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Abstract: Motivation, BRCA1 and BRCA2 are genes with tumor suppressor activity. They are
involved in a considerable number of biological processes. To help the biologist in tumor classification,
we developed a deep learning algorithm. The question when we want to construct a neural network
is how many hidden layers and neurons should we use. If the number of inputs and outputs is
defined by the problem, the number of hidden layers and neurons is difficult to define. Hidden
layers and neurons that make up each layer of the neural network influence the performance of
system predictions. There are different methods for finding the optimal architecture. In this paper, we
present the two packages that we have developed, the genetic algorithm (GA) and the particle swarm
optimization (PSO) to optimize the parameters of the neural network for predicting BRCA1 and
BRCA2 pathogenicity; Results, we will compare the results obtained by the two algorithms. We used
datasets collected from our NGS analysis of BRCA1 and BRCA2 genes to train deep learning models.
It represents a data collection of 11,875 BRCA1 and BRCA2 variants. Our preliminary results show
that the PSO provided the most significant architecture of hidden layers and the number of neurons
compared to grid search and GA; Conclusions, the optimal architecture found by the PSO algorithm
is composed of 6 hidden layers with 275 hidden nodes with an accuracy of 0.98, precision 0.99, recall
0.98, and a specificity of 0.99.

Keywords: deep learning; genetic algorithm; particle swarm optimization; BRCA1 and BRCA2 genes;
new generation sequencing; ngs analysis; neural network optimization; genes prediction; bioinformatics

1. Introduction

Deep learning is a branch of machine learning. Unlike traditional machine learning
algorithms, whose ability to learn is limited regardless of the amount of data acquired,
deep learning systems can improve their performance by accessing more data. Once the
machines have gained enough experience through deep learning, they can be used for
specific tasks such as driving a car, detecting weeds in a field, detecting diseases, and
inspecting machines for faults. Deep learning (deep neural networks) methods were
originally inspired by the human brain to imitate the vast network of interconnected
neurons. Unlike shallow neural networks which are composed of one hidden layer, deep
learning is neural networks that use multiple hidden layers. In deep learning, we feed
millions of data instances into a network of neurons, teaching them to recognize patterns
from raw inputs [1]. From them, the network can learn automatically by adapting and
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correcting itself to fit observed patterns in the data. The ability to automatically construct
data representations is a key advantage of deep neural networks over conventional machine
learning [1]. There are many open-source deep learning projects, such as the H2O platform,
Theano, Torch, Tensorflow, Caffe, and Keras. For the needs of the project, we used Keras
Tensorflow version 2.2 with the R language version 3.6.

The network architecture is made by the choice of how many hidden layers
L = {L1, L2, . . . , Ln} the network will have and how many hidden units N = {N1, N2, . . . , Nn}
each hidden layer will have [2]. Parameters L and N are very important and have a major
influence on the performance of deep machine learning [3]. Tuning these parameters can be
done by hand with the tune grid search method or by choosing an empirical architecture like,
for example, minimization of quadratic search [4]. Grid search can save time in setting L and
N. With this method, the structure could be tuned until a suitable number of nodes and/or
layers is found to reduce or remove overfitting for the problem. Alternately, the model could
be overfitting and then pruned by removing nodes until it achieves suitable performance on a
validation dataset [5]. However, the grid search method is still time-consuming as the number
of combinations is exponential. Moreover, if the list of the tuning parameters is chosen badly or
poorly, the network may not be efficient in prediction or learn slowly and perhaps not at all [3].

This paper proposes two parameters selection methods for deep learning models:
genetic algorithm (GA) and particle swarm optimization (PSO) to tune the architecture
of fully connected deep neural networks (Multi-Layer Perceptron—MLP). We will tune,
the number of hidden layers, the number of hidden neurons, dropouts, and activation
functions that compose each hidden layer. GA and PSO were written in R language and
re-adapted to work with Keras Tensorflow API. To perform our tuning test, we worked on
our data collection of BRCA1/BRCA2 genes (BRCA1 benign 2632, BRCA1 pathogenic 2660,
BRCA2 benign 3446, BRCA2 pathogenic 3137), which represents from January 2018 until
April 2021 a total of 11,875 variants of BRCA1 and BRCA2. These genes are involved
in many forms of cancer, mainly breast cancer, where their names come from (BReast
CAncer) but also breast cancer ovaries or prostate. However, cancers caused by a BRCA
mutation have the advantage of responding well to treatment-inhibiting PARP, which
makes it possible to prevent heavier treatments like chemotherapy. It is therefore extremely
beneficial to sequence these two genes in the context of personalized medicine or as part
of the prevention of cancer risk. The best architecture was implemented routinely to
predict the pathogenic character of variants. A genetic algorithm (GA) is an algorithm
that attempts to simulate the evolution of populations to find the optimal solution for a
problem. It belongs to the method called ‘evolutionary algorithms based on the principles
of selection and mutation. GA was introduced by J. Holland [6] and it is based on the
natural evolution theory of Darwin. Particle Swarm Optimization (PSO) is one of many
optimization algorithms that are inspired by nature. PSO simulates the behavior of a flock
of birds or a school of fish. PSO shares many similarities with evolutionary computation
techniques such as Genetic Algorithms (GA) [7,8]. It is initialized with a pool of random
solutions and searches for optima by updating through iterations. In PSO, the potential
solutions are called particles and move through the problem space by following the current
optimum particles.

2. Materials and Methods

The BRCA1 gene is located on the long arm of chromosome 17 (chromosomal lo-
cation:17q21.31). It consists of 23 exons, 22 of which are coding, on a locus of 81 kb
(1 kb = 1 kilobase = 1000 bases). The transcription of this gene provides the main transcript
of 7.2 kb, encoding a protein of 1863 amino acids. The BRCA2 gene is located on the long
arm of chromosome 13 (chromosomal location: 13q13.1). This gene contains 27 exons,
26 of which are coding, on a locus of 84 kb genomics. Transcription of this gene provides a
10.98 kb transcript, encoding a protein of 3418 amino acids.

