduced distribution functions [17]

Φ(t, r, cp, ϕ) =

∫
f(t, r, c)dcz and Ψ(t, r, cp, ϕ) =

∫
f(t, r, c)c2zdcz. (28)

After multiplying Eq. (27) by 1 and c2z, and integrating over cz, the system of
two kinetic equations is obtained as

∂(rΦ)

∂t
+
∂(rΦcp cosϕ)

∂r
− ∂(Φcp sinϕ)

∂ϕ
= rδnT 1−ω(ΦS − Φ),

∂(rΨ)

∂t
+
∂(rΨcp cosϕ)

∂r
− ∂(Ψcp sinϕ)

∂ϕ
= rδnT 1−ω(ΨS −Ψ).

(29)

The relevant macroscopic flow parameters (number density, temperature and
heat flux) are defined through the reduced distribution functions, respectively,
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as

n(t, r) =

∫∫
Φ(t, r, cp, ϕ)cpdcpdϕ,

T (t, r) =
2

3n

∫∫ [
c2pΦ(t, r, cp, ϕ) + Ψ(t, r, cp, ϕ)

]
cpdcpdϕ,

q(t, r) =

∫∫
cp cosϕ

[
c2pΦ(t, r, cp, ϕ) + Ψ(t, r, cp, ϕ)

]
cpdcpdϕ .

(30)

It is worth to note that the developed numerical approach allows us to obtain
not only the steady state values of the macroscopic parameters, but also their
evolution in time.

5.1. Boundary Conditions

In present simulations, the classical Maxwell diffuse-specular boundary con-
ditions are used on both surfaces [6]. As gas between the two cylinders is
considered at rest, so the accommodation coefficient in the diffuse-specular ker-
nel is associated only to the thermal accommodation coefficient. Below, the
classical constant temperature boundary condition at the outer wall and the
new constant heat flux boundary condition at the inner wall are described.

5.1.1. Constant Surface Temperature

The temperature of the outer cylinder surface is maintained constant and
equal to Tw2, therefore the boundary condition for Eq. (27) at r = R2 is

f (t, R2, cp, ϕ) = (1− α2) f (t, R2, cp, π − ϕ) + α2f
M (t, R2, cp, ϕ) ,

π

2
≤ ϕ ≤ 3

2
π,

(31)
where α2 is the accommodation coefficient at the outer cylinder surface. This
boundary condition, (31), in terms of reduced distribution functions reads

Φ(R2, cp, ϕ) = (1− α2)Φ(R2, cp, π − ϕ) + α2ΦM
w2(R2, cp), for

π

2
≤ ϕ ≤ 3

2
π,

with ΦM
w2 (R2, cp) =

nw2

πTw2
exp

(
−
c2p
Tw2

)
. (32)

The number density, nw2, is calculated from the no-penetration condition for
the cylinder wall as

nw2 = −2

√
π√
Tw2

∫ +∞

0

c2pdcp

∫ 3π/2

π/2

Φ cosϕdϕ . (33)

5.1.2. Constant Heat Flux at the Surface

On the inner cylinder surface, constant heat flux, q1, is applied. To derive
the boundary condition for Eq. (27), corresponding to a fixed constant heat
flux on the inner cylinder, we use two known relations. First of them, is the
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impermeability (no-penetration) condition at the inner cylinder surface, i.e. the
gas velocity normal to this surface is equal to zero∫

cr<0

fcrdc +

∫
cr>0

(
α1f

M + (1− α1)f
)
crdc = 0. (34)

From previous relation, the unknown number density on the surface, nw1, can
be expressed as a function of the incoming mass flux as

nw1 = − 2
√
π√

Tw1

Min, (35)

where the incoming mass flux, Min, can be calculated as

Min =

∫
cr<0

fcrdc, (36)

or using the reduced distribution function defined by Eq. (28)

Min =

∫ π/2

−π/2
Φc2p cosϕdcpdϕ. (37)

It is to underline that expressions (35) and (37) are independent of the accom-
modation coefficient on the inner surface, α1, and that the surface temperature,
Tw1, in Eq. (35), is a priori unknown.

