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Abstract: Leishmaniases are a group of vector-borne diseases caused by infection with the protozoan
parasites Leishmania spp. Some of them, such as Mediterranean visceral leishmaniasis, are zoonotic
diseases transmitted from vertebrate to vertebrate by a hematophagous insect, the sand fly. As
there is an endemic in more than 90 countries worldwide, this complex and major health problem
has different clinical forms depending on the parasite species involved, with the visceral form
being the most worrying since it is fatal when left untreated. Nevertheless, currently available
antileishmanial therapies are significantly limited (low efficacy, toxicity, adverse side effects, drug-
resistance, length of treatment, and cost), so there is an urgent need to discover new compounds
with antileishmanial activity, which are ideally inexpensive and orally administrable with few side
effects and a novel mechanism of action. Therefore, various powerful approaches were recently
applied in many interesting antileishmanial drug development programs. The objective of this
review is to focus on the very first step in developing a potential drug and to identify the exploratory
methods currently used to screen in vitro hit compounds and the challenges involved, particularly
in terms of harmonizing the results of work carried out by different research teams. This review
also aims to identify innovative screening tools and methods for more extensive use in the drug
development process.

Keywords: zoonotic visceral leishmaniasis; in vitro exploratory antileishmanial screening; cell via-
bility; fluorescence; bioluminescence; RNA interference; CRISPR-Cas9; omics-based methods; bio-
and cheminformatics

1. Introduction

The leishmaniases are a group of vector-borne diseases common to humans and certain
mammals, mainly the dog, for zoonotic visceral forms. They are caused by flagellated
protozoan parasites belonging to the Leishmania genus. At least 20 species are encountered
in human pathology [1]. These parasites are transmitted through the bite of an infected
hematophagous female phlebotomine sand fly.

There was an endemic in 98 countries and territories in 2020 [1], and the geographic
distribution of these diseases evolved according to the movements of the insect vector
driven by climatic and environmental changes (such as deforestation and urbanization) [2].
These diseases mainly affect poor people in Africa, Asia, and South America and are asso-
ciated with malnutrition, population displacement, poor housing, weak immune system,
and a lack of resources [1,2]. Clinically, there are three main forms of leishmaniasis [1]: (i)
Cutaneous leishmaniasis, which represents the most common form; (ii) Mucocutaneous
leishmaniasis; and (iii) Visceral leishmaniasis, which is potentially fatal if left untreated.
Two epidemiological types of visceral leishmaniasis coexist worldwide. Firstly, the main
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epidemiological type around the Mediterranean basin involves L. infantum and is repre-
sented by zoonotic visceral leishmaniasis. This type is clinically characterized by the triad
of mad fever, anemia, and splenomegaly and is transmitted from dogs to humans. Secondly,
anthroponotic visceral leishmaniasis is more commonly found in India. It is characterized
by additional adenopathy and cutaneous signs and is transmitted from human to human.
Today, more than 1 billion people live in areas endemic for leishmaniasis and are at risk of
infection. An estimated 30,000 new cases of visceral leishmaniasis occur annually, accord-
ing to the WHO [3]. In recent years, a downward trend has been observed in the number
of reported visceral leishmaniasis cases, notably due to the effect of the WHO’s visceral
leishmaniasis elimination program [4]. In 2020, about 87% of global visceral leishmaniasis
cases were reported from eight countries (Brazil, Eritrea, Ethiopia, India, Kenya, Somalia,
South Sudan, and Sudan) [1].

In this context, zoonotic visceral leishmaniasis is managed by preventing and elim-
inating infections in dogs, the main parasite reservoir host, but the complexity of its
transmission cycle involving humans, domestic animals, wildlife, and sand fly vectors
must be considered. The treatment of human cases is therefore of particular interest. The
currently available antileishmanial medicines [5] are mainly represented by amphotericin
B (injectable and liposomal formulations), pentamidine, and pentavalent antimonials [6].
Miltefosine is the first and only oral drug approved for leishmaniasis [7]. Paromomycin,
usually administered intramuscularly, was shown to be effective in Indian visceral leish-
maniasis [5]. A topical formulation is also available for cutaneous leishmaniasis [5]. Azole
medicines were also reported as having variable efficacy [5]. The treatment regimen
should follow national and regional guidelines, if applicable [4,8]. Nevertheless, all these
medicines present several limitations. First, they are often long-term treatments. Further-
more, most of these treatments require parenteral administration. Secondly, many severe
adverse side effects have long been identified for these products [7,9] and, with the liposo-
mal formulation that reduces the nephrotoxic side effects of amphotericin B, that galenic
solution carries a non-negligible cost and the requirement of cold chain maintenance [7].
Thirdly, the parasite’s development of increasing resistance [7–10] contributes to the low
effectiveness of these treatments. Moreover, Leishmania species-dependent variations were
demonstrated in drug-susceptibility [11].

