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Abstract: 

Numerical investigation of the natural convection of !"!#"-water nanofluid is carried out in a differentially heated vertical 

annulus under a uniform magnetic field. An in-house Fortran code has been developed to solve the system of equations 

governing the magneto-hydrodynamic flow. Computations are carried out for different Rayleigh numbers (10# ≤ '( ≤

10$), nanoparticle diameter ()% = 13	and	47	/0), nanoparticle volume fraction	(0 ≤ 3 ≤ 0.09), radius ratio (2 ≤ 7 ≤

10), and different Hartmann numbers (0 ≤ 8( ≤ 100). According to the simulation data, nanoparticle size is crucial for 

evaluating nanofluid properties, such as viscosity and thermal conductivity. The computational results reveal that, for 

nanoparticles with a diameter )% = 47	/0, the average Nusselt number 9:;;;;& on the inner cylinder wall decreases as the 

nanofluid volume fraction increases. This decrease in  9:;;;;& number is observed up to a volume fraction 3 = 0.05, after 

which it increases again. For the full range of volumetric fractions, it is shown that increasing '( number causes 9:;;;;& to 

increase, while increasing 8( number and increasing the magnetic field causes 9:;;;;& to decrease. Furthermore, as the 8( 

number increases, the heat transfer enhancement ratio =/ increases mainly when the magnetic field is oriented radially. 

Finally, new correlations of  9:;;;;& versus '(, 3, 8(, and 7 are derived for the axial and radial magnetic fields cases. 

 

Keywords: Natural convection, !"!#"-water, Lorentz forces, annulus enclosure, variable properties. 
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?' magnetic field, (@) 

A% specific heat at constant pressure, (B CD. E⁄ ) 

G annulus gap, (0) 

=/ heat transfer enhancement ratio 

H electromagnetic force, (9 0"⁄ ) 

ℎ heat transfer coefficient, (J 0!E⁄ ) 

B electric current density, (! 0⁄ ) 

C thermal conductivity 

9: local Nusselt number 

9:;;;; average Nusselt number 

K pressure, (9 0!⁄ ) 

L dimensionless pressure 

Pr Prandtl number 

O& , O( inner and outer radii, 0  

'( Rayleigh number 

P time, (Q) 

@ temperature, (E) 

:,R velocities in the O and S directions, (0 Q⁄ ) 

T,J dimensionless velocities 

O, S cylindrical coordinates, (0) 

', U dimensionless cylindrical coordinates 

Greek symbols 

V thermal diffusivity, (0! Q⁄ ) 

W thermal expansion coefficient, (1 E⁄ ) 

 

X dimensionless temperature 

Y dynamic viscosity 

Z kinematic viscosity, (0! Q⁄ ) 

[ density, (CD 0"⁄ ) 

\ electrical conductivity, (1 ].0⁄ ) 

^ dimensionless time  

3 volume fraction 

_ dimensionless stream function 

` general variables 

∆^ dimensionless time increment 

Subscripts and superscripts 

A cold 

=b electromagnetic 

c base fluid 

ℎ hot 

d inner cylinder 

e outer cylinder 

K nanoparticle 

0(f maximum 

0d/ minimum 

/ number of iterations 

/c nanofluid 

0 reference value at cold condition 

 

 

 

 

 

 

1. Introduction 
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Research studies related to natural convection in (a confined) cylindrical annular enclosures have received considerable 

attention and have remained a fundamental field to explain many physical phenomena. The application areas are compact 

heat exchangers, food preservation, solar collectors, nuclear reactors, and electronic cooling systems [1]. 

The natural convection phenomena under the applied magnetic field can be found in some experimental processes, such 

as cooling fusion reactors and crystal growth in liquid. Various studies in the literature have been performed to 

characterize natural convection and heat transfer in enclosures under applied magnetic fields. Different geometrical 

parameters and boundary conditions were investigated [2-13]. The magnetic field direction and strength were revealed as 

two major factors that significantly affected the heat transfer properties and flow patterns. Similar research studies can be 

found in an annular cavity under a magnetic field [14-21]. In most of these studies, the case of electrically conducting 

fluid characterized by a low thermal conductivity is considered.  

Improvement of heat transfer performance is an essential aspect of saving energy. The low thermal properties of the 

working fluids, such as water, engine oil, and ethylene glycol, are critical constraints during the design of compact thermal 

systems with high efficiency. In contrast, Nanoparticles have been shown to have potential advantages in increasing the 

thermal conductivity of the base fluids. An exciting review on the nanofluid preparation methods reported by different 

investigators and describing the suitable method for preparing stable nanofluids has been published by Haddad et al. [22].  

The final prepared nanofluid will have specific properties, i.e., thermal conductivity and dynamic viscosity, that play an 

essential role during heat transfer processes [23]. Choi [24] was the first who proposed the term nanofluid to designate 

the mixture of suspended solid nanoparticles in a base fluid. The resulting mixture is characterized by an improved 

effective thermal conductivity when compared to traditional fluids. 

Several authors have considered examining the natural convection of nanofluids in a heated cavity with or without an 

applied magnetic field. Khanafer et al. [25] conducted a numerical analysis of natural convection problem in a 

differentially heated cavity containing a flowing nanofluid. Their results showed that 9:;;;; number is considerably 

increased with rising the nanoparticle volume fraction for all Grashof number values. Putra et al. [26] analyzed the natural 

convection inside the horizontal cylinder experimentally. Results revealed that the presence of !"!#" or g:# 

nanoparticles in water reduced the heat transfer in which both the density and concentration of the nanoparticles played a 

significant role in the heat transfer deterioration. Omid Abouali and Ahmad Falahatpisheh [27] considered a vertical 

annulus to investigate numerically the effect of the (!"!#" −water) nanofluid viscosity and particle diameters on the 

natural convection flow. Their results were validated first against the experimental results provided by Putra et al. [26]. 

A general correlation has been developed to predict the heat transfer rate for annuli, which depends on the viscosity model 

and particle diameter. The authors have advised that this correlation is also valid for the case of the square cavity. Ghasemi 

et al. [28] considered the natural convection phenomena for the case of (!"!#" −water) nanofluid inside a square cavity 

subjected to a horizontally directed magnetic field. Their outputs showed that the computed Nu number decreases with 
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the augment of 8( number and increases with the extension of '( number. However, the enhancement or deterioration 

of Nu number with the increased solid volume fraction depends on '( and 8( number values. Sheikholeslami et al. [29] 

applied the Lattice Boltzmann method - LBM to solve the natural convection phenomena in an annulus between a cold 

square and a heated elliptic cylinder.  Both an applied magnetic field and the influence of Brownian motion on the 

effective thermal conductivity were investigated. Their outputs showed that increasing '( number and the nanoparticle 

volume fraction leads to an enhanced average Nu number. Increasing 8( number, on the other hand, have an opposite 

effect on Nu number. Later, Sheikholeslami et al. [30] analyzed the natural convection in a half-annulus enclosure exposed 

to a magnetic field. The applied thermal condition of one wall subjected to a constant heat flux has been considered, and 

various inclination angles have been texted. The results showed that rising the volume fraction of nanoparticles and '( 

number improved the Nu number. In contrast, applying a magnetic field results in an inhibited flow and temperature 

fluctuations by decreasing the Nu number and the flow velocity. For all investigated inclination angles and low '( 

numbers, increasing 8( number leads to improved heat transfer.  