For all clinical samples, after tumoral genomic DNA extraction by the Maxwell RSC
DNA FFPE kit or Maxwell RSC Cell DNA (Promega, Charbonnières-les-Bains, France), we
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performed the full sequencing for the genes BRCA1 and BRCA2 (on coding regions and
intron-exon junctions +/− 28 intron base pairs) with the technology of Ion Torrent S5 XL
ThermoFisher with a sensitivity of 5% and minimum coverage of 300×. × The kit used
is Oncomine BRCA. Then, sequencing data were analyzed through 2 pipelines. The first
pipeline was developed by ThermoFisher on the IonTorrent Suite + Ion Reporter. IonTorrent
Suite generates FASTQ data and ensures BAM (binary alignment mapping) alignment with
the hg19 reference genome by using the TMAP (Torrent Mapping Alignment Program). Ion
Reporter makes variant caller and variant annotations. The second pipeline was developed
in our laboratory and runs open-source software such as BWA-MEM (Burrows-Wheeler
Aligner) for alignment, SAMtools for mpileup, VarScan2 as variant caller, and VEP (Variant
Effect Predictor) Ensemble for annotations. All data are stored in our local MySQL (My
Structured Query Language) database (Figure 1). Biologists manually validated variants as
pathogenic if the following statements were true:

• Variant allele frequency ≥ 5%
• Variant reads ≥ 300 reads
• Amino acid change is different from synonymous ( 6=p.(=)). A synonymous variant

will probably have a low influence on the gene because the amino acid does not change
• Polyphen (Polymorphism Phenotyping) score is in the range of [0.85, 1] (case of

substitution variant)
• Grantham score is in a range of [5; 215] (in the case of substitution variant). [0, 50] =

conservative, [51; 100] moderately conservative, [101; 150] moderately radical, over
150 radical

• Manual inspection on different databases and prediction tools: Arup database, VarSeak,
Varsome, UMD Predictor, Cancer Genome Interpreter

• We use the tool Integrative Genomics Viewer (IGV) to check if alignment sequences
are clear and show no strand bias in the region where the variant is located. It allows
us to eliminate false positives.

• We verify the presence of these pathogenic variants in our second-in-house pipeline to
validate them

With these requirements, biologists determine whether a variant can be validated or
rejected as a function of the patient’s pathology.

Figure 1. General workflow New Generation Sequencing (NGS). Analysis workflow performed at
the platform to ensure oncosomatic variant analysis.
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2.1. Programming Language

The programming language used to develop the deep learning neural network was R
version 3.6 with Keras Tensorflow 2.2. Libraries for genetic algorithms and particle swarm
optimization were developed by the platform and they are available on Github and CRAN.

2.2. Code Availability

Codes for this work can be accessed freely for academic use. To install our PSO
package in Rstudio:

• install.packages(“particle.swarm.optimisation”)

To install our GA package in Rstudio:

• install_gitlab(“brunet.theo83140/genetics.algorithm”)

2.3. Data Selection

BRCA1/BRCA2 dataset contains clinical information of 5292 mutation variants of
BRCA1 and 6538 mutation variants of BRCA2. This represents a collection of 11,875 variants
composed of Single Nucleoid Variant (SNV), MNV, and INDEL (Figure 2). All variants
were labeled by the biologist as benign or pathogenic in the function of the pathology of
the patient.

Figure 2. (a) Total of BRCA1 mutations benign and pathogenic in our local database. Mutations are
grouped by single nucleotide polymorphism (SNV), multiple nucleotide variant (MNV), and insertion
deletion (INDEL) in function of their pathogenicity. (b) Total mutations BRCA1 and BRCA2 stored in
our database. (c) Total of BRCA2 mutations benign and pathogenic in our local database. Mutations
are grouped by single nucleotide polymorphism (SNV), multiple nucleotide variant (MNV), and
insertion deletion (INDEL) in function of their pathogenicity. (d) Proportion of pathogenic and benign
variants in function of their position in the exon (−1 corresponds to a splice site mutation).
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2.4. Problem Formulation

We consider our problem as supervised learning for a classification task. In input, we
have real numbers and in output, we have a category. The model we are looking for is a
function into a discrete space.

f : R15 ⇀ {Pathogenic, Benign} (1)

2.5. Data Encoding (Feature Construction)

These data come from the laboratory and are produced by the pipeline of the Ion
Torrent sequencer. They are present in the form of a .tsv (tabulated separated values)
file where each line corresponds to a mutation in the BRCA1 gene or BRCA2. All data
were labeled by the biologist as 1 for pathogenic and 0 for benign/uncertain significance
(identified by the columns isMut). Our deep learning neural network will take in input
15 features and 2 possible values in output (see Table 1 and Equation (2)). We decided
to pick values that the biologist used to interpret. We have decided to exclude data that
contain multiple values mixing numbers and unusable characters. Data processing is an
important step to improve the performance and the quality of the model. It involves data
cleaning, such as removing errors and dealing with missing values or extreme observations.
It also requires data transformation by changing in our case the data type by transferring
categorical data into numerical data (Figure 3) and by changing the range of the data value
by applying normalization.

Figure 3. Categorical features are one-hot encoded. This makes them directly appropriate to use with
the categorical cross-entropy loss function.

Table 1. Feature encoding for training the deep neural network.

Row Names Data Description Data Coding Data Type

Location
Position of the mutation
on the gene (exon, intronic,
splicing site)

Intronic = 0, utr_5’ = 1,
utr_3’ = 1,
splicesite_3’ = 2,
splicesite_5’ = 2,
exonic = 3

Integer

Genes BRCA1 or BRCA2 BRCA1 = 0, BRCA2 = 1 Integer

Transcript Transcript ID
NM_007294.3 = 0,
NM_007300.3 = 0,
NM_000059.3 = 1

Integer

Locus Coordinates on the genome No recoding Big interger

Type

Type of mutation:
single nucleoide
variant (SNV),
mutiple nucleotide
variants (MNV),
insertion/deletion
(INDEL)

SNV = 0, MNV = 1,
INDEL = 2 Integer
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Table 1. Cont.

Row Names Data Description Data Coding Data Type

Exon

Exon number.
1 for the first exon in
gene,
2 for the second one, . . . , n

exon = {1, . . . , n}
exon = 0 when it is
intronic. Exon ∈ N

Integer

Freq Variant allele frequency
(frequency of the mutation)

No recoding of the
values. Float

MAF Minor Allele Frequency
MAF value if it exists,
−1 when there is no
MAF

Float

Coverage
Sequencing coverage
(0 if < 300 reads,
1 if > 300 reads)

No recoding Integer

protdesc Mutation effect on the protein
(amino acid change)

Intronic or splice site
(p.? = 0), same acid amino
(p.(=) = 1), acid
amino change = 2

Integer

Polyphen Polyphen score (from −1 to 1)
Polyphen score when it
exists, −1 when it is not
applicable

Float

Grantham Grantham score of the
mutation

Grantham value from 5
to 215. −1 when it is not
applicable

Grantham ∈ Z

Variant.effect
Effect of the mutation on
the reading frame
(frameshift, missense . . .)