Therefore, several strategies to overcome antileishmanial drugs unresponsiveness
should be considered [12], as well as the promotion of research programs, notably for the
screening of new antileishmanial compounds. Therefore, in this paper, we focus on the
very first step of the development process of a potential drug and will review existing
exploratory screening methods to identify in vitro hit compounds against Leishmania. First,
we discuss the challenges involved in implementing exploratory in vitro screening against
Leishmania. Then we present recent technological advances enabling the development of
new research tools in the drug development process.

2. Challenges Involved in Implementing Exploratory Screening to Identify In Vitro
Hit Compounds against Leishmania

Exploratory pharmacological in vitro screening is a method of scientific experimen-
tation requiring the use of technical and technological resources to study and select, in
a chemical library, the active hit compounds on a biological target. The identified hit
compounds are starting points for pharmacomodulation studies to design and develop
potential drugs. Therefore, exploratory in vitro screening is the very first key step in the
drug development process. Given this, the instrumentation used to perform such screening
is crucial. Indeed, the choice of equipment can result in significant differences in costs,
required handling time, and quality of data (reproducibility and repeatability). From
manual testing to semi-automated or even fully automated testing, these criteria could vary
widely and represent a challenge for harmonizing results obtained by different research
teams. Nevertheless, more and more examples of efficient high throughput screening
against Leishmania are described in the literature [13–18].
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Another challenge posed by these exploratory in vitro screening tests is the biological
target itself: the Leishmania parasite. Indeed, the exploratory screening for Leishmania
involves in vitro exploratory screening on a whole protozoan parasite that exists in two
morphological forms (promastigote and amastigote), which means there is a multitude of
potential molecular targets. The Leishmania’s lifecycle requires the presence of two entities:
the sand fly vector and a mammalian host. Various developmental stages throughout
this lifecycle are required, but these different stages (promastigote and amastigote forms)
involve many variations in diverse metabolic, biochemical, and biological pathways, which
were progressively detailed in the literature [19–24]. Various Leishmania forms are used
experimentally in vitro to develop exploratory screening tests, which are promastigotes,
intracellular amastigotes, and axenic amastigotes. These latter forms represent amastigotes
that were adapted to grow and develop outside their host cells in a growth medium that
mimics the intracellular conditions [25–27]. Therefore, it appears complicated to consider
only one parasite form in the framework of an exploratory in vitro screening. If rapid
primary screening can be performed on extracellular promastigotes and axenic amastigotes,
it would be essential to confirm and identify false positives during a secondary screening
of identified hit compounds on clinically relevant intramacrophagic amastigote forms [14].
Nevertheless, this strategy does not prevent false negatives represented by hit compounds
specific to intracellular amastigotes without highlighted activity on extracellular forms [28].
Thus, exploratory screening tests designed to facilitate the rapid testing of a large num-
ber of compounds are usually performed on the extracellular promastigotes or axenic
amastigotes, which both enable the performance of high throughput screenings with high
reproducibility [29]. Although some consider that promastigotes may not be as relevant as
axenic amastigotes for screening purposes [30], there is still a lack of correlation between
axenic artificial forms and intracellular amastigotes [14]. As such, models using host cells
currently remain the gold standard in determining compound sensitivity [31] since they
provide essential information about the tested compound’s activity in the parasite’s nat-
ural environment. Nevertheless, these models also reveal variation factors and potential
biases, such as a low replication rate of amastigotes compared to promastigotes [32,33], the
influence of the macrophage infection rate [34], and the variety of host cells used (primary
cells or cell lines) [35]. Thus, although many studies show a correlation between the results
obtained on in vitro promastigotes and (axenic) amastigotes [36–41], it seems important
to take all these various factors and potential biases into account before implementing
secondary screenings and interpreting them.