Computational results reported by Ashorynejad et al. [31], for the case of the horizontal cylindrical annulus, revealed that 

the flow fluctuations of nanofluids for a natural convection problem could be inhibited by applying an external magnetic 

field. In addition, the authors concluded that higher values of the average Nu number could be achieved by increasing '( 

number and/or the volume fraction of nanoparticles. In contrast, increasing 8( number leads to low Nusselt number 

values. Sheikholeslami et al. [32] carried out numerical simulations to investigate the magneto-hydrodynamic natural 

convection for !"!#"–water nanofluid inside a horizontal annulus between a circular cylindrical enclosure and an internal 

heated triangular cylinder. It is found that the computed 9:;;;; number is proportional to '( number and inversely 

proportional to 8( number. The authors established a new correlation of 9:;;;; number as a function of the studied physical 

parameters. Sheikholeslami [33] has carried out a numerical simulation on the effect of magnetic field on natural 

convection of nanofluid flowing inside an enclosure. An uniform temperature was imposed on the outer cylinder, while 

the inner cylinder was submitted to a constant heat flux. Reported results revealed that the improvement in heat transfer 

increases the aspect ratio and 8( number, whereas it decreases with the increasing '( number. Mebarek-Oudina and 

Bessaïh [34] carried out the numerical computation of natural convection in a vertically positioned cylindrical annulus 

enclosure comprising g:–water nanofluid. The case study considered the impact of two discrete heat sources having 

different lengths and mounted on the inner enclosure wall. Results showed that the investigated parameters, including the 

size and the location of the heaters, the volume fraction of nanoparticles, and '( number, significantly affect the heat 

transfer characteristics. More precisely, when the heater is placed in the vicinity of the bottom wall, the heat transfer rate 

is improved, whereas it decreases with increasing the top or the bottom heater size. Furthermore, the heat transfer rate 

increases with the rising of the '( number and the volume fraction of nanoparticles. Mebarek-Oudina et al. [35] studied 
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numerically the magneto-hydrodynamic natural convection in a porous vertical annular enclosure containing a nanofluid 

whose aspect ratio and radius ratio are equal to 2. The results revealed that the increase in heat transfer rate is proportional 

to the augment of '( number, the concentration of nanoparticles, the Darcy number, and the porosity. Simultaneously, it 

is inversely proportional to the increase in the length of the heat source and the intensity of the magnetic field. They 

concluded that the improvement in heat transfer is better if !D nanoparticles are used compared to other nanoparticles, 

namely, g:, !"!#" and @d#!. Recently, Sadeghi et al. [36] conducted a numerical analysis of natural convection in an 

adiabatic corrugated cavity with two circular cylinders held at different temperatures using the FEM finite element 

method. The cavity is filled with (ij"##-water) ferrofluid. The flow is exposed to a magnetic field where the viscosity of 

the ferrofluid is highly dependent on its intensity. They examined the influence of various control parameters such as '( 

and 8( numbers, the radiation parameter '), the shape aspect of the nanoparticles, the volume fraction of the ferrofluid, 

and the distance between the two circular cylinders on the flow behaviour and heat transfer performance. Their findings 

for a platelet nanoparticle shape (0 = 5.7) suggest that the heat transfer rate and the intensity of natural convection 

increase monotonically with '( and ') but decrease at the expense of 8(. In addition, the magnetic field is more effective 

at low values of '(, while thermal radiation is more effective at high values of '(.  

So far, the survey of the previous studies shows a lack of studies dealing with the effect of nanofluid properties, namely 

the viscosity and the thermal conductivity, and comparing those effects for the cases of axially and radially applied 

magnetic field.  Therefore, and to the best of the author’s knowledge, no detailed contributions and established 

correlations were provided to show those effects combined with the nanoparticle volume fraction effects, '( and 8( 

numbers on the flow structure and heat transfer characteristics. Consequently, the present study aims to assess these 

effects numerically in a vertical cylindrical annulus containing a water-alumina. The effective thermal conductivity and 

viscosity of the mixture water-alumina are computed by KV (Khanafer and Vafai [37]) correlation. The influence of the 

parameters mentioned above is examined for two nanoparticle diameters )% = 13	and	47	/0. It highlights that the 

consideration of variable fluid properties such as thermal conductivity and viscosity is of critical importance. This 

approach is more realistic compared to the one based on constant properties that, on the one hand, overestimate the heat 

transfer in hot and cold locations and the size of nanoparticles on the other. 

 
2. Mathematical formulation  

Figure 1 shows a schematic of the considered nanofluid contained between two vertical coaxial cylinders of height 8 and 

inner and outer cylinder’s radius O& and O(, respectively. The vertical walls are differentially heated as hot inner wall (@*) 

and cold outer wall (@+) whereas the horizontal walls are kept adiabatic (thermally insulated). The annular enclosure is 

exposed to a constant external magnetic field, and all four walls are electrically insulated boundaries.  
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For an appropriate formulation of the problem, the nanofluid is supposed to be homogenous, incompressible, and 

Newtonian, and the flow is assumed laminar and axisymmetric. The spherical !"!#" nanoparticles and the base fluid 

(water) are supposed in thermal equilibrium. Induced electric current, Joule heating, radiation, and viscous dissipation are 

neglected. In addition, the thermophysical properties of the nanoparticles and the base fluid considered in the present 

study are presented in Table 1 [29]. 

The governing equations of the nanofluid flow and heat transfer using the Boussinesq approximation are defined as 

follows:  

1
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where K, @, : and R are, respectively, the dimensional pressure, temperature, and the velocity components. c./0 and c./1 

represent the dimensional Lorenz forces in radial and axial directions, respectively, and are computed from the equation: 

H23 = \,-[v × x] × x, where x and v are, respectively, the magnetic field and the velocity vectors, computed as 

follows: 

? = ?0 (radial magnetic field): 

															z
c./0 = 0															

					c./1 =	−\,-q?'
!rR

																																																																																																																																						(5a) 

? = ?1 (axial magnetic field): 

														z
						c./0 = −\,-q?'

!r:														
c./1 = 	0																												

																																																																																																																										(5b) 

The nanofluid density [,-, thermal expansion coefficient W,-, heat capacity A%,-, and thermal diffusivity V,- are defined, 

respectively, as: 

[,- = (1 − 3)[- + 3[%																																																																																																																																																																							(6) 

([W),- = (1 − 3)([W)- + 3([W)%																																																																																																																																																		(7) 

q[A%r,- = (1 − 3)q[A%r- + 3q[A%r%																																																																																																																																													(8) 

V,- = C,- q[A%r,-� 																																																																																																																																																																														(9) 

Also, the effective electrical conductivity for the used nanofluid is expressed as follows [38]: 
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\,- \-⁄ = 1 +
3q\% \-⁄ − 1r3

q\% \-⁄ + 2r − q\% \-⁄ − 1r3
																																																																																																																														(10) 

In the above equations, 3 is the nanoparticle concentration in nanofluids. 

The dynamic viscosity Y,- and the thermal conductivity C,- of nanofluids are obtained from the below respective 

correlations proposed by KV [37] based on the various experimental results. With this model, the properties depend on 

temperature, volume fraction, and particle diameter: 

Y,-(AK) = −0.4491 +
28.837
@

+ 0.574	3 − 0.1634	3! + 23.053
3!