Frameshitf = 3,
missense = 1,
nonsense = 2,
synonymous = 0,
unknown = −1

Variant.e f f ect ∈ Z

aaref Amino acid
(before the mutation)

Arg = 1, His = 2 ,
Lys = 3 , Asp = 4, Glu = 5,
Ser = 6 , Thr = 7 , Asn = 8,
Gln = 9 , Trp = 10 , Sec = 11,
Gly = 12, Pro = 13, Ala = 14,
Val = 15, Ile = 16, Leu = 17,
Met = 18, Phe = 19,
Tyr = 20, Cys = 21

Integer
(more detail
on Table 2)

aamut Amino acid
(after the mutation)

Arg = 1, His = 2, Lys = 3,
Asp = 4,Glu = 5, Ser = 6,
Thr = 7, Asn = 8, Gln = 9,
Trp = 10, Sec = 11, Gly = 12,
Pro = 13, Ala = 14, Val = 15,
Ile = 16, Leu = 17,
Met = 18, Phe = 19,
Tyr = 20, Cys = 21,
fs = 22, Ter = 22, del = 22

Interger
(more detail
on Table 2)

isMut

Potential pathogenic variant.
Decision of the
biologist on the
mutation variant

Benign/uncertain
significance = 0,
pathogenic = 1

Boolean

Data selected to be passed as a parameter in the deep neural network. Some data had to be re-coded in order
to be recognized by the deep neural network. The 15 input parameters are: location, genes, transcript, locus,
type, exon, frequency (freq), Minor allele frequency (maf), coverage, protdesc, polyphen, grantham, variant.effect,
aaref (amino acid reference), aamut (amino acide after the mutation). IsMut is the output parameter for the
supervised learning.

The coding of amino acids was grouped according to their chemical properties (see
Table 2).
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Table 2. Chemical properties of amino acids.

Chemical Properties Amino Acids
Acidic Aspartic (Asp), Glutamic (Glu)

Aliphatic Alanine (Ala), Glycine (Glycine), Isoleucine
(Ile), Leucine (Leu), Valine (Val)

Amide Asparagine (Asn), Glutamine (Gln)

Aromatic Phenylalanine (Phe), Tryptophan (Trp),
Tyrosine (Tyr)

Basic Arginine (Arg), Histidine (His), Lysine (Lys)
Hydroxyl Serine (Ser), Threonine (Thr)
Imino Proline (Pro)
Sulfur Cysteine (Cys), Methionine (Met)

This table groups amino acids according to their chemical properties.

According to Equation (1), we formalized the mutation prediction problem as each
candidate mutation site was represented by a feature vector x with the 15 inputs described
in Table 1 and the goal is to predict variable y = {potential pathogenic variant} = {0 = benign
or 1 = pathogenic}.

xi = {x1, . . . , x15} → y ?
=

{
1 = YES(pathogenic)

0 = NO(benign)

}
(2)

We have introduced amino acid change information into the inputs of the deep neural
network for several reasons. The replacement of an amino acid with a different amino acid
in the protein can remain a point of mutation in the DNA sequence. Not all amino acid
replacements have an identical effect on the function or the structure of the protein. This will
depend on the similarity or dissimilarity of the replacements, but also their position in the
sequence or the structure. The similarity between amino acids can be calculated based on
the substitution of matrices, the physicochemical distance, or their fundamental properties
like the size or the charge [9]. We speak of conservative replacement when the amino acid is
changed by another having a similar property. This type of replacement rarely corresponds
to a dysfunction in the protein. Oppositely, in the case where the amino acid is changed
into another amino acid with different properties, this induces changes in the structure
of the protein or in its function which can cause changes in the phenotype and are often
pathogenic. For example, a mutation at position 6 of a glutamic acid (negatively charged)
that would be changed to a valine (uncharged) is known in human sickle cell anemia. The
amino acid modification at the protein level can be tolerated by the cell without deleterious
consequences, which explains why many “missense” type sequence variations produce no
pathogenic effect and therefore constitute elsewhere a significant part of polymorphisms
(SNP type). But depending on the location of the amino acid affected, missense mutations
can cause deleterious effects (alteration of protein folding, protein stability, functional
domains, sites of interaction with other proteins, etc.), like loss of function or gain of
function. In the BRCA2 gene, some silent mutations are encountered as deleterious. This is
the case, for example, with the BRCA2 mutation: c.516G>A (p.Lys72Lys/p. (=)) located in
exon 6, more precisely, the last base in exon 6 next to the splice donor site (Figure 4).

We also decided to introduce the information on the Grantham score. It assesses the
physicochemical distance between the difference-replaced amino acids. Grantham score is
a formula for the difference between amino acids that combine properties that correlate
best with protein residue substitution frequencies [10]. The score attempts to predict the
distance between two amino acids. A low score denotes less evolutionary distance. A
high score suggests a more considerable evolutionary distance and consequently, it can be
considered deleterious. Indeed, the more distant two amino acids are, the more damaging
is their substitution. For example, a substitution of isoleucine (Ile) for leucine (Leu) has
a Grantham score of 5, which is predicted to be tolerated. Substitution of cysteine for
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tryptophan has a score of 215 which involves a very high score and is then predicted to be
deleterious. Any variation involving cysteine has a very high Grantham score. Grantham’s
distance depends on three properties: composition, polarity, and molecular volume [10].

Figure 4. VarSeak result prediction score on the mutation BRCA2:c.516G>A. The mutation is found
at the border between exon 6 and Donor Splice Site 5’.

Distance difference D for each pair of amino acids i and j are calculated as:

Dij =
[
α
(
ci − cj

)2
+ β

(
pi − pj

)2
+ γ

(
vi − vj

)2
]

(3)

where c = composition, p = polarity, and v = molecular volume; and are constants of
squares of the inverses of the mean distance for each property.

Polyphen score predicts the possible impact of an amino acid substitution on the
structure and function of a human protein using straightforward physical and comparative
considerations. This score is the probability that a substitution is damaging. The score
ranges from 0.0 (tolerated) to 1.0 for deleterious. The possible score range can be interpreted
as follows:

• 0.0 to 0.15→ predicted to be benign
• 0.15 to 1.0→ possibly damaging
• 0.85 to 1.0→more confidently predicted to be damaging

2.6. Data Normalization

When working on a deep neural network, it is important to normalize or standardize
the data to make training faster and reduce the chances of getting stuck in local optima.
If the distribution of the quantity is normal, then it should be standardized; otherwise,
the data should be normalized [5]. In our case, data has varying scales (range of position
min and max and frequency min and max), so we will apply a normalization between the
minimum and the maximum on each value by using the following formula:

xnorm =
x−min

max−min
(4)

xnorm is the value after normalization, x is the value to normalize, min is the minimum
value, max is the maximum value. With this approach, data are scaled to an established
range from 0 to 1. In contrast to standardization, we will end up with a smaller standard
deviation, which can suppress the effect of outlier values. We divided the main dataset of
11,875 variant calls into two subsets. The deep neural network was trained on 70% of the
dataset and 30% remaining for the validation (unseen data). We used the “validation split”
function from the Keras library to divide the dataset. This function was designed to ensure
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that the data are separated in such a way that it always trains on the same portion of the
data for each epoch. All shuffling is done within the training sample between epochs. Keras
proportionally splits your training set by the value of the variable. The first set is used
for training and the second set is for validation after each epoch. After constructing the
feature value vector xi for each BRCA1/BRCA2 candidate mutation position, the problem
is to find the best deep learning architecture which optimally separates the true pathogenic
mutations from benign mutations. We compared the performance of the different models
in the specific context of predicting BRCA1/BRCA2 mutations from NGS data. We used
the categorical cross-entropy loss function as it fits for multi-class classification tasks. These
are tasks where the model must decide which one belongs to the possible categories. It
quantifies the difference between two probability distributions (Figure 5).