Then, we can write the analogous to Eq. (34) expression for the known heat
flux on the inner cylinder surface, q1, in term of incoming and outgoing fluxes
as

q1 =

∫
cr<0

fc2crdc +

∫
cr>0

(
α1f

M + (1− α1)f
)
c2crdc. (38)

By simplifying the previous equation, we obtain the explicit expression for the
heat flux as a function of incoming heat flux as

q1 = Hin + α1
nw1√
π
T

3/2
w1 , (39)

where the incoming heat flux reads

Hin = α1

∫
cr<0

fc2crdc. (40)

By using the reduced distribution functions from Eqs. (28), expression (40)
becomes

Hin = α1

∫
cr<0

c2p cosϕ
(
c2pΦ + Ψ

)
dcpdϕ. (41)

Putting together Eqs. (35), (37), (39), and (41), we finally obtain the system of
two equations for unknown gas number density near the inner cylinder surface,
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nw1, and the surface temperature, Tw1, as a function of incoming mass and heat
fluxes

Tw1 =
Hin − q1/α1

2Min
, and nw1 =

2
√
π√

Tw1

Min. (42)

The derivation of the constant heat flux boundary condition are provided here
for the inner cylinder surface. However, this methodology can be applied to the
outer cylinder or to other types of geometries.

5.2. Method of Solution

The applied numerical approach is analogous to that previously developed
in Ref. [16]. First, the discrete velocity method (DVM) is used to separate the
continuum molecular velocity space cp in the system of kinetic equations (29)
into discrete velocity set cpk . Next, the system of kinetic equations with discrete
velocity set cpk is discretized in time and space by Finite Difference Method
(FDM). The spatial derivatives are approximated by the first order-of-accuracy
upwind-type numerical scheme. For the approximation of the time derivative,
the explicit Euler scheme is used. The Gauss-Hermite quadrature formulas
are chosen in order to evaluate the integrals for calculating the macroscopic
parameters (30). These quadrature formulas insures for the low Mach number
flows, which is the case of our study, the higher accuracy of integration with the
smaller number of integration points compared with the Simpson rule, see for
example Ref. [18].

In the physical space, the reduced distribution functions depend only on one
variable r, which is the distance from the common axis of the two concentric
cylinders. The distance between the cylinders is divided into Nr intervals. In
the velocity space, the distribution functions depend on two variables; the mag-
nitude and orientation of the molecular velocity vector, cpk and ϕ, respectively.
The velocity vector magnitude cpk is distributed according to the Gaussian
quadrature rule, which is characterized by the Gaussian abscissas Ncp and their
corresponding weights. The number of implemented Ncp points depends on the
gas rarefaction. The range of molecular velocity orientation (0 ≤ ϕ ≤ π) is
divided into Nϕ equal intervals. Moreover, this range of ϕ is divided into two
subdomains, according to the sign of the molecular velocity components.

The time-explicit Euler method is based on the classical time derivation in
a given point and on the space derivatives taken at the previous time step. Let
us denote the numerical solution of the first partial derivative equation in (29)
as Φli,k,m = Φ(tl, ri, cpk , ϕm) and define ∆tl = tl+1 − tl, where l denotes time
level, ∆r = ri − ri−1, and ∆ϕ = ϕm − ϕm−1. For the case of cosϕm > 0 and

10



sinϕm < 0, the first equation of the system (29) can be approximated by

riΦ
l+1
i,k,m − riΦli,k,m

∆tl
+ cpk cosϕm

riΦ
l
i,k,m − ri−1Φli−1,k,m

∆r
−

−cpk
Φli,k,m sinϕm+1/2 − Φli,k,m−1 sinϕm−1/2

2 sin ∆ϕ
2

=

= riδn
l
i

(
Ti

1−ω)l ((ΦSi,k,m)l − Φli,k,m

)
.