@!
+ 0.0132	3" − 2354.735

3
@"
+ 23.498

3!

)%
!

− 3.0185
3"

)%
! 																																																																																																																																																							(11) 

            valid in the ranges: 1% ≤ 3 ≤ 9%	, 13	/0 ≤ )! ≤ 131	/0  and 20°g ≤ @ ≤	70°g. 

C#$
C$

= 0.9843 + 0.398	3%.'()( Å
1

)!(/0)
Ç
%.**+,

Å
Y#$(@)

Y$(@)
Ç
%.%*(-

− 3.9517
3
@
+ 34.034

3*

@(
+ 32.509

3
@*
																			(12) 

            valid in the ranges: 0 ≤ 3 ≤ 10%, 11	/0 ≤ )! ≤ 150	/0 and 20°g ≤ @ ≤	70°g. 

The base fluid (water) viscosity is assumed as a temperature-dependent function defined as [39]: 

Y$(@) = 2.414 × 	10.- × 	10*+'.) (01*'(.2-.2+%)⁄ 																																																																																																																		(13) 

The appropriate boundary conditions are written as follows: 

for            O = O5 				→ 					: = R = 0							(/)							@ = @6	 

for           	O = O7 					→ 				: = R = 0								(/)						@ = @8																																																																																																													(14) 

for           	S = 0					 → 				: = R = 0			(/)			 k@ kS⁄ = 0													 

for            S = 8				 → 			: = R = 0			 (/)				k@ kS⁄ = 0													 

The governing equations (1)–(5) with the applied boundary conditions are formulated in dimensionless form using the 

following dimensionless variables presented in equation (15): 
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Where: 

Y =
Y#$
Y$9

			 ; 			C =
C#$
C$9

																																																																																																																																																													(20) 

It should be noted that for the case of a pure fluid C = 1 and Y = Y$ Y$9⁄  with Y$9 is the viscosity at the reference 

temperature, considered equal to 22	°g in the present study. 

wherein equations (17) and (18), i:;<, i:;= are the radial and axial dimensionless Lorenz forces, respectively.  

? = ?<		: 

à
i:;< = 0																				

					i:;= =	−Pr(8()*J
																																																																																																																																(21a)    

? = ?= : 

à
					i:;< = −Pr(8()* T						
i:;= = 	0																						

																																																																																																																													(21b)                  

The applied boundary conditions can be formulated in dimensionless form as: 

for																	' = 7 !(7 − 1)⁄ 		→ 					T = J = 0								(/)						X = 0												 

for               ' = 1 !(7 − 1)⁄ 			→ 				T = J = 0								(/)							X = 1																																																																																							(22) 

for              	U = 0																						 → 				T = J = 0								(/)			 		kX kU⁄ = 0											 

for               U = 1																						 → 			T = J = 0									(/)				 kX kU⁄ = 0										 

The relevant non-dimensional parameters that characterize the flow are: 

Rayleigh	number	'( =
LMN∆PQ

3

SN0	UN0
 , Prandtl number Pr =

VW9
XW9	

, Hartmann number 8( = ?%8â
YW

	ZW9
, the enclosure aspect ratio 

! = [

(<\.<])
 , and 7 = <\

<]
 is the radius ratio,  

To evaluate the total heat transfer rate through the enclosure, the local and the average Nusselt numbers are defined on 

the inner and outer cylinders as: 

9: = ℎ
8
C$
=
−C#$

k@
kO

(@8 − @6)
8
C$
																																																																																																																								(23) 

Then, the local Nusselt number can be written in dimensionless form as: 
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9: = −Å
C#$
C$
Ç
kX
k'
																																																																																																																																					(24) 

The average Nusselt number is defined as: 

9:;;;;7 = äã−Å
C#$
C$
Ç
kX
k'
å
^_

2
`(a.2)

)U

2

%

																																																																																																									(25) 

                                                                                 (at the inner cylinder) 

9:;;;;5 = äã−Å
C#$
C$
Ç
kX
k'
å
^_

a
`(a.2)

)U

2

%

																																																																																																									(26) 

                                                                                 (at the outer cylinder) 

Therefore, the heat balance of the pure fluid in the enclosure can be given as follows [40]: 

9:;;;;7
9:;;;;5

= 7																																																																																																																																					(27) 

The meridional dimensionless stream function _ is defined as: 

T =
1
'
k_
kU

				,				J = −
1
'
k_
k'

																																																																																																																																(28) 

The enhancement of heat transfer ratio between the pure fluid and the nanofluid (3 = 0.09) is defined by: 

=/ =
9:;;;;7(3 = 0.09) − 9:;;;;7(ç(Qj	c":d))

9:;;;;7(ç(Qj	c":d))
× 100																																																																																																	(29) 

3. Numerical details and model verification 

The governing equations presented in section 2 are solved by the control volume-based discretization method (Patankar 

[41]). The pressure and velocity of Eqs. (1) – (4) are coupled using the SIMPLER algorithm. A fully implicit first-order 

forward Euler scheme is used for temporal discretization. The second-order central finite difference schemes spatially 

discretize the governing equations, then, the discretized equations for each variable are solved using the tri-diagonal 

matrix algorithm (TDMA).  

Grid sensitivity tests are performed, allowing the best grid’s characterization to reduce computational time with a high 

degree of accuracy.  The different uniform grid sizes are tested from 52 × 52 to 202 × 202 for '( = 10-, Pr =

6.2, 8( = 50 (radial magnetic field), 3 = 0.06 and )! = 13	/0. Table 2 illustrates the effect of the different tested grids 

on the average Nu number of the inner cylinder, the maximum velocities, and the maximum stream function. The grid 

independence tests indicated that a grid size of 102 × 102 ensures the best compromise between computational effort 

and required accuracy. The selected convergence criterion for the performed computations is: 

é
`# − `#.2

`#
é < ê = 10.-																																																																																								(30) 

In the above equation, ` represents the different computed variables T,J or X and the / represents the iteration number.  
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The current computational results are compared with those available in the literature to validate the accuracy of the present 

modeling. A first validation is carried out with the results of Choukairy et al. [40] for the case of natural convection (Pr =

0.7) in an annular cavity differentially heated for different radii ratios.  It should be noted that in the case of a square 

cavity (! = 1), the radii ratio tends to 1 (7 → 1). The results reported in figure 4 show an excellent agreement. The second 

validation is performed against the results of Sankar et al. [14] for the case of magneto-hydrodynamic natural convection 

in enclosures. A similar configuration was analyzed for the case of the applied magnetic field and a low Prandtl number 

(Pr = 0.054) for ! = 1 and 7 = 2. Two cases corresponding to '( = 10+ and 8( = 40 (radial magnetic field) and '( =

10, and 8( = 100 (axial magnetic field) are considered. As presented in figure 4 in the form of isotherms and stream 

functions, the obtained results are in good agreement with those of Sankar et al. [14].  

Final numerical validation was carried out for the case of the MHD natural convection of a nanofluid (g:# - water) within 

a square enclosure that is differentially heated. The models of Brinkman [42] and Maxwell-Garnett [43] are used 

respectively to determine the nanofluid’s dynamic viscosity and thermal conductivity. Table (3) demonstrates the 

quantitative comparison of the present work with those computed by Ghasemi et al. [28] with a difference of less than 

0.02%. Results presented in figure 4 show a perfect agreement between the present isotherms and streamlines with those 

presented in reference [28]. This allows us to confirm that the developed FORTRAN code is validated successfully, and 

it can accurately solve the flow field and temperature variation in the cavity.  