Figure 5. The target indicates which one out of two classes pathogenic,benign classes is correct. The
categorical cross-entropy is suited to classification tasks, since one example can be considered to
belong to a specific category with the probability one, and to the other categories with probability zero.

2.7. Grid Search Method

The first approach was grid search (hypertuning), which consists of defining a list
of parameters for the neural network and testing each of the possible combinations of
these parameters to measure the precision and cost of each neural network and therefore,
find the most exact configuration of parameters. To achieve this, we have chosen to use a
library called tfruns which uses Tensorflow to perform the grid search. Several tests were
carried out by trying to vary several parameters: the activation function, dropout, number
of neurons, number of layers, and training function. To choose the number of hidden
layers and nodes which compose each of them, we can refer to some formulas found in
the literature. The number of hidden layers could be selected to be between the number
of inputs and outputs [3,11]. The number of hidden layers can be based on the following
formula [12]:

H = (I + O)× 2
3

(5)

where H is the number of neurons in the hidden layers, I is the number of input features, O,
and is the number of neurons in the output layer. Some suggest that the number of hidden
layers should never be over the number of input features [13]. The number of hidden
neurons should be less than twice the number of neurons in the input layer [14]. There are
many rule-of-thumb methods for determining the correct number of neurons to use in the
hidden layers, such as the following. The number of hidden neurons should be between
the size of the input layer and the size of the output layer. The number of hidden neurons
should be 2/3 the size of the input layer, plus the size of the output layer. The number
of hidden neurons should be less than twice the size of the input layer [15]. According to
these rules, we will tune our grid search as reported in Table 3.
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Table 3. Parameters used for the grid search.

Parameters Range Number of Possibilities
Number of neurons per hidden layers [1; 50] 50
Number of hidden layers [1: 5] 5
Activation functions [relu, elu, tanh, sigmoid] 4
Training functions Sgd, adam, adamax 3
Dropout [0.1; 0.9] 9
Total of combination 27,000

Training a deep neural network remains always a challenging problem to make it
generalize well to new data. A model composed with a weak capacity cannot learn
(underfitting) whereas a model with too much capacity will fit correctly to the training
dataset but fails to fit the validation dataset (overfitting). There are several ways to adapt
a model to prevent overfitting by playing with some parameters. For example, dropout
layers can remain a convenient way to prevent overfitting. Indeed, a dropout layer will
randomly drop some of the connections between layers. Using dropout improves the
computational efficiency of networks with large amounts of parameters [16]. Another
way to prevent overfitting is to stop the training process earlier. Instead of training for a
specified number of epochs, we stop as soon as validation loss rises. When we use early
stopping, the performance of the model must be monitored during training. We split
the training dataset and use a subset as a validation dataset (30% of the dataset) used to
monitor the performance of the model during the training. This validation set is not used
to train the model and we used the loss on the validation dataset as the metric to monitor
accuracy as we are in the case of classification problems. The performance of the model is
evaluated on the validation set at the end of each epoch, which computes an additional
computational cost during training. The training is stopped as soon as the performance on
the validation dataset decreases as compared to the performance on the validation dataset
at the prior training epoch (in our case, an increase in the loss value). For our study, we
fixed the following parameters for early stopping:

• Monitor: validation loss (val_loss)
• Minimum change in the monitored quantity to qualify as an improvement (min_delta)

= 0.0005
• Number of epochs with no improvement after which training will be stopped (pa-

tience) = 10
• Training will stop when the quantity monitored has stopped decreasing (mode) = ‘min’

When configuring a deep neural network, it is also beneficial to tune the learning rate
hyperparameter. It controls how much we are adjusting the weights of the deep neural
network for the loss gradient. It is also a challenge to find good value, as too small of a
value may take a long time to train the network, whereas too large of a value may result
in an unstable training process. Consequently, it will take a long time to converge. The
following formula reveals the relationship:

new weight = existing weight− learning rate× gradient (6)

if we note Θ1 the weight, α the learning rate and ∂
∂Θ1

J(Θ1) the gradient, it gives us:

Θ1 = Θ1 − α
∂

∂Θ1
J(Θ1) (7)

when α → 0 gradient descent is slow and when α → +∞ gradient descent fail to
converge. Keras offers a function callback_reduce_lr_on_plateau, it reduces learning
rate when a metric has stopped improving. Based on our previous tests, we choose
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the following values: callback_reduce_lr_on_plateau(monitor = ‘val_loss’, factor = 0.75,
patience = 5, mode = ‘min’)).

We monitored the loss, the factor by which the learning rate will be reduced to
new lr = lr × factor was fixed to 0.75. The patience is the number of epochs with no
improvement, after which the learning rate will be reduced and fixed to 5. The mode
was fixed to min; the learning rate will be reduced when the quantity monitored has
stopped decreasing.

2.8. Genetic Algorithm (GA)

To reduce the calculation time and try to find an architecture with better accuracy, we
used genetic algorithms to tune our deep neural networks. Tuned parameters are the num-
ber of hidden layers (L), the number of neurons (Ni), activation functions (σi), dropout
(δi), and the training functions (Γi). To our knowledge, no one has used the genetic algo-
rithm for setting these parameters with Keras for predicting BRCA1/BRCA2 pathogenicity.
GA is a method for moving from one population of “chromosomes” (e.g., strings of ones
and zeros, or “bits”) to a new population by using a kind of “natural selection” together
with the genetics-inspired operators of crossover, mutation, and inversion [17]. It is an
algorithm that tries to simulate the evolution of populations to find the optimal solution
to a problem. To utilize it, it is necessary to define the parameters to vary, which will
be called genes. They form an object called a chromosome which will be the essential
part of the genetic algorithm. The genetic algorithm will subsequently produce a random
population of chromosomes, where each chromosome defines a neural network. Once
the chromosomes are formed, we will calculate their fitness scores. Using this score, the
algorithm will be able to make a selection of the best individuals in the population. At
that point, these individuals will be used to form a new chromosome by crossing-over (the
mix of two parent chromosomes) and by mutation (change of one of the genes of the child
chromosome). By performing these operations, we obtain a new generation that should
be better than the previous generation, and by repeating this cycle ended up obtaining a
homogeneous population that must correspond to the best solution found by the genetic
algorithm (Figure 6).