(43)

In the above approximation, the trigonometric correction [19] for the derivative
of axisymmetric transport term (with respect to ϕ) is used. This scheme offers
numerous properties [19] such as, uniform flow and positivity of the reduced
distribution function preservations, and satisfaction of the conservation laws of
the moments, and entropy dissipation.

For the temporal discretization, the time-step has to satisfy the classical
Courant-Friedrichs-Lewy (CFL) condition [20] and must be smaller than the
mean collision time, or relaxation time, which is inverse of the collision frequency
ν. Hence, the time step must satisfy the following criterion

∆t ≤ CFL/max
i,k,m

(
cpk
∆ri

+
cpk

r0∆ϕm
, νi

)
(44)

with CFL = 0.95. The calculations stop when the convergence criterion, defined
as

||qr||L2 =

√√√√Nr∑
i=0

(ql+1
ri − qlri)2/

√√√√Nr∑
i=0

(ql+1
ri )2 (45)

and calculated using the L2 norm, becomes smaller than ε = 10−8.

6. Results and Discussion

In this Section, first, a parametrical study is conducted to quantify the influ-
ence of the inner and outer surface accommodation coefficients on the temper-
ature difference between the two surfaces. Then, the proposed methodology is
applied to simulate the temperature distribution between two concentric cylin-
ders of real experimental conditions from Ref. [21].

6.1. Parametric Study

In this section, the effect of the thermal accommodation coefficients at both
cylinders surfaces on the temperature difference, ∆T = Tw1 − Tw2 is analyzed.
For this study, the heat flux on the inner cylinder is fixed to a constant value.
However, due to the relation between dimensional and dimensionless values of
the heat flux, Eq. (9), only the product q1δ is constant when the rarefaction
parameter changes. Therefore, depending on the value of rarefaction parameter,
the heat flux is equal to q1 = 0.3, 0.03, 0.003, and 0.0003 for the rarefaction
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Figure 2: Dimensionless temperature difference between the inner and outer cylinder surfaces,
∆T = Tw1−Tw2 as a function of the rarefaction parameter. (a) The accommodation coefficient
on the outer cylinder surface, α2, is fixed to 1 (diffuse reflection), while its value on the inner
surface, α1 is varied from 0.1 to 1. (b) The accommodation coefficient on the inner surface,
α1, is fixed to 1 (diffuse reflection), while its value on the outer surface, α2 is varied from 0.1
to 1.

parameter equal to 0.1, 1, 10, and 100, respectively, with q1δ = 0.03. In these
simulations the cylinders radii ratio, R, is taken to be equal to 1.1.

For a fixed value of the heat flux at the inner cylinder surface and a fixed
accommodation coefficient on both surfaces, the temperature difference, ∆T ,
increases with the decrease in the rarefaction parameter (see Fig. 2(a) and (b)).
A pronounced increase of the temperature difference is observed when the rar-
efaction parameter decreases from 1 to 0.1. Comparing the two figures, one can
observe that for a low rarefaction parameter (δ ≤ 1), the temperature difference
is more affected by the decrease in the value of accommodation coefficient on
the inner cylinder surface, α1, than on the outer surface, α2. This because the
inner cylinder surface is hotter than the outer one, therefore, large temperature
jumps are obtained on the inner wall when the accommodation coefficient is de-
creased. For δ > 10, there is no significant effect on the temperature difference
between the cylinders regardless of the thermal accommodation coefficient due
to small effect of rarefaction.