4. Results and discussion 

The consequence of adding !"*#( nanoparticles of different diameters ()! = 13 and 47	/0) in the base fluid on the 

isotherms and streamlines for various Rayleigh numbers '( = 10+, 10- and 10, is illustrated in figure 5. This figure 

obviously shows the effect of increasing '( number on the nanofluid flow (3 = 0.09) and the pure water (3 = 0) with 

the important effect of the nanoparticle’s diameter on the flow structure and the thermal field. 

For the streamlines, there are significant variations in the central region, notably for high values of '( number ('( ≥

10-) for both cases of diameters. The addition of nanoparticles of small diameter ()! = 13	/0) increases the strength of 

the streamlines, particularly in the central region. Unlike the case of )! = 47	/0, the weakening of the flow intensity is 

noted relative to the flow of the base fluid. However, near the isothermal walls and small Rayleigh number values, the 

stream function magnitude variation is minor. 

Comparatively significant variations in the central region and near the upper and lower walls for high Rayleigh number 

values could be observed for isotherms. The heat transfer near the isothermal walls of the small nanoparticle nanofluid is 

slightly higher than that of pure water. However, the difference increases with increasing Rayleigh number, suggesting 

an improved heat transfer when the working fluid is the nanofluid. On the other hand, the opposite situation is happening 

for the nanofluid with large nanoparticles, and therefore, the most important heat transfer occurs in water. Thus, the 
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isotherms for )! = 13	/0 are more distorted compared to the case of )! = 47	/0. For a better understanding of these 

results, the thermo-physical properties, namely viscosity, and conductivity are strongly linked to the temperature, the 

volume fraction, and the nanoparticle’s diameter. To better understand these results, the thermo-physical properties, 

namely viscosity and conductivity, are strongly linked to the temperature, volume fraction, and nanoparticle’s diameter. 

The increase in temperature leads to a decreased dimensionless viscosity. Also, this decrease is more pronounced for 

smaller nanoparticle’s diameters. Indeed, the impact of the high viscosity of the nanofluid for )! = 47	/0 is 

complemented by an increased heat transfer anticipated by the nanoparticle's elevated thermal conductivity, although this 

improvement is minor compared to the drop favored by the viscosity. This behavior leads to the nanofluid flow's 

intensification, whose diameter is smaller than the base fluid flow and deceleration of the nanofluid flow whose diameter 

is larger (see the maximum stream function). This behavior leads to the nanofluid flow's intensification, whose diameter 

of the nanoparticles is smaller than the base fluid flow and deceleration of the nanofluid flow whose diameter of the 

nanoparticles is larger (see the maximum stream function). 

 

Figure 6 presents the variation of the local Nu number along the surface of the inner (hot) and outer (cold) cylinders at 

various Rayleigh numbers for 3 = 0,09 and )! = 13 and 47	/0. In all cases, the local Nu number near the hot wall rises 

to a maximum local value at the bottom and subsequently declines along with the inner cylinder to a minimum value at 

the top. However, the opposite effect occurs with a different magnitude order for the local Nu number near the cold wall 

due to the curvature effect.  However, for the local Nu number near the cold wall, the opposite effect occurs with a 

different magnitude order due to the curvature effect. It should be noted that the maximum heat transfer rate near the 

isothermal walls is mostly due to the distribution of the maximum axial velocity, which characterizes, on the one hand, 

the upward or downward movement of the nanofluid and on the other hand, the presence of a large radial temperature 

gradient in these regions. In the case of )! = 47	/0, it is remarkable that an increase in the nanoparticles volume fraction 

(3 = 0.09) indicates a declined local Nu number compared to that of pure water. On the other hand, for )! = 13	/0, an 

increase in the Nu number is observed. This result can be explained through Figure 7, which shows the axial velocity and 

temperature profiles as a function of the radius ' at mid-height of the enclosure for various '( numbers and for 3 = 0 

and 0,09 ()! = 13 and 47	/0). In addition, the axial velocity exhibits a parabolic variation in the vicinity of the 

isothermal walls due to the presence of the buoyancy force in the enclosure. The axial velocity and temperature profiles 

are very sensitive between the base fluid and the nanofluid and the nanoparticles' diameters. This is caused by the changed 

nanofluid conductivity and viscosity where the formulas (Eqs. 11 and 12) are simply sensitive to the volume fraction, the 

temperature, and the nanoparticle’s diameter. However, the axial velocity of the nanofluid for	)! = 13	/0 is higher than 

that of pure fluid in the vicinity of the hot region and lower on the cold part. For )! = 47	/0, the axial velocity is lower 
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than that of the base fluid on both sides. This means that the suspension and the nanoparticles' diameter affect the flow 

field in which the velocity tends to zero around the center of the cavity. This area widens as the Rayleigh number increases. 

The axial velocity profiles also give an idea of the flow rotation direction. Regarding the temperature profiles, the 

temperature gradients for the particles of diameter )! = 47	/0 are more important near the isothermal walls compared 

to the case of )! = 13	/0 and to the base fluid. On the other side, the temperature of the case )! = 13	/0 is higher than 

the case )! = 47	/0 and the base fluid far from the walls for the values of '( ≥ 10-. We can relate this result to the 

distribution of the conductivity and dimensionless viscosity in these regions. 

To shed more light on our results and highlight what we have found in the present study compared to previously published 

data, Table (4) presents an overview of some previously published works for natural convection of nanofluids in 

cylinder/annulus enclosure with and without applied magnetic field. Details of the used methods, models, type of 

nanofluids and the range of the investigated parameters are also provided. In general, the present results agree well with 

previous findings from various investigations and the discussion on the compared results for the different investigated 

parameters are reported trough the following texts.  Figure 8 presents the computed average Nu number against the volume 

fraction of the nanoparticles for various '( number values, for 8( = 0 and )! = 13	and 47	/0. First, it is observed that 

the convection becomes more pronounced with increasing '( number, and therefore an increased average Nu number. In 

the absence of the magnetic field, and for all '( number values, the average Nu number rises slightly as the nanoparticles' 

volume fraction increases from 0 to 1%. This is due to the nanoparticles' presence with a low concentration, which does 

not affect the nanofluid's viscosity. Similar observation has been reported by Abu-Nada et al. [44].  