The genetic algorithm package for Keras was developed by using the R6 method,
which allows doing object programming. The package is available in the git repository or
directly in R with devtools.

Since we are in a classification task, we will use classification accuracy as our fitness
function (objective function). To guarantee the existence of at least one hidden layer, we
apply the constraint:

Hidden layer =
N

∑
i=1

Hi ≥ 1 (8)

where Hi is a binary variable, which equals the value 1 if the i hidden layer is used otherwise
zero. The second constraint is if the models do not use a hidden layer, consequently their
neurons are not used. neuronij is a binary variable that equals the value 1 if the i neuron of
the i hidden layer is used; otherwise, it equals zero. We note ni the number of neurons in
the ith hidden layer.

ni

∑
j=1

neuronij ≤ α×Hidden Layeri (9)

where α is a positive scalar and j = 1, . . . , ni.
The strategy is to use a generic algorithm to crossover the candidates over generations

until we can determine the best combination for our model.
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Figure 6. Workflow of GA: 1. Initial Population: first step, we generate randomly the first parents
(population). We define the population size and generate each one with a random configuration.
Randomly choose each parameter on the chromosome. 2. Evaluate individuals: run evaluation on
each model in the current generation. Scores each member of the population based on the goal to
reach. This score is called the fitness function. 3. Selection of the best members of the population,
applying the evaluator, and sorting individuals by rank. 4. Mutates some members randomly to
attempt to find even better candidates. Mutation helps in getting a more diverse opportunity. The
obtained population will be used in the next generation. Repeat steps 2 to 4 again for each generation.
5. Stop decision: we define a stop condition; we define it after 20 generations.

Chromosome Structure

For the chromosome structure, we decided that our chromosomes would carry infor-
mation on hidden layers, neurons, and the model. The chromosome stores:

• Optimizer functions: [adam, adamax, sgd]
• Hidden layer layout: [Number of neurons on a range of [1, 300], for each layer the

activation function: [relu, elu, tanh, sigmoid] and dropout on a range of [0.1 to 0.9]

Parameters used for the genetic algorithm can be found in Table 4. They were obtained
after several tests of the genetic algorithm on small populations. The ranges of values are
presented in Tables 5 and 6. An example of a chromosome is shown in Figure 7.
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Figure 7. Example of one Chromosome holding information’s about model and n hidden layers.

Table 4. Genetic algorithm parameters.

Parameters First Run (GA1) Second Run (GA2)
Elitism 0.3 0.3
Random selection 0.1 0.1
Population size 30 50
Mutation rate 0.25 0.25
Number of generations 20 40

Genetic algorithm parameters. Elitism remains the proportion of the best individuals selected for the next
generation. Random selection corresponds to the proportion of random individuals selected for the next gener-
ation. This ensures maintaining a significant genetic diversity in each generation and avoids converging on a
local minimum. The Population size must be significant enough to include the maximum number of solutions.
The mutation rate defines the frequency at which genes will mutate. The number of generations will define the
limits of the algorithm’s research framework.

Table 5. Neural network parameter intervals (run 1).

Parameters Number of Hidden Nodes
per Hidden Layers Activation Functions Number of Hidden

Layers Optimizer

Values 1 to 300 Relu, elu,
sigmoid, tanh 1 to 20

Adam,
adamax,
sgd

Neural network parameter intervals for run 1 of the PSO and the genetic algorithm.

Table 6. Neural network parameter intervals (run 2).

Parameters Number of Hidden Nodes
per Hidden Layers Activation Functions Number of Hidden

Layers Optimizer

Values 1 to 300 Relu, elu,
sigmoid, tanh 1 to 6

Adam,
adamax,
sgd

Neural network parameter intervals for run 2 of the PSO and the genetic algorithm.
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2.9. Particle Swarm Optimization (PSO)

Particle swarm optimization is a model developed by Craig Reynolds at the end of
the 1980s, allowing us to simulate the movement of a group of birds. Another source
of inspiration, claimed by the authors, James Kennedy and Russel Eberhart, is social
psychology [7]. It is a biologically inspired method for solving optimization problems.

Like artificial neural networks, genetic algorithms, or ant colony algorithms, particle
swarm optimization (PSO) is a bio-inspired algorithm. It is based on the principles of
self-organization that allow a group of living organisms to act together in complex ways,
based on simple “rules”. This optimization method is based on the collaboration of
individuals among themselves. Thus, thanks to very simple rules of displacement (in
the space of solutions), the particles can gradually converge towards a global minimum
Figure 8. However, this metaheuristic seems to work better for spaces in continuous
variables. At the start of the algorithm, each particle is therefore positioned (randomly, or
not) in the search space for the problem. Each iteration makes the particles move according
to 3 components:

1. Its current speed Vt
i

2. His best solution pbesti
3. The best solution obtained in its neighborhood gbest

The algorithm will simulate the movement of a swarm to find the best value. For the
particles to move, the algorithm uses the following parameters [7]:

vt+1
i = ωVt

i + c1 × r× (pbesti − Xt
i ) + c2 × r× (gbest− Xt

i ) (10)

Each step t, the position of particle i, Xt
i is updated based on the particle’s velocity vt

i ,
the new position of the particle would be:

Xt+1
i = Xt

i + vt+1
i (11)

ω is the inertia coefficient of the particle. It helps the particles move by inertia toward
better positions. r is a random number between 0 and 1 that follows a uniform distribution.
pbesti is the best value of the particle and gbest is the best value of the swarm. c1 is
the personal acceleration coefficient and c2 is the global acceleration coefficient; they
represent the weights of approaching the pbesti and the gbest of a particle. By iterating a
significant number of iterations of these two formulas Equations (10) and (11), the particles
will converge towards a value that should be the best solution achieved by the swarm.
Workflow for particle swarm optimization is described in Figure 9.