It is well known [22] that at low pressure (high-rarefaction level) conditions,
the surface temperature may be different from the gas temperature. The di-
mensionless temperature profiles are presented in Fig. 3 for three values of
rarefaction parameter δ=0.1, 1 and 10, and for R =1.1 as a function of normal-
ized distance between the cylinders. As in the previous case, the heat flux on
the inner cylinder surface is fixed to be equal to q1δ = 0.03. In these simula-
tions, the accommodation coefficient on both surfaces is set equal to 1. Figure
3 shows that the temperature in the gap increases as the gas becomes more
rarefied (δ decreases). From the numerical simulations, the temperature of the
inner surface is obtained to be equal to 1.507, 1.071 and 1.021 for δ=0.1, 1 and
10, respectively. The corresponding gas temperatures near the inner cylinder
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surface are equal to 1.252, 1.049 and 1.019, respectively. As expected, larger
temperature jumps and higher surface temperatures are obtained for higher
rarefaction level, even if the same heat flux on the surface is maintained. It
is to note that similar, but smaller in their amplitude, temperature jumps are
observed on the outer cylinder surface, where the dimensionless temperature is
fixed equal to 1.

This quantitative analysis is worth to be considered in practical applications.
Very often, constant heat flux is applied to a surface to manage its temperature
and a constant surface temperature is usually expected. However, if the gas
pressure decreases considerably, for example by ten times, i.e. δ changes from
1 to 0.1, the surface temperature could increases by more than 40%.

Figure 3: Dimensionless temperature in the gap between two cylinders, R=1.1. The constant
heat flux, q1, equal to 0.003, 0.03 and 0.3 for δ equal to 10, 1, 0.1 respectively is fixed on the
inner cylinder surface. The accommodation coefficients on both surfaces are assumed to be
equal to 1. Points represents respective inner wall temperature Tw1.

In the continuum and slip flow regimes, the analytical expressions for the
temperature and heat flux distributions are derived in Ref. [12] as a function of
the surface temperatures. In the case, when the heat flux on the inner surface
is known instead of the surface temperature, the temperature distribution in
the gap can be calculated from Eq. (13). Figure 4(a) shows the temperature
distribution between the cylinders for different values of the rarefaction param-
eter, ranging from near continuum (δ = 100) to early transitional (δ = 1) flow
regimes. The temperature profiles are obtained from the numerical solution of
the kinetic equation (solid lines) and from the analytical solution, Eq. (13)
(dashed lines). As expected, a good agreement is found between the two ap-
proaches in the continuum and slip flow regimes, δ = 10 and 100. The heat flux
profiles in the gap are presented in Fig. 4(b). The profiles are obtained from
the numerical solutions of the kinetic equation (solid lines) and analytical ex-
pression (16) (dashed lines). The heat flux profile in the gap is nearly constant
for all considered values of gas rarefaction. A good agreement is found between
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Figure 4: Dimensionless temperature (a) and heat flux (b) in the gap between two cylinders,
R=1.1. The constant heat flux, q1, equal to 0.0003, 0.003 and 0.03 for δ varies from 100 to
1, is fixed on the inner cylinder surface. The accommodation coefficients on both surfaces are
assumed to be equal to 1. The results of kinetic simulations (solid lines) are compared with
the analytical solutions (dashed line).

both approaches for δ=10 and 100.
In the free molecular regime, the analytical expressions for the temperature

and heat flux distributions are also derived as a function of two known surface
temperatures. In the case when the heat flux on one of the surfaces is known
instead of surface temperature, the unknown surface temperature can be calcu-
lated from Eq. (20). Figures 5(a) and 5(b), respectively, show the temperature
and the heat flux distributions in the gap for δ = 0.1 and 0.01, which corresponds
to the beginning and developed free molecular flow regime. The temperature
and heat flux profiles are obtained from the numerical solution of the kinetic
equation (solid lines), and from the analytical solution (dashed lines). To obtain
the analytical solution, first, the inner surface temperature is obtained from Eq.
(20) using information on the inner heat flux, q1, then the temperature and heat
flux profiles are obtained using Eqs. (19) and (20). A very good agreement is
obtained for both profiles at both rarefaction levels.