In the case of )! = 47	/0, it is observed that an increase of the volume fraction of nanoparticles leads to a declined 

average Nu number. On the other hand, for )! = 13	/0, it is observed that, for a low concentration of nanoparticles 

(volume fraction < 5%), a decrease in the average Nu number occurs to a minimum value. However, this trend is inversed 

for higher concentration (volume fraction > 5%) where an increase in the average Nu number was observed. Generally, 

the consideration of nanoparticles in the base fluid has two opposite effects on the computed heat transfer rate: a positive 

and desirable effect motivated by the existence of nanoparticles characterized by high thermal conductivity and a negative, 

undesirable effect favoured by the increased fluid viscosity caused by the presence of nanoparticles. Thus, nanoparticles 

with large diameters will produce a high viscous nanofluid, which will reduce the intensity of convection and 

consequently decrease the average Nu number. However, the consideration of nanoparticles with small diameters will 

produce a less viscous nanofluid, which will improve the convection mechanism. This behavior is also observed in the 

numerical results of Arani et al. [49] which indicate a strong dependence of the mean Nusselt number on the diameter of 

the nanoparticles )! where the mean Nusselt number is a decreasing function at a range of )! between 30 and 90	/0. 
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In addition, the improvement in the heat transfer of the nanofluid (3 = 0.09) in comparison with the base fluid is more 

noticeable for an increased Rayleigh number (20.49% for  '( = 10,	, 18.29% for '( = 10- and 15.37% for  '( = 10+), 

while deterioration is observed for )! = 47	/0. Referring to Table (4), our results agree well with the findings reported 

by the experimental study of Putra [26] and the numerical study of Omid Abouali and Ahmad Falahatpisheh [27] 

concerning large particles )! = 131.2	/0 and 36	/0, respectively. In fact, the improvement in heat transfer was 

influenced in the opposite way where detorioration took place with increasing volume fraction of nanoparticles. 

Figure 9 describes the impact of the radius ratio on flow and thermal behavior. Two radius ratios 7 = 4 and 10 are 

considered for two values of Rayleigh number '( = 10- and 10, and for different volume fractions 3.	It is observed that 

the rising radius ratio leads to a slight modification in the flow structure. Thus, for different volume fractions, the flow 

for '( = 10- is composed of a single primary cell that occupies the entire enclosure, and the centre of this cell moves 

towards the wall of the outer cylinder. This result is mainly due to the curvature, which destroys the centro-symmetrical 

properties of the flow and computes the temperature field noted in the rectangular enclosure case (7 = 1). Moreover, the 

flow's weakening is remarkable with the increase of 3 = 0.03 and 0.06 compared to the base fluid flow. The reduction 

in the values of |_|bcd illustrates this attitude through Figure 10, which shows the distribution of the maximum stream 

function as a function of the radius ratio for different volume fractions. This behavior can be explained by the dominance 

of nanofluid viscosity's unfavourable effect over the favourable effect of thermal conductivity, which causes this 

deceleration of nanofluid flow. A different result is obtained for 3 = 0.09 where the nanofluid flow intensity is important 

compared to the base fluid flow. Indeed, the influence of the high thermal conductivity of the flowing nanofluid improves 

the circulation driven by the buoyancy versus viscosity forces. This figure also clearly indicates that the intensity of the 

flow decreases with increasing the radius ratio 7. As '( increases to 10,, this leads to a spread of the main cell in the 

radial direction and the presence of two secondary cells of different sizes within this cell. The same result is obtained 

regarding the weakening of the flow with the increase from 3 to 0.06  and the flow's intensification to 3 = 0.09 compared 

to the base fluid flow. 

Regarding the thermal field, the increase in the radius ratio leads to an increased density of the isothermal lines in the 

vicinity of the hot internal wall, indicating a strong temperature gradient. However, the opposite behaviour occurs in the 

vicinity of the cold external wall, where the temperature gradient is very low. Therefore, this effect leads to the reduction 

of the temperature in the chamber core. This result agrees well with Satya Sai et al. [53] and Woon Shing Yeung [54]. In 

the presence of the nanoparticles, it is evident that by enhancing the volume fraction of the flowing nanoparticles, the 

isotherms become less distorted than the pure fluid case and show an almost similar tendency as they approach the hot 

wall and move away from the hot wall to the cold wall. 
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For a better analysis of the radius ratio effect on the heat transfer in the annular enclosure, the average Nu number is 

presented in Figure 11 for three Rayleigh number values and four values of the radius ratios. First, it is revealed that the 

rate of heat transfer is improved as the Rayleigh number increases. The increasing radius ratio results in a declined 

thickness of the thermal boundary layer at the inner cylinder’s hot wall. Reducing this layer causes temperature gradients 

to increase, which tends to increase the Nu number accordingly. Generally, the average Nu number’s variation against 

the volume fraction presents a similar appearance to that observed in Figure 7. Therefore, the same reasoning is also 

applied regarding the behaviour of the average Nu versus the volume fraction for 7 = 4, but for 7 ≥ 6 the results revealed 

that, Nu number is higher than that of pure fluid for all volume fractions. In such a case, the effect of increased thermal 

conductivity is more pronounced and predominates over the impact of increased viscosity, especially for a high-volume 

fraction. 

The heat transfer enhancement ratio "=/" caused by the introduced nanoparticles (3 = 0.09) is presented in Figure 12 

for several values of '( and 7. The results show that the ratio =/ evolves in a monotonically increasing way when the 

radius ratio rises. In parallel, this figure also indicates that increasing '( number causes an increased heat transfer 

enhancement ratio due to a strong convective heat transfer effect. 

The effect of the orientation and strength of the magnetic field on the streamlines and isotherms are shown in Figure 13 

for '( = 10,, 3 = 0.09, )! = 13 and 47	/0. The flow is characterized by the primary cell with two secondary cells 

located at mid-height near the inner and outer cylinders for no applied magnetic field case. The application of the radial 

magnetic field causes noticeable changes in the flow field. Once the magnetic field's strength increases, the flow becomes 

a single cell with a significant concentration of streamlines at the top of the enclosure caused by the axial Lorentz force's 

action. Smaller changes in the flow structure are observed for the two cases )! = 13 et 47	/0. It is interesting for the 

axially oriented magnetic field to note two secondary cells inside the primary cell with a concentration of streamlines at 

the isothermal walls. This phenomenon can be interpreted as the consequence of the action of the resulting Lorentz radial 

force. Moreover, it can be observed that the centers of these secondary vortices continue to move downward in the vicinity 

of the hot wall and upward in the vicinity of the cold wall due to the increased magnetic field strength of a side and on 

the other side, the effect of the curvature of the annular enclosure. 

Table 5 shows the flow characteristics such as the maximum radial and axial velocities and the maximum stream function 

for 3 = 0.09, )! = 13	/0 and for different numbers of 8( and îO. Usually, when the magnetic field strength rises, the 

annulus' flow movement is damped, and the maximum stream function value decreases significantly. Additionally, this 

decrease is more significant when the magnetic field is oriented radially. However, the rates of decline are different for 

different Rayleigh numbers. For example, for the Rayleigh numbers of '( = 10+, 10- and 10,, if we vary 8( = 0 to 

25, the maximum stream function values decline respectively by 32.4%, 61.7%, and 79.3% for a radial magnetic field 
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and 32.1%, 62.3%, and 89.6% for an axial magnetic field. Similarly, Ashorynejad et al. [31] and Sheikholeslami et al. 

[32] had already observed this decrease in ï_#$ïbcd as 8( increases. Hence, the trend indicates that the magnetic field's 

influence on fluid flow increases when the Rayleigh number is increased. 

Regarding the thermal field, conduction is more pronounced compared to convection for intense magnetic fields. The 

isotherms become less and less deformed, especially near isothermal walls when the magnetic field is oriented radially. 

However, at the heart of the annular space, these isotherms are parallel and inclined concerning the case 8( = 0, where 

the lines are aligned horizontally. For the case of the axially oriented magnetic field, the isotherms' straightening and 

alignment are noticed in the vicinity of the isothermal walls and likewise close to the heart of the annular space with a 

very significant inclination. 