The particles do not move randomly, they have a goal to achieve. This is determined
by a function to be optimized (fitness function or “objective function”) which is provided
by the user, and which depends on the application concerned. The goal of our fitness
function is to maximize the accuracy of the deep neural network on the validation set while
applying a penalty on the loss to try to achieve the smallest loss and the highest accuracy.
To have the minimum amount of fluctuation, we took the values over the last 5 epochs to
smooth the values. PSO has been coded to maximize fitness value. We defined our fitness
function as follows:

We note: validation accuracy = ψi and validation loss = ϕi

f itness =
epoch−4

∑
epoch

ψi
5
−

epoch−4

∑
epoch

ϕi
5

(12)

In a classification task, the categorical cross-entropy is a loss function and it is defined
as the following sum:

Loss = −
output size

∑
i=1

yi × log(ŷi) (13)
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where ŷi is the i-th scalar value in the model output, yi is the corresponding target value,
and the output size is the number of scalar values in the model output. The loss is closest
to 0 when the predicted value equals the target (predicted—target). We apply the same
constraints applied to GA defined by Equations (8) and (9). As we did with the genetic
algorithm, we varied the following parameters numbers of hidden layers, the number
of hidden nodes, activation function, and optimizers (see Tables 5 and 6). For the input
parameters for the PSO, we started with some particles equal to 30 and a number of
iterations of 20. We consequently increased them for the second PSO run (See Table 7).
Parameters were selected based on tests and the article by Nuria Gomez et al. (2010) [18].
themselves.

Figure 8. A demonstration of Particle Swarm Optimization in a 3 dimensional space. The particles
are searching for the minimum of the surface. From the left to the right, show early, mid, and late
stages of the convergence.
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Figure 9. Particle swarm optimization algorithm workflow.

Table 7. Particle swarm optimization parameters PSO (run 1) and PSO (run 2).

Parameters PSO (Run 1) PSO (Run 2)

Inertia 0.5 0.5
c1 [0:4] [0:4]
c1 [0:4] [0:4]

Number of particles 30 50
Number of iterations 20 50

Particle swarm optimization parameters were applied on the first run (PSO run 1) and on the second run (PSO
run 2). Inertia stayed the same for both runs. The personal acceleration coefficient and the global acceleration
coefficient were fixed to a range from 0 to 4 for both runs. The number of particles and number of iterations were
increased for the second run.

3. Results

The experiments we conducted we evaluated the predictive models on validation sets
and we compared the results of validation to obtain the best deep neural architecture for
identifying pathogenicity in BRCA1/BRCA2 genes. Finally, we tested the best model based
on a test dataset on other genes to obtain general predictions on oncosomatic mutation
variants. To assess the performance of each model, accuracy, recall (sensitivity), precision
and sensibility were calculated to measure the performance of classification models ob-
tained with the particle swarm optimization and the genetic algorithm. These parameters
are defined as follows:

• Accuracy =
TP + TN

TP + TN + FP + FN

• Precision =
TP

TP + FP

• Recall =
TP

TP + FN
True positives (TP ) and true negatives (TN) are defined as the number of mutations

that are classified correctly as pathogenic and benign. False positives (FP) and false neg-
atives (FN) are defined as the number of mutations that are misclassified. FP is a result
where the model incorrectly predicts the positive class. An FN is a result where the model
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incorrectly predicts the negative class. Precision is defined as the number of positive sam-
ples the model predicts correctly (true positives) divided by the true positives plus the
false positives. It attempts to determine the proportion of positive identifications that were
correctly identified by the model. Recall attempts to determine the proportion of actual
positives identified correctly. It is defined as true positives divided by true positives plus
false positives. Model performance was evaluated using the receiver operating characteris-
tic area under the curve. The receiver operating curve (ROC) is a graph where sensitivity
is plotted as a function of 1− speci f icity. The area under the ROC is denoted AUC. The
true positive rate (TPR) also known as sensitivity (or recall) is defined as the percentage
of pathogenic mutations that are correctly identified. The specificity or true negative rate
(TNR) is defined as the percentage of mutations that are correctly identified as benign.

• Speci f icity = TNR =
TN

TN + FP

3.1. Grid Search Results

Grid search was used to find an optimal deep neural network architecture. The
parameters used are presented on Table 3. To test all parameters, we had to evaluate the
27,000 combinations. The result obtained with this method is composed of 5 hidden layers
with 19 hidden neurons with the elu as activation function and adam function as optimizer.
The accuracy of this deep neural network reached 97.4% with an error rate of 1.8% on
the validation set (test set). AUC is 98.2% (Figure 10). This neural network is capable of
correctly differentiating between pathogenic and benign variants but keeps an error rate
too high.

Figure 10. ROC curve for the deep neural network composed of 5 hidden layers with 19 hidden
nodes each obtained with the grid search method. AUC is 0.98.

3.2. GA Results

Initially, the genetic algorithm was implemented to provide the optimal number of
hidden layers as well as the number of hidden nodes. The neuron network obtained
consists of 6 hidden layers of 297 hidden nodes, each with the relu activation function
(Tables 8 and 9). The dropout value is equal to 0.3 on each hidden layer. With this
configuration, we obtained a precision of 98.51% during the training phase and an AUC
of 98.49% (Figure 11). The error rate on the validation set is 1.35% with a precision of
98.97% (GA run 1—Table 10). The results obtained with this neural network are superior
to those obtained by the grid search technique. This deep neural network is capable of
distinguishing between pathogenic and benign mutations. When it predicts that a variant
is pathogenic, it was correct 98.97% of the time. With the help of these primary results,
we re-implemented the genetic algorithm to vary the activation functions and the number
of neurons in each layer independently of the others (Table 6). The results are visible
in Table 10. The result represents a deep neural network with a maximum precision of
98.83% (GA run 2—Table 10) on the training set, with an error rate of 1.13% on the test set
(validation set) and an AUC of 98.69% (Figure 11).

There is an improvement compared to the previous results and allows to have a
better prediction of the data. Specificity and sensitivity were improved with this configura-
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tion. With a sensitivity of 98.79%, it correctly identified 98.97% of pathogenic tumors in
BRCA1/BRCA2 mutation variants. Specificity of 99.01%, the model is correct 99.01% of the
time when a variant is not pathogenic (benign).

We additionally note that in this run all the individuals of the population involve
the same genes (except those having undergone a mutation during the last generation).
This means that the genetic algorithm worked and gained a homogeneous population, the
number of generations is therefore sufficient.

Figure 11. ROC curve for the validation set. Model performance was evaluated using the receiver
operating characteristic (ROC) curve. The area under the curve is denoted AUC. The AUC obtained
was 0.9869 for the first run with the genetic algorithm and 0.9848 for the second run. A large area
under the curve was observed for both models. These models could then determine whether a variant
was benign or pathogenic with a minimal error rate.

Table 8. Architectures returned by GA and PSO (run 1).

Models Number of hidden nodes per
hidden layers

Number of hidden
layers Activation function Optimizer

GA (run 1) 297 6 relu adam
PSO (run 1) 275 6 relu adam

Architectures returned by GA and PSO on the first test run.

Table 9. Architectures returned by GA and PSO (run 2).