Another challenge in terms of harmonizing work carried out by different research
teams is the wide variety of existing options for detection, acquisition, and data processing
systems [42]. Thus, cell viability detection was extensively used in the exploratory screen-
ing of antileishmanial compounds, especially for primary screenings on extracellular forms
[27,36–70]. Indeed, there are many colorimetric assays that are usable, simple, inexpensive,
and suitable for large-scale screening [43,44]. Some of those are poorly illustrated in the
existing literature, such as the trypanothione reductase assay [45] or acid phosphatase
assay [46–49], while others are widely proven, notably, those related to intracellular metab-
olizing salts such as the most famous MTT assay (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl
tetrazolium bromide) [38,50–59]. This yellow salt is reduced to purple formazan crystals
in living cells, allowing for easy determination of parasite viability. Other analogous tests
are also described, such as the one using Alamar blue (resazurin) [27,60–67], an oxidation-
reduction indicator that changes its color from blue to red in living cells. The use of
an analog of MTT, the MTS (3-(4,5-dimethylthiazol-2-yl-5(3-carboxymethylphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium) [68–70], is also described. However, these tests are not very
sensitive and are mainly used for low throughput screenings. Furthermore, direct counting
could also be used to evaluate the leishmanicidal activity of tested compounds both in
promastigote (motility of promastigotes and examination of non-viable parasites after stain-
ing) [71] and in amastigote (microscopic counting of infected macrophages and the number
of parasites per macrophage after staining) assays [71]. This method has the advantage
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of not requiring expensive equipment, but it is time-consuming, laborious to perform,
unsuitable for large-scale screening, and suffers from a lack of reproducibility. Moreover,
the determination of inhibitory concentration 50% (IC50) may be inaccurate since the de-
termination of parasite viability through a staining procedure is obviously difficult [25].
Different tools were developed to automate this tiresome microscopic counting [72,73]. As
an example, can be cited an automated microscopic image analysis, which can be applied
to the quantification of drug activity [74]. Of note is a methodology using a colorimetric
β-lactamase assay described on intramacrophagic amastigotes of L. donovani [16]. Nev-
ertheless, in the field of cell viability analysis, flow cytometry constitutes an interesting
alternative [75,76], which is accurate and largely used to automate the reading of results.
Another approach uses the detection and quantification of engineered cells expressing
fluorescent gene reporters [77,78] such as green fluorescent protein (GFP) [32,79–81] and
bioluminescent gene reporters such as luciferase [82–86], or a combination of both [87–90].
These methods are proven to be more sensitive and enable faster read-outs and higher
throughput [91]. Moreover, reporter proteins bear or produce an easily detectable response
that can be quantified even in intracellular conditions, leading to the development of many
experimental models [92]. As an example, the use of a traceable bioluminescent marker,
such as NanoLuc-PEST, that correlates specifically with parasite viability could provide
a more relevant in vitro assay for use in both axenic and intramacrophage amastigote
models. This system was already described in L. mexicana [93] and could be adapted to
other Leishmania species since the employed reporter protein expression vector (pSSU-int)
was already successfully used in the main species involved in pathology [29,94,95]. Further-
more, a recent comparison of several bioluminescent reporters in a cutaneous leishmaniasis
model indicated that NanoLuc-parasites, despite high bioluminescence intensity in vitro,
were shown to be inadequate in discriminating between live and dead parasites in drug
screening protocols. Bioluminescence detection from intracellular amastigotes expressing
NanoLuc-PEST, red luciferase (RedLuc), or conventional luciferase (Luc2) proved more reli-
able than microscopy to determine parasite killing [96]. Nevertheless, this technology also
presents several limitations, including a potential antibiotic cross-resistance conferred by in-
duced antibiotic resistance allowing the selection of recombinant parasites and the difficulty
of adapting it to Leishmania clinical isolates. Furthermore, these genotypic modifications of
parasites could result in phenotypic consequences, such as biological transformations.

3. Recent Technological Advances Enabling the Development of New Research Tools
in the Drug Development Process

A common drawback of all the already cited methodologies is that they represent
only phenotypic screenings. The molecular target(s) of identified hit compounds remains
to be determined by suitable mechanistic studies, which also represent a challenge in
many cases. Indeed, it often seems complicated to identify the molecular target(s) of
in vitro original hit compounds, which is likely to have an impact on the number of
products in development progressing from the preclinical to the clinical stage. The main
impact is the acute scarcity of new drug candidates reaching clinical trials: there are 170
registered clinical trials on leishmaniases on the ClinicalTrials.gov database, of which
only 21 are ongoing. Of those, 13 are interventional drug trials involving a curative
treatment, and four of which involve a product being developed alone or in combination
with others [97]. This difficulty in accurately identifying the molecular target(s) of hit
compounds is even more surprising as the Leishmania genome sequence information [98,99]
was described and made available, along with significant research into the parasites’
biology [100,101]. However, classical genome manipulation methods encounter some
limitations in Leishmania, including difficulties in achieving gene knockouts because of
the parasites’ high genomic plasticity [102]. Nevertheless, recent advances in various
technological areas suggest new possibilities for target-based drug discovery methods
[103–105]. Ideally, a druggable target would be critically essential to parasites’ growth or
survival (such that an incomplete knockdown would result in parasites’ death), be selective,
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and have a catalytic site or pocket in its structure (to optimize interactions with a small
molecular inhibitor) [106,107].