Figure 14 presents the computed average Nu number versus Hartmann number for '( = 10,, 3 = 0, 0.03, 0.06 and 0.09, 

)! = 13 and 47	/0 and for two orientations of the radial and axial magnetic field. Based on the results of [29,31,32,33] 

indicating the effect of the magnetic field on the heat transfer which is accompanied in all cases by a decrease in the 

average Nu number with the increase of 8(. This result is due to the flow's deceleration (see Table 5) by the Lorentz 

force's effect, which acts in the opposite flow direction. Thus, reducing the flow velocity induces an enhanced thickness 

of the thermal boundary layer. This layer's evolution produces a diminishing temperature gradient at the heated wall, 

leading to a decreased Nu number.  

The magnetic field orientation has also been observed and is more pronounced in the radial direction. This is because the 

resulting axial Lorentz force significantly damps the motion of the flow induced by the buoyancy force. This force 

becomes stronger with strong magnetic fields. The effect of nanoparticle diameter is most evident at an intense magnetic 

field where the curves of 9:;;;;7 at a different volume fractions become tighter for )! = 47	/0. On the other hand, for )! =

13	/0, the difference is relatively large. This difference can be attributed to the effect of high viscosity for the large 

diameter of the nanoparticles. For '( = 10+, the effect of the magnetic field orientation on the variation of the Nu number 

is insignificant because of the impact of convection, which is relatively weak on the one hand and the dominance of the 

conduction regime on the other hand from 8( = 50. Furthermore, this variation of 9:;;;;7 decreases with increasing the 

strength of the magnetic field before reaching an asymptotic value. The increased volume fraction of the nanoparticles 

results in a further increase in this asymptotic value. At high values of the Hartmann number, conduction is dominant, 

and the effective thermal conductivity of the nanofluid contributes to an enhanced Nu number relative to those of the pure 

fluid in all cases. However, for high Rayleigh numbers, say at '( = 10,, the Nu number for the pure fluid is relatively 

higher than that of a nanofluid for )! = 47	/0 and 3 = 0.09, which results in the detrimental effect of the viscosity, 

which counterbalanced the favourable impact of thermal conductivity on one side and the other side the weak effect of 

the magnetic field axial direction compared to that of the radial direction. 
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Figure 15 shows the impact of Hartmann number 8( and the radius ratio 7 on the computed average Nu number for '( =

10, and 3 = 0.09 for both radial and axial magnetic field directions. Once the strength of the magnetic field increases, 

then 9:;;;;7 decreases due to the dominance of conduction. This figure also reveals that the decrease in the 9:;;;;7 	is relatively 

large when the magnetic field is directed radially for all the ratios 7. Moreover, the rate of decrease of the average Nusselt 

number (9:;;;;7(8( = 0) − 9:;;;;7(8( = 100) 9:;;;;7(8( = 0)⁄ ) is even stronger when the radius ratio decreases. For 

example, in the case of a radial magnetic field, the rate of decrease of 9:;;;;7 for 7 = 2 when Ha varies from 0 to 100 is 

57.25%, while for 7 = 10, the rate of decrease is 52.28 % but for the case axially applied magnetic field, the decrease 

rates for 7 = 2 and 10 are respectively 41.78% and 30.27%. 

From the above-achieved results, it is evident that the average Nu number can be correlated as a function of '( and 8( 

numbers, the volume fraction 3, and the radius ratio 7 as 9:;;;;7 = f ('(, 3, 8(, 7). Two original developed correlations 

provided in equations (31) and (32) are proposed and derived for the radial and axial magnetic fields cases. The 

coefficients are obtained using the least square regressions method in which R2 of 0.983 and 0.978 are obtained for the 

radial and axial magnetic fields cases, respectively. It is essential to mention that these two correlations correspond to the 

case of small nanoparticles diameter )! = 13	/0 in which an important heat transfer enhancement is obtained. 

Furthermore, the derived correlations are valid within the range of the investigated parameters of the present study. Within 

these limits, the correlations can accurately capture the overall variation of the average Nu number. These derived 

correlations are: 

• For the radial magnetic field, ?<: 

9:;;;;7 = 39.935 − 19.618'(∗ − 7.6993∗ + 1.3788(∗ + 0.6117∗ + 1.174'(∗3∗ − 0.439'(∗8(∗ + 1.877'(∗7∗ −

0.0383∗8(∗ + 1.9663∗7∗ − 0.2758(∗7∗ + 2.516('(∗)* + 3.339(3∗)* + 0.036(8(∗)* − 3.153(7∗)*																				(31)                                                                                                                                         

• For the axial magnetic field, ?!: 

9:;;;;" = 59.07 − 27.15'(∗ − 9.8973∗ + 0.6978(∗ − 2.6697∗ + 1.165'(∗3∗ − 0.244'(∗8(∗ + 2.727'(∗7∗ −

0.0233∗8(∗ + 2.0413∗7∗ − 0.1578(∗7∗ + 3.235('(∗)$ + 5.684(3∗)$ + 0.011(8(∗)$ − 3.797(7∗)$																				(32)  

In the above correlations, '(∗ = log('(), 8(∗ = 0.18(, 7∗ = 0.17 and 3∗ = 103	. 

The heat transfer enhancement ratio "=/" computed for the case of existing nanoparticles (3 = 0.09) for various 8(	and 

'( values is presented in Figure 16. When the magnetic field is absent, it is observed that the effect of adding nanoparticles 

is more evident at high '( number values compared to the case of low '( number. However, an inverse behavior is 

noticed when the magnetic field is applied. For 8( = 0,	the enhancement ratio increases with increasing '( number. As 

explained previously, this result is due to the increased convection mechanism. However, for high values of 8(, this ratio 

increases with the decrease of '( number due to the dominant conduction in the heat transfer mechanism. Thus, the 

consideration of nanoparticles with high thermal conductivity results in an enhanced conduction process and improves 
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the heat transfer enhancement ratio as demonstrated by the numerical work of Sheikholeslami et al. [29.33] indicating 

that =/ is an increasing function with 8(. For high '( number values, the strong magnetic field effectively reduces 

convective motion, and consequently, the conduction becomes the prevalent mechanism; hence, the enhancement ratio 

increases. The magnetic field orientation's influence has also been observed. Most interestingly, the magnetic field is 

more effective when directed radially, which results in the high values of =/ in this case compared to the axial magnetic 

field. 

Conclusion 

 
In the present study, the finite volume method-FVM is used to solve the system of equations governing the flow and heat 

transfer by natural convection in differentially heated vertical annulus subject to an uniform magnetic field, oriented in 

the axial and radial directions. The !"$#%-water nanofluid is used, and the flow field and heat transfer results have been 

presented in the form of streamlines, isotherms, and Nusselt number. Several combinations of parameters in the range of 

Rayleigh number 10& ≤ '( ≤ 10', Hartmann number 0 ≤ 8( ≤ 100, nanoparticle volume fraction 0 ≤ 3 ≤ 0.09, 

radius ratio 2 ≤ 7 ≤ 10, and nanoparticle diameter )( = 13	and	47	/0 have been considered.  

A detailed validation of the numerical model was carried out, and the main conclusions that can be drawn from this study 

can be summarized as follows: 

• In the absence of a magnetic field, increasing the Rayleigh number improves the average Nusselt number over 

the full range of the parameter set combinations. On the other side and for an applied magnetic field, the average 

Nu number decreases with the increasing of the Hartmann number. 