Models H1 F1 H2 F2 H3 F3 H4 F4 H4 F5 H6 F6 Optimizer

GA run 2 212 Elu 134 Relu 246 Sigmoid 285 Relu 61 Relu 196 Relu Adam
PSO run 2 45 Relu 156 Relu 132 Relu 284 Elu 105 Tanh 169 Tanh Adam

Architectures returned by GA and PSO on the second test run. We varied the number of neurons hidden on the
two runs. Hi denotes the number of the hidden layer. Fi denotes the activation function on the i-th hidden layer.

Table 10. Metaheuristic performances on run 1 and run 2 .

Models Precision Sensitivity Specificity Accuracy AUC
GA (run 1) 0.9897 0.9822 0.9899 0.9861 0.9848
GA (run 2) 0.9896 0.9879 0.9901 0.9892 0.9869
PSO (run 1) 0.9965 0.9863 0.9966 0.9852 0.9858
PSO (run 2) 0.9898 0.9821 0.9883 0.9915 0.9865

The performance comparison of various deep neural network models architecture found by GA and PSO on
validation set.

3.3. PSO Results

With the first PSO run (run 1), we obtained slightly different results from those
obtained with GA (run 1). We obtained an architecture comprising 6 layers of hidden layers
consisting of 275 neurons (Table 8 and Figure 12). The activation function is relu on each
layer with a dropout of 0.3. Accuracy during the training phase is 98.61% and 98.52% on
the validation set (Table 10) with an AUC of 0.9858 (Figure 13). Manipulating these values,
we performed a second run (PSO run 2—Table 6) from which we varied the number of
neurons as well as the activation function within the 6 hidden layers. We improved the
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accuracy of the model with a value of 99.15%. The architecture is described on (PSO run
2—Table 9). However, we lose an average of 0.64% in quality on the precision, specificity,
and sensitivity, but the model stays efficient in the pathogenicity prediction. The AUC
obtained for the second run (PSO run 2) is 0.9865 (Figure 13).

Figure 12. Architecture returned by particle swarm optimization algorithm for predicting pathogenic-
ity of BRCA1 and BRCA2 genes. It is composed of 15 input features, 6 hidden layers of 275 hidden
nodes each. Activation function relu on each hidden layers. Sigmoid function is used for the output
layer. Adam is the optimizer.

Figure 13. Model performance was evaluated using the receiver operating characteristic (ROC) curve
for PSO run 1 and PSO run 2. AUC is 0.9858 for PSO run 1 and 0.9865 for PSO run 2.

3.4. Feature Importance

Feature importance values indicate which input variable had the biggest impact on
each prediction that was generated by the classifier model. The goal of feature importance
is to determine which input features are important for the prediction. It gives a score for
each feature of the data. A higher score means that the specific feature will have a larger
effect on the model that is being used to predict a certain variable. The feature importance
of each model is described in Figure 14.
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Figure 14. Feature importance for the 4 models found with the metaheuristic algorithm. (a) Feature
importance for GA run 1 composed of 6 hidden layers with 297 hidden nodes. (b) Feature importance
GA run 2 composed of 6 hidden layers [212:134:246:285:61:196] hidden nodes. (c) Feature importance
PSO run 1 composed of 6 hidden layers with 275 hidden nodes. (d) Feature importance PSO run
2 composed of 6 hidden layers and [45:156:132:284:105:169] hidden nodes. Deep neural network
incorporates an automatic feature selection process and our model PSO run 1 considers the variables
Polyphen, aaref and aamut as being the most important and does not take into account the gene
variable in input.

3.5. Prediction on Repair Genes

To test the performance of the trained classifier, we applied it to some new genes,
more precisely on repair genes present in our homologous recombination repair custom
panel. Indeed, according to the feature importance (Figure 14c), we can observe that Genes
and Transcript are variables few important in the prediction, whereas Polyphen, aaref, and
aamut are important variables for the pathogenicity prediction. We compared the results of
the classifier with the biologist’s decision. A sample of this test run is available in Table 11
(see Supplementary Materials for the full list).

On 11 samples, we tested our classifier obtained with PSO (run 1) on a list of 290 muta-
tions on the genes: ARID1A, ATM, PALB2, PICK3CA, BRIP1, BRAF, NBN, TP53, RAD51C,
RAD51D, CDK12. The classifier had a success rate of 96.55% on mutations never seen
by the deep neural network. He was wrong 10 times on 290 mutations. The occurrence
ARIDA1A: c.3999_4001del was considered pathogenic with a probability of 87% on his
decision. This mutation is known to be benign as it is an equivalent deletion and was
present 6 times in the test list. He correctly classified probable polymorphism mutations
with a high probability in his decision. However, he missed 4 pathogenic mutation vari-
ants: TP53:c.645T>G (p.Ser215Arg), CHEK2: c.1064T>C (p.Leu355Pro), ATM:c.476T>A
(p.Ile159Lys) and a PIK3CA:c.3140A>G (p.His1047Arg). A mutation in the splice site
BRIP1:c.206-2T>A was missed the first time by the biologist but it was correctly identified
as pathogenic by the classifier with high probability (94%).
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Table 11. Example of prediction of the deep neural network obtained with PSO (run 1) on repair genes.

Genes Coding Protdesc isMut PSO1 Pb Benign Pb
Pathogenic Comment

ARID1A c.1351-22A>C p.? 0 0 1 0 Benign
ARID1A c.2420-18G>C p.? 0 0 1 0 Benign
ARID1A c.3999_4001del p.Gln1334del 0 1 0.04 0.96 Benign
ATM c.72+36TAA>T p.? 0 0 1 0 Benign
ATM c.902-18T>A p.? 0 0 0.73 0.27 Benign
ATM c.1607+47GAC>G p.? 0 0 1 0 Benign
ATM c.1809_1810dup p.Pro604fs 1 1 0 1 Pathogenic
ATM c.1810C>T p.Pro604Ser 0 0 1 0 Benign
ATM c.2119T>C p.Ser707Pro 0 0 1 0 Benign
ATM c.3078-77C>T p.? 0 0 1 0 Benign
TP53 c.645T>G p.Ser215Arg 1 0 0.72 0.28 Pathogenic
ATM c.79G>A p.Val27Ile 0 0 1 0 Benign
PALB2 c.3114-51T>A p.? 0 0 1 0 Benign
PALB2 c.1684+42TGAA>A p.? 0 0 1 0 Benign
BRIP1 c.3411T>C p.(=) 0 0 1 0 Benign
BRIP1 c.206-2TA>A p.? 0 1 0.06 0.94 Pathogenic
NBN c.1124+18C>T p.? 0 0 1 0 Benign
NBN c.553G>C p.Glu185Gln 0 0 1 0 Benign
NBN c.381T>C p.(=) 0 0 1 0 Benign
ARID1A c.854del p.Gly285fs 1 1 0 1 Pathogenic

Example of prediction of the deep neural network obtained with PSO (run 1) on a sample of genes outside of
training. A list of the 290 mutations is available in the supplementary data section. Lines highlighted in green
show the concordance between the biologist’s decision and the neural network prediction. By contrast, the color
red denotes the discrepancy.