6.2. Comparison with Experimental Results

Kinetic numerical simulations of the temperature distribution are conducted
for a configuration similar to the experimental setup presented in Ref. [21].
The experimental results are used to validate the proposed formulation of con-
stant heat flux boundary condition for the kinetic equation. The experimen-
tal setup consists of two concentric stainless steel cylinders spaced by a gap,
R0 = R′2 − R′1=2mm with R′1= 43.5mm. The inner cylinder consists of a car-
tridge heater centered inside a thick aluminum cylinder, which is surrounded
by a thin stainless steel sheath. The outer cylinder consists of a stainless steel
pressure vessel surrounded by a water jacket to control its temperature. The
length of the inner cylinder is 1.031m, and the length of the outer vessel cylin-
der is 1.422m. Therefore, the inner cylinder is fully contained inside the outer
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Figure 5: Dimensionless temperature (a) and heat flux (b) in the gap between two cylinders,
R=1.1. The constant heat flux, q1, equal to 0.3 and 3 for δ=0.1 and 0.01, respectively. The
accommodation coefficients on both surfaces are assumed to be equal to 1. The results of
kinetic simulations (solid lines) are compared with the analytical solutions (dashed line).

cylinder. Supports attached to both ends of the inner cylinder maintain con-
centricity between the inner and outer cylinders. The supports were designed
to have small contact areas to prevent heat loss through conduction at the two
ends of the inner cylinder. To measure the temperature of the inner cylinder,
twelve thermocouples are placed between the aluminum cylinder and the stain-
less steel sheath in small grooves at three different axial locations. Other twelve
thermocouples are placed on the outer surface of the outer cylinder at the same
axial locations as the inner thermocouples to measure the temperature of the
outer cylinder.

For all experiments, the temperature of the outer cylinder surface is main-
tained constant at Tw2 = 295 ± 1 K. For each experiment, the gap is initially
filled with helium at the desired initial pressure, then the cartridge heater is
tuned on to generate heat at the desired value. The experiment is conducted
until both temperature and pressure reach steady-state. The temperatures and
pressure are then collected and averaged over few hours past steady-state. Dif-
ferent total heat generation rates, QT , varying from 100W to 500W, are applied
to the inner cylinder. As mentioned before, the experiment was designed to min-
imize heat losses from the ends of the inner cylinder and to ensure that most of
the generated heat leaves through the annular gap between the cylinders. How-
ever, even with this design, there was still some heat losses through the ends of
the inner cylinder, either by conduction or radiation, referred to by QL. This
end heat loss is estimated in the continuum regime by comparing the experi-
mental data to the one-dimensional analytical solution of heat transfer between
concentric cylinders. Also, a portion of the heat though the gap is transfered
by radiation, which is referred to by QR. The amount of heat transferred by
conduction, QC , is calculated as QC = QT −QR −QL, see Table 1. The total
heat generation, QT , and the portion transferred by conduction, QC , through
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the gap, as well as the measured initial, pini, and steady state, pss, pressures
in the gap, and the inner cylinder surface temperature, T exp

w1 , are provided in
Table 1. The accommodation coefficients on both surfaces are estimated in Ref.
[21] to be the same and their values are also presented in Table 1.

The temperature distribution in the gap between the cylinders was simulated
using the numerical solution of the S-model kinetic equation for different values
of heat flux imposed on the inner cylinder surface. The cylinders length is
large compared to their radii, so the experimental configuration is simulated
as one dimensional, considering only the cylinders cross-section. The value of
the heat flux q1 at the inner cylinder surface is calculated from the portion
of heat transferred by conduction, QC , by dividing it by the inner cylinder
surface area. The outer cylinder surface temperature is fixed to be equal to the
measured value. The initial pressure measured in the gap is used to calculate
the rarefaction parameter δ.