• For radius ratio 7 = 2, increment of the volume fraction of nanoparticles led to the continuous deterioration of 

the average Nu number at )( = 47	/0, however, for )( = 13	/0, the average Nu number decreases to a 

minimum value at 3 = 0.05, then it increases to reach its maximum value at 3 = 0.09. This behaviour of the 

average Nu number for )( = 13	/0 remains the same for 7 = 4. However, for 7 ≥ 6, the average Nu number 

is greater than that of pure fluid for all volume fractions. In this case, the effect of increased thermal conductivity 

is more pronounced and predominates over the impact of increased viscosity, especially for a high-volume 

fraction. 

• The influence of the magnetic field is more pronounced in the radial direction. This is because the resulting axial 

Lorentz force significantly damps the motion of the flow induced by the buoyancy force. This force becomes 

greater for strong magnetic fields. 

• The rate of decrease in the average Nu number caused by the application of the magnetic field is greater as the 

radius ratio 7 decreases. 
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• As the Rayleigh number and the radius ratio 7 are increased, the heat transfer enhancement ratio =/ increases 

with the insertion of nanoparticles (3 = 0.09) of small diameters.  

• The heat transfer enhancement ratio =/ increases as the Hartmann number is increased, and for high values of 

8(, this ratio increases further at the expense of the Rayleigh number. 
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Fig. 1. Schematic of the problem. 
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Fig. 2. Comparison of  9:;;;;" numbers with [36]. 
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(b) 

Fig. 3. Comparison of streamlines and isotherms with [14] for Pr = 0.054, ! =1 and 7 = 2 at (a) '(	 = 	10& , 8( =

100 (radial magnetic field) and (b) '( = 10' , 8( = 100 (axial magnetic field). 
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(a)                                              (b)                                               (c) 

 

Fig. 4.  Comparison of streamlines and isotherms with [26] for '( = 10' and 3 = 0.03  at (a) 8( = 0, (b) 8( = 30, 

and (c) 8( = 60 (horizontal magnetic field). 
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												ï_/*ï+,- = 37.357																																																																						ï_/*ï+,- = 25.980    

											ï_*ï+,- = 30.314 

 

                                                     (a)                                                                                         (b) 

 

Fig. 5.  Streamline (left) and isotherm (right) contours for 3 = 0 (solid lines) and 3 = 0.09 (dashed lines) at '( = 106 

and = 2 : (a) )5 = 13	/0, (b)		47	/0. 
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(c) 

Fig. 6. Variation of 9: along the surface of the inner and outer cylinder for different '(. 
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(c) 

 

Fig. 7.  Variation of axial velocity T (left) and temperature X (right) at half height along ' direction for different '( at 

7 = 2: 3 = 0 (pure water) and  3 = 0.09 (nanofluid )5 = 13	and 47	/0). 
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Fig. 8.  Variation of 9:;;;;"  with 3 for different '( at 7 = 2. 
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Fig. 9. Streamlines and isotherms for )( = 13	/0, '( = 10<, 10' and 7 = 2 , 10 at different 3.	 
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Fig. 10. Effect of 7 on the maximum stream function |_|+,- for different '( and 3 at )( = 13	/0. 
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Fig. 11.  Variation of 9:;;;;" with 3 for different '( and 7 at	)( = 13	/0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,00 0,02 0,04 0,06 0,08 0,10
0

5

10

15

20

25

30
N

u i

j

  l = 4       l = 6
  l = 8   l = 10

Ra = 104

Ra = 105

Ra = 106



35 
 

 

 

 

 

 

 

Fig. 12. Effects of '( and 7 on the heat transfer enhancement ratio =/ for 3 = 0.09 and )( = 13	/0. 

 

 

 

 

 

 

 

 

Radial magnetic field,  x= 

2 4 6 8 10
14

16

18

20

22

24

26

En

l

 Ra =104

 Ra =105

 Ra =106

j = 0,09 , dp=13 nm



36 
 

 

             

              

              

              

              

 

(a)                                                                                                 (b) 

 

 

 

 

 

 

 

Axial magnetic field, x> 

 

8
(
=
25

 
8
(
=
50

 
8
(
=
75

 
8
(
=
10
0 

_ _ X X 

_ _ X X 



37 
 

 

               

              

              

              

 

(a)                                                                                                 (b) 

 

 

Fig. 13. Effect of 8( on streamlines (left) and isotherms (right) for '( = 10'and 3 = 0.09 at (a) )( = 13	/0 and (b) 

47	/0. 
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ôö = õúA 

 

 

 

(a)                                                                           (b) 

 

Fig. 14. Effect of 8( on the average 9:;;;;" for different '(	and 3 at 7 = 2 and )( = 13	/0, 47	/0: (a) ?B	and (b) ?!. 
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Fig. 15. Effects of 8( and 7 on the average 9:;;;;" for '( = 10', 3 = 0.09 and )( = 13	/0: (a) ?B	and (b) ?!. 
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Fig. 16. Effects of '( and 8( on the heat transfer enhancement ratio =/ for 3 = 0.09 and )( = 13	/0: (a) ?B	and (b) 

?!. 
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Table 1. Thermo-physical properties of water and alumina [27]. 
 
 

                                     ùû										ü	(†° ¢C⁄ )									£D(§ †°•⁄ )							†	(¶ ¢•⁄ )								ß × õúE@	(õ •⁄ )						®	(õ ©.¢⁄ ) 

™´¨≠	ÆöØ≠¨                  6.2             997.1                  4179                   0.613                     21                         0.05 

∞±´¢≤≥ö	(∞±F¥C)                        3970                       765                 40                              0.85                  10-5 
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Table 2. Characteristics of the flow for different grids at: 	'( = 10<, Pr = 6.2, 8( = 50, 3 = 0.06 and )K = 13	/0. 

 
 

µ¨≤∂																			∑∏ × ∑∏	≥π∂≠∫										õú∏ × õú∏	≥π∂≠∫									∏ú∏ × ∏ú∏	≥π∂≠∫ 

ª´;;;;G                          3.574                              3.550                               3.542	

ºH8I	                     17.528                            17.490                             17.490 

¶H8I                     21.563                            21.649                             21.651 

|Ω|H8I                     5.896                              5.887                               5.889 
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Table 3. Comparison of 9:;;;;" with [26] for different '( and 3 at 8( = 30. 

 

                                                     
							æ = ú															æ = ú. ú∏																	æ = ú. úø														æ = ú. ú¿	 

 
ôö = õúC 

   Ghasemi et al.[26]           1.002                   1.060                    1.121                    1.184 

    Present work                   1.002                   1.060                    1.120                    1.183 

ôö = õú? 