Therefore, RNA interference (RNAi), defined as the mechanism through which gene-
specific, double-stranded RNA (dsRNA) triggers the degradation of homologous tran-
scripts, should be helpful [108], but this approach has proven ineffective in several Leishma-
nia species [109,110] due to the absence of RNAi-related genes, such as Argonaute [111,112].
Consequently, there are only a few published applications of the RNAi approach, particu-
larly those described in cutaneous leishmaniasis pathogens such as L. braziliensis [108,113]
and L. mexicana [114,115]. In visceral leishmaniasis, this RNA interference strategy was
mostly used to understand the mechanism of L. infantum infection better, whether it be the
study of the functional role of the CC chemokine receptor 5 (CCR5) [116] or that of Wnt5a
signaling [117].

However, the CRISPR-Cas system is a real step forward [118]. Initially identified as a
prokaryotic defense mechanism against plasmids and virus invasions, this CRISPR-Cas9
(Clustered Regularly Interspaced Short Palindromic Repeats linked to the Cas9 endonu-
clease protein) system has been used for genome editing and various applications for
a decade [119]. Target recognition strictly requires the presence of a short protospacer
adjacent motif (PAM) flanking the target site, and the subsequent R-loop formation and
strand scission are driven by complementary base pairing between the guide RNA and
target DNA, Cas9–DNA interactions, and associated conformational changes [120]. With it
being simple, inexpensive, and efficient, this system has found some specific applications
on leishmaniases since proof-of-concept in 2015 when the first CRISPR-Cas9 mediated
genome editing tools were developed and demonstrated as being effective against L. major
[121] and L. donovani [122]. In Leishmania, CRISPR-Cas9 results in double-strand DNA
breaks, which can be resolved by several mechanisms, such as homologous recombination
or microhomology-mediated end joining [123] as non-homologous end joining is thought
to be absent in this parasite [124]. The adaptation and optimization of this approach for
Leishmania spp. led to genetic engineering, identification of essential genes, and character-
ization of potential drug targets [125,126]. In particular, the method was improved in a
CRISPR-Cas9 toolkit for quick and precise gene modification by integration of donor DNA,
using engineered cell lines and drug selection of mutants, which was developed in L. major,
L. mexicana [127] and validated in L. donovani [128]. As an example, this CRISPR-Cas9
approach led to the discovery that the leishmanial eIF4E cap-binding protein (LeishIF4E-3)
is essential for the completion of the parasite lifecycle since the deletion of a single allele by
the CRISPR-Cas9 system alters the cell morphology and results in parasite infectivity [129].
Lately, this system was successfully used to create individual null mutants for L. mexicana
eukaryotic protein kinases (ePK) and phosphatidylinositol 3′ kinase-related kinases (PIKK).
Then, the generation of the L. mexicana kinome gene and a further systematic functional
analysis of kinases led to identifying several pathways notably regulation of the parasite’s
replication, differentiation, and responses to stress which are divergent to humans, and
which potentially could be targeted in the drug development process [130].

Furthermore, advances in omics-based methods also led to the identification of para-
sitic targets, representing another important tool for drug discovery. These technologies
are increasingly used for target discovery and validation for protozoan parasites, including
Leishmania [131,132]. Thus, a method that has been used with great success to find new drug
targets in malaria [133] is in vitro evolution and whole-genome analysis (IVIEWGA). In
this case, this method is more complex because the Leishmania genome is larger and diploid,
in contrast to that of Plasmodium. In this method, parasites are exposed to sublethal concen-
trations of hit compounds already identified in phenotypic screens. In order to identify
the genetic basis of their resistance, the genomes of the resistant clones are analyzed using
tiling microarrays or, more typically, using whole-genome sequencing and are compared to
the sensitive parent clone. In many cases, newly emerged genomic lesions are found in
genes that are predicted to encode the targets. IVIEWGA recently led to the identification
of two new antileishmanial drug targets. The first is the β4 subunit of the proteasome
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that catalyzes protein degradation through the ubiquitin-proteasome pathway [134]. This
target was identified by analyzing GNF3943; the lead compound was identified using a
phenotypic screen for compounds that are broadly active against L. donovani, Trypanosoma
cruzi, and Trypanosoma brucei. Next, 3000 compounds were synthesized, from which two
were used for IVIEWGA experiments that resulted in two independent mutations in the
proteasome β4 subunit. These results suggested that the proteasome, which is essential in
eukaryotic cells, was the target. The second is the cyclin-dependent kinase 12 (CDK12),
which is involved in the control of transcription and cell division [135]. In this work,
a hit compound (DDD853651/GSK3186899) from a phenotypic screen was used for a
combination of chemical proteomics and IVIEWGA experiments leading to the identifi-
cation of CDK12 as a parasite target. The advantage of targets discovered through this
IVIEWGA method is that they are, by default, chemically validated and druggable, though
complementary studies may be needed to validate the targets and their clinical relevance
further. Metabolomics can also be applied to investigate metabolic pathways and potential
mechanisms of action or resistance of selected hits or drugs [136]. Thus, in the context of
zoonotic visceral leishmaniasis, a multiplatform metabolomic approach was developed
and described [137] to elucidate the basis of the mechanisms of action and resistance of
L. infantum to antimonial derivatives. This work was performed through an untargeted
analysis of metabolic snapshots of several parasites’ populations (treated/untreated and
resistant/responders) using a multiplatform approach to determine the widest possible
coverage of L. infantum metabolome and through a 13C monitoring of the origin of the
highlighted alterations.