4. Discussion

We aimed to use metaheuristic algorithms to find the optimal fully connected deep
learning neural network architecture for predicting BRCA1/BRCA2 pathogenicity. We
developed an accurate and efficient model based on the best architecture returned by
the PSO algorithm (see Figure 12). Our model can predict BRCA1/BRCA2 pathogenicity
with a precision of 99.65% and AUC of 98.6%. Moreover, our tests have revealed the
capacity of our model to predict pathogenicity on other genes like the repair genes. Deep
learning (DL) incorporates an automatic feature selection process [19] and our model
considers the variables aaref and aamut as being the most important and does not take into
account the gene variable in input (Figure 14). DL approaches applied to different cancer-
related prediction tasks performed better than with other ML approaches that require a
feature selection step [20]. Nevertheless, there are few deep neural network techniques
established to improve the BRCA1/BRCA2 prediction problem. Training a DL network is
an optimization problem [21].

Metaheuristic algorithms were able to define an optimal architecture for predicting
the pathogenic character in the BRCA1 and BRCA2 genes. The architecture proposed by
the PSO algorithm is equally effective at accurately predicting genes by taking into account
the change of a reference amino acid and the mutated one. We have developed a machine
learning random forest algorithm to predict variant mutations in colorectal, melanoma,
glioma, and lung cancer [22] but the model revealed its limits in the prediction of more
complex genes. This is why we are oriented towards the DL. As we stated in the introduc-
tion, finding an optimal architecture is up to the challenge. The grid search method remains
suitable for small neuron networks, but it very quickly shows its limits. The number of
combinations becomes exponential with the number of hyperparameters to be tested. For
this reason, we are oriented toward metaheuristic algorithms to define an optimal architec-
ture of the neural network to predict the pathogenicity of the BRCA1 and BRCA2 genes. By
comparing the models obtained, GA showed an improvement in results with a precision
of 98.96% (Table 10). This approach has the advantage of being relatively simple to set up
because it uses very intuitive parameters that allow us to obtain good results.

With the genetic algorithm, we noticed that the probability to apply mutation varies,
but if we use exactly 10% of probability to apply mutation on each Chromosome parameter.
10% of probability works well in a population of 20 individuals. If we deplete a more
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considerable population, we have to reduce the probability. Under a 100 individuals
population, consider choosing between 5% and 2% of probability. The latter approach was
PSO was used twice, just like the algorithm genetics, using the results of the first run to
modify the parameters of the second run. The advantage of the genetic algorithm and the
particle swarm optimization remains their ability to achieve the optimal solution from a
limited population. Thanks to this, we can reduce the computing time required to provide
the most efficient neural network. PSO gave us the best neural network architecture with a
configuration of 6 hidden layers, each composed of 275 hidden nodes (Figure 12). Accuracy
on the validation set 98.52% and AUC of 0.98. In addition, the algorithm takes into account
in its prediction the change in amino acids, which allows us to generalize the predictions on
other genes like repair genes. With GA and PSO, it is possible to vary more parameters (like
the number of neurons in each layer rather than making uniform layers). Finding neural
networks with better capabilities obtained by optimization can rely on more information to
predict the outcome as described in Figure 14. These networks are effective at avoiding
errors on ambiguous data. In general, the results show that some optimization scenarios
are better suited to one method versus the other. Particle swarm optimization performs
better in some cases, while genetic algorithms perform better in others, which implies that
the two methods traverse the problem hyperspace differently [23]. The results of GA and
PSO implementations in the deep neural network optimization problem show that the PSO
algorithm is superior in finding the optimal solution in terms of accuracy and iteration. In
addition, the PSO algorithm is also superior to the simplicity of the techniques used. The
main advantages of PSO are that it is a simple concept, easy implementation, robustness
to control parameters, and computational efficiency when compared with mathematical
algorithms and other heuristic optimization techniques. Deep learning has achieved high
performance for numerous types of cancers. For breast cancer detection, Khan and al [24]
demonstrated accuracy up to 98.42%. A wide variety of deep neural network approaches
have been developed to improve patient diagnosis in oncology. They use a combination of
genomics, transcriptomics, or histopathology data. The purpose of diagnosing, prognosis,
and treatment selection. Deep learning is not to replace humans, but to provide decision
support tools that assist cancer researchers to study the disease and health professionals in
the clinical management of people with cancer [25]. The two GA and PSO packages that
we have developed in R language for Keras can be re-adapted according to the problem
to be resolved. A new training data phase has to be performed to obtain a deep neural
network architecture according to your problem to be resolved.

5. Conclusions

Our model can predict BRCA1/BRCA2 pathogenicity with a Precision of 99.65% and
AUC of 98.65%. Moreover, our tests have revealed the capacity of our model to predict
pathogenicity on other genes like the repair genes. DL approaches applied to different
cancer-related prediction tasks performed better than those with other ML approaches that
require a feature selection step. The architecture proposed by the PSO algorithm is equally
effective at accurately predicting genes by taking into account the change of a reference
amino acid and the mutated one. As we stated in the introduction, finding an optimal ar-
chitecture is up to the challenge. The grid search method remains suitable for small neuron
networks, but it very quickly shows its limits. GA showed an improvement in results with
a precision of 98.96%. This approach has the advantage of being relatively simple to set up.
The advantage of the genetic algorithm and the particle swarm optimization remains their
ability to achieve the optimal solution from a limited population. In addition, the algorithm
takes into account in its prediction the change in amino acids, which allows us to generalize
the predictions on other genes like repair genes. With GA and PSO, it is possible to vary
more parameters (like the number of neurons in each layer rather than making uniform
layers). These networks are effective at avoiding errors on ambiguous data. In general, the
results show that some optimization scenarios are better suited to one method versus the
other. In addition, the PSO algorithm is also superior to the simplicity of the techniques



Biomedinformatics 2022, 2 266

used. The two GA and PSO packages that we have developed in the R language for Keras
can be re-adapted according to the problem to be resolved. They can easily be implemented
in other molecular biology laboratories and become a true aid in routine NGS analysis
interpretation. After implementation in another laboratory, performance will still need to
be evaluated to see if the model generalizes to the new conditions, which may involve, for
example, different protocols and samples of different characteristics. The article focused on
the optimization of a fully connected deep neural network with metaheuristic algorithms.
There are various types of deep learning. For example, the recurrent neural network (RNN),
the convolutional neural network (CNN), long short term memory (LSTM), deep belief
networks (DBN). . . It would be interesting to optimize these other types of neural networks
with PSO and GA algorithms for other applications in the medical field.
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