    Ghasemi et al.[26]           1.183                   1.212                    1.249                    1.291 

    Present work                    1.182                   1.212                    1.248                    1.290 

ôö = õú@ 

    Ghasemi et al.[26]           3.150                   3.138                    3.124                    3.108 

     Present work                   3.149                   3.137                    3.123                    3.107 

ôö = õúA 

    Ghasemi et al.[26]           7.907                   7.979                    8.042                    8.098 

    Present work                    7.907                   7.978                    8.042                    8.097  

ôö = õúJ 

    Ghasemi et al.[26]         16.929                 17.197                  17.449                  17.688 

    Present work                 16.926                 17.194                  17.447                  17.687 
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Table 4. Natural convection of nanofluid in cylinder/annulus enclosure with and without applied magnetic field 

Authors Method NF Case study Magnitic 
field Parameters Models Conclusions 

Abouali and 
Falahatpisheh 
[27] 

FVM Al2O3 
Natural convection 
in vertical annuli 
differentially heated 

 
/ 

!! = 36	&' 

1	 ≤ * =
+

," − ,#
≤ 5	

10$ ≤ 0, ≤ 10% 
0 ≤ 1 ≤ 0.06 

3&'	: model of Jang 
and Choi [44] 
5&':  model of Nguyen 
et al. [45] 

- 678888 decreases with the increase of 1 independently of 
the Grashof number, the aspect ratio (* ≥ 1) and the 
radius ratio of the ring following the correlation: 678888 =
678888'(1 − ;1) where the constant c depends on the 
particle diameter dp and how the viscosity 5&' varies 
with 1. 
- The model of Jang and Choi (3&') agrees with the 
experience of Putra et al. [26] and shows a deterioration 
in heat transfer. 
 

Abu-Nada [46]  FVM Al2O3 Natural convection 
in horizontal annuli  

 
/ 

!! = 	47	&' 

0.2	 ≤
," − ,#
,#

≤ 0.8	

10$ ≤ AB ≤ 10% 
0 ≤ 1 ≤ 0.09 

3&':  
1. model of Chon et al. 
[47] 
2. model of Maxwell-
Garnett [43] 
5&':  
1. Model of Nguyen et 
al. [48] 
2. Model of Brinkman 
[42]  

- For AB ≥ 10( and 1 > 0.05, 678888 is reduced by 
increasing 1. 
- at AB = 10$,	678888 increases with increasing 1. 
- For AB ≥ 10(, the difference between the prediction 
of MG and that of the model of Chon et al. is weak. 
However, there is a deviation at AB = 10$ and this 
deviation becomes more significant at high \ varphi. 
- The Nguyen and Brinkman models give completely 
different predictions for AB ≥ 10( where the 
difference of 678888 exceeds 30%. However, this 
difference reduces to less than 10% at AB = 10$. 

Sheikholeslami 
et al. [29] 

LBM Al2O3 

MHD Natural 
convection in a 
concentric annulus 
between a cold 
square and heated 
elliptic cylinders 
 

/ 

!! = 	47	&' 
10( ≤ AB ≤ 10) 
0 ≤ +B ≤ 100 
0 ≤ 1 ≤ 0.04 

3&' and 5&':  
Correlation of Koo-
Kleinstreuer- Li 
[50,52] 
 

- 678888 is an increasing function of 1 and Ra, while it is 
a decreasing function of Ha. 

Ashorynejad et 
al. [31] 

LBM Ag 

MHD Natural 
convection heat 
transfer in a 
horizontal 
cylindrical annulus 
enclosure  
 

Radial 
magnetic 

field 

,"
,#
= 3 

10$ ≤ AB ≤ 10% 
0 ≤ +B ≤ 60 
0 ≤ 1 ≤ 0.06 

3&':  
Model of Maxwell-
Garnett [43] 
5&':  
Model of Brinkman 
[42] 

- 678888 is an increasing function of 1 and AB, while it is 
a decreasing function of +B. 
- EF&'E*+, increases as 1 increases or AB increases, 

while it decreases as +B increases. 
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Sheikholeslami 
et al. [32] 

LBM Al2O3 

MHD natural 
convection in a 
horizontal annulus 
with heated 
triangular inner 
cylinder and couled 
outer circular 
cylinder 
 

Horizontal 
magnetic 

field 

!! = 	47	&' 
10$ ≤ AB ≤ 10% 
0 ≤ +B ≤ 100 
0 ≤ 1 ≤ 0.04 

3&' and 5&':  
Correlation of Koo-
Kleinstreuer- Li 
[50,52] 
 

- 678888 is an increasing function of AB, while it is a 
decreasing function of +B. 
- EF&'E*+, decreases as +B increases. 

Sheikholeslami 
et al. [33] 

CVFEM Al2O3 

MHD natural 
convection in a 
horizontal annulus 
with cold outer 
cylinder, and the 
inner circular wall is 
under constant heat 
flux 

Horizontal 
magnetic 

field 

!! = 	47	&' 

0.2 ≤
,#&
G ≤ 0.4 

10$ ≤ AB ≤ 10% 
0 ≤ +B ≤ 100 
0 ≤ 1 ≤ 0.04 

3&' and 5&':  
Correlation of Koo-
Kleinstreuer- Li 
[50,52] 
 

678888 is an increasing function of 1, AB, and of the aspect 
ratio (

-!"
. ) while it is a decreasing function of +B 

Present work FVM Al2O3 

MHD natural 
convection in 
vertical annuli 
differentially heated 

Radial and 
horizontal 
magnetic 

fields 

!! = 13 and  47	&' 

2	 ≤ H =
,"
,#
≤ 10 

10( ≤ AB ≤ 10) 
0 ≤ +B ≤ 100 
0 ≤ 1 ≤ 0.09 

 

3&' and 5&':  
Correlation of 
Khanafer and Vafai 
[37] 

- 678888 is an increasing function of Ra, and of the radius 
ratio	H while it is a decreasing function of +B. 
- For H = 2, 678888 is a decreasing function of 1 for !! =
47	&'. 
- For !! = 13	&' and H = 2  and 4, 678888 decreases to 
1 = 0.05 and then increases to its maximum at 1 = 0.09. 
  - For !! = 13	&' and H ≥ 6, the heat transfer rate of 
the nanofluid is greater than that of the base fluid for 
all values of 1. 
- The influence of the magnetic field is more 
pronounced in the radial direction. 
- With the magnetic field, the rate of decrease in 678888 is 
greater as H decreases. 
- As AB, +B and H are increased, the heat transfer 
enhancement ratio J& increases and for high values of 
+B, J& increases further at the expense of AB. 
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Table 5. Effect of !" on the characteristics of the flow for different #" at $ = 0.09 and )! = 13	-.. 

 

 

 

 
!" = 0 !" = 25 !" = 50 !" = 75 !" = 100 

 2" 2# 2" 2# 2" 2# 2" 2# 

#" = 10$ 

3%&' 22.804 7.779 7.296 3.099 2.562 1.737 1.241 1.141 0.729 

4%&' 32.245 9.349 12.518 2.790 5.030 1.300 2.836 0.747 1.883 

|6|%&' 8.956 2.907 2.877 0.886 0.904 0.409 0.425 0.234 0.246 

#" = 10( 

3%&' 66.697 37.912 35.515 23.659 23.276 15.847 13.743 11.151 8.219 

4%&' 122.369 66.780 88.579 28.391 52.932 14.075 31.409 8.069 20.204 

|6|%&' 20.517 12.659 12.781 6.596 6.904 3.700 3.915 2.276 2.399 

#" = 10) 

3%&' 190.033 127.715 125.880 91.429 90.477 72.371 78.542 59.301 67.020 

4%&' 406.671 311.433 375.323 198.026 317.074 123.813 262.889 80.495 214.288 

|6|%&' 37.357 29.649 33.479 21.347 26.491 15.953 20.596 12.230 16.050 