The values of the simulated temperature of the inner cylinder surface, T sim
w1 ,

are shown in Table 1 and are compared with the experimental values. For each
experimental condition, the relative error between the measured and simulated
inner temperatures are also provided in Table 1. This table shows that there
is a good agreement between both temperatures with a maximum error on the
order of 2.8% obtained for case 10. However, for all the other cases, the error is
less than 1

In Section 3, the analytical expressions of temperature and heat flux distri-
butions, Eqs. (13) and (16), in the gap are provided, which are valid in the slip
and continuum flow regimes. The values for the inner cylinder temperature,
T an

w1, calculated from Eqs. (17) and (15) using Newton method, are provided in
Table 1. A very good agreement is found with the measured values for all cases
with an error less than 1.4%. The maximum deviation is obtained for case 10.

N QT [W ] QC [W] pini [Pa] pss[Pa] α T exp
w1 [K] T sim

w1 [K] % error T an
w1 [K]

1 100 92.0 104.5 108.4 0.374 314.6 315.2 0.19 313.6
2 100 92.3 139.6 140.5 0.364 312.1 312.3 0.08 310.9
3 200 183.8 101.0 107.9 0.375 335.5 337.2 0.51 334.9
4 200 184.4 141.9 146.1 0.360 330.1 330.8 0.21 328.5
5 300 275.2 107.2 121.3 0.366 356.4 355.9 0.13 353.7
6 300 276.0 134.6 153.2 0.389 346.6 346.6 0.00 344.0
7 400 366.7 109.1 119.7 0.353 375.2 375.6 0.11 374.3
8 400 367.8 140.6 152.3 0.354 363.5 365.9 0.66 363.6
9 500 457.1 107.3 110.3 0.363 395.4 393.8 0.40 393.8
10 500 458.4 138.5 139.6 0.369 383.7 372.9 2.82 378.4

Table 1: Comparison between experimental [21], numerical and analytical data for different
total heat generation rates, QT and pressures in the gap.

Fig. 6 shows the temperature difference between the inner and outer cylin-
ders obtained from the experiments, analytical solution, and numerical simu-
lations as a function of the inverse of pressure. Good agreement was found
between experimental, numerical and analytical results. The slight deviation
of analytical and numerical results from the measured data for case 10 can be
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Figure 6: Measured, simulated and analytical values of temperature difference between the
inner and outer cylinders as a function of the inverse of pressure for all heat generation
rates. Solid line represent numerical results obtained by proposed simulation technique, dashed
line show results obtained through analytical expression, (13), experimental results [21] are
represented by the symbols.

attributed to inaccuracy of the methodology used in Ref. [21] to calculate the
thermal accommodation coefficient, which is based on the implementation of
the analytical formulation available in the slip flow regime [23].

As it was mentioned in Section 5, the developed approach allows the simu-
lation of the transient behavior of temperature in the gap. The time evolution
of the inner surface temperature Tw1 obtained from the experimental data and
the numerical simulations are compared in Fig. 7 for case 9 (see Table 1). The
”numerical” time was rescaled to match with the experimental one, because the
temperature evolution was simulated only in a slice of the experimental con-
figuration, instead of the full length of the cylinders. This figure shows that
the simulated temperature of the inner cylinders closely follow the experimental
data. The same result was obtained for the other cases.

7. Conclusion

In this work, a new constant heat flux boundary condition is developed in
the frame of the kinetic approach, which is valid in all gas rarefaction range. In
addition, the analytical expression of the temperature and heat flux in the gap
are derived in the slip flow regime by using the temperature jump conditions.
The surface temperature, which is different from the gas temperature can be
also obtained using the Newton method.
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Figure 7: Comparison of time evolution of inner wall temperature Tw1 for both experimental
and simulation results.

Under the free molecular flow conditions the expression for the temperature
and heat flux are obtained for the arbitrary values of the accommodation coeffi-
cients. The surface temperature under constant heat flux boundary condition is
calculated from the depressed cubic equation for free molecular flow condition.

Both, analytical and numerical approaches are compared to determine the
validity ranges for the analytical expression. Then, the numerical simulations
are compared to experimental data of heat transfer between two concentric
cylinders. A very good agreement was found between the numerical, analyti-
cal, and experimental results in the considered range. The proposed analytical
relations could be useful for many engineering applications.
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