Bioinformatics and cheminformatics are also powerful tools for screening and iden-
tifying drug targets in Leishmania, mainly based on their divergence from the host and
the essential nature of their biological function. Indeed, computational approaches have
gained prominence in the last two decades as reliable approaches in the prediction of drug-
like compounds with much ease [106]. This approach aims to identify structure-activity
relationships (SARs) in order to design optimized compounds that could be screened in
silico [138,139]. In this way, a growing body of work was published on structure-based
computational approaches and pharmacophore-based virtual screenings, such as the in
silico high throughput screening and the molecular docking published by Saki et al. in
2019 [140]: this work identified five potent antileishmanial ligands for lipophosphoglycan
(LPS) receptor, and two for γ-glutamylcystein synthase (γ-GCS) receptor in L. infantum
among 20,000 FDA approved drugs. In 2021, similar computational approaches notably led
to identifying phytochemical inhibitors of squalene synthase [141] and selective inhibitors
of dihydrofolate reductase [142] in L. donovani. Allosteric modulators of superoxide dismu-
tase in L. chagasi were also identified [143]. However, virtual screening appears ever more
efficient with the development of methodological tools [140,144], but several potential
biases were reported [145]. For this reason, although this approach is very interesting, fast,
and a cost-efficient alternative to high-throughput screening, the results should be tested
and validated experimentally [146–148] afterward. Among the most recently published
works are those of Khatoon et al. [148], which identified original coumarin-isatin hybrids
derivatives with antileishmanial activity. From 10 synthesized derivatives, molecular
docking revealed all 10 compounds could successfully fit into the binding pocket of the
target (Leishmanolysin gp63) of L. tropica. The results obtained through dynamic studies
affirmed that only three compounds (Spf-6, Spf-8, and Spf-10) displayed strong binding
interactions with the gp63 target. This result was experimentally validated as only these
three compounds were found to be active against both promastigote and axenic amastig-
ote forms of L. tropica. Other compounds were found to be inactive. This approach was
also used by Peña-Guerrero et al., who validated the Lmj_04_BRCT domain as a novel
therapeutic target in Leishmania by a structure-based drug discovery strategy, and experi-
mentally validated in vitro a novel inhibitor (CPE2) against L. major, L. amazonensis, and
L. infantum (promastigotes and intracellular amastigotes) among seven virtually selected
compounds [149].
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4. Conclusions

Today, (multi) drug resistance is a priority public health issue. Although medicine do-
nation programs are multiplying to support the burden of neglected tropical diseases [150]
such as leishmaniases, the pharmaceutical industry seems to increasingly restrict its re-
search and development investment to new drug candidates [151]. Alternative options
consist of repurposing drugs [152–154] or improving existing drugs, such as the gold stan-
dard amphotericin B [155]. Nevertheless, research into new drug candidates that are active
against Leishmania must not be excluded, especially as methodological tools are becoming
increasingly effective. Indeed, recent technological advances, such as those highlighted in
this paper, should lead to new insights on parasite biology, with a view to identifying and
characterizing a growing number of parasitic druggable targets in order to develop more
assays against specific targets and drugs with original mechanism of action. In this way,
such results may gradually lead to the development of more targeted high-throughput
screenings, ideally performed on clinically relevant intramacrophagic amastigote forms,
which could guide the development of a sustainable original drug candidate.
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