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ABSTRACT

Mapping methods to represent the interplay between environmental changes and prehistoric
communities were investigated through a case study of the Mediterranean lberia coastal
landscape in the context of Holocene sea-level rise. We developed a four-dimension GIS-
based analysis of the environmental evolution based on primary data acquisition (fieldwork,
laboratory analyses) and spatial modeling of paleo-Digital Elevation Models (paleoDEMs). Five
paleoDEMs were computed, representing key stages of the morphogenetic evolution
between 9000 and 7000 years ago. Second, each paleoDEM was used as input in a Site-
Catchment Analysis (a 1- and 2-hour walking distance from the archeological sites). Finally, we
provide a bird-view visualization of the landscape evolution, centered on the perspective of
an individual located at the archeological sites. By shifting the focus to the human scale, this
GIS-assisted mapping allows refining assessments of the impact of environmental changes on
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settlement and subsistence patterns during the Mesolithic and Early Neolithic periods.

1. Introduction

Coasts have played an important role in modulating
Human dispersals, settlement patterns, and subsis-
tence activities throughout Prehistory (Bailey, 2004).
Yet coastal environments have sometimes been over-
looked in archeological investigations (Bicho &
Haws, 2008) due to their highly dynamic nature. For
example, the archeological record of coastal areas,
and open sites in particular, are especially sensitive
to taphonomic bias (e.g. shellfish and bone remains
can be affected by chemical dissolution and mechan-
ical damages). Furthermore, large-amplitude sea-
level oscillations over Glacial-Interglacial periods can
bury former stratigraphies or erode newly exposed
ones (Stéphan et al., 2019; Berger, 2021).

Diachronic environmental analyses are essential to
understand  socio-ecological interactions in coastal
areas. Such approaches, however, usually face a major
challenge: the heterogeneity of observations in space
and time. On the one hand, some studies rely on modeling
outputs resulting from regional isostatic models (Lam-
beck & Purcell, 2005) and apply a uniform propagation
of sea-level elevation to the modern topography-bathy-
metry. This allows obtaining low resolution but large geo-
graphical extent reconstructions (e.g. Jorda Pardo et al,,
2016; Vacchi et al, 2017). On the other, detailed

geomorphological investigations (e.g. Fruergaard et al,
2015) are rich in site-specific evidence, but cover smaller
geographical extents. It is thus necessary to find a balance
between fieldwork information and a simplification of the
paleo-geographical material, as the information of fossil
records is inherently incomplete and generally discrete
in space and time (Willmes et al., 2020).

Past interactions between Humans and coastal
environments have been mapped, for example, for
the Gulf of Finland. In this case, lithostratigraphic ana-
lyses coupled with radiocarbon dates allowed to recon-
struct and map five stages of the paleogeography
associated with sea-level changes and that influenced
Neolithic hunter-fisher-gatherers settlements and
activities (Muru et al., 2017). Coastal wetlands formed
by beach-barrier and brackish lagoon systems corre-
spond to a different type of coastal biotope with enor-
mous potential to assess human adaptation to climate
change (Van de Noort, 2013). Another relevant study
used a GIS-based multiproxy coastline reconstruction
of the eastern Gulf of Riga during the Stone Age
(Habicht et al., 2017), integrating a LIDAR-derived
digital elevation model and ground-penetrating radar
profiles. These allowed to highlight the coastal barrier
morphology change together with the isolation of a
lagoon environment associated with brackish waters.
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In line with these studies, the present paper aimed
to create GIS-based paleomap reconstructions at five
key dates of the coastal morphogenetic evolution of
the beach barrier-lagoon system surrounding two pre-
historic archeological sites on Spain’s Mediterranean
coast: El Collado, dated to the Mesolithic period
(9830-8060 cal BP), and El Barranquet, dated to the
Early Neolithic (7550-7320 cal BP).

2. Materials and methods

The numerical workflow to compute the paleomap
was semi-constrained by field surveys (archeology,
geomorphology). It also integrated former laboratory
analyses (sedimentology and radiocarbon dates of
sediment cores) and was based on modifications of
the modern topography and bathymetry. Site-Catch-
ment Analysis then allowed mapping changes in
coastal resource accessibility within walking distance
from the archeological sites. Finally, we used a bird-
view visualization of the landscape evolution to
focus on the human scale and address questions on
the perceptions of prehistoric communities on the
sea-level rise and coastal dynamics.

2.1. Datasets

2.1.1. Primary data

To reconstruct the coastal morphology’s evolution
over time, we first gathered high-resolution primary
georeferenced terrain data that included modern topo-
graphy and bathymetry elevation contours (Table 1,
Figure 1), both having an altimetric resolution of 1
meter. This altimetric accuracy was important because
morphological changes evolved at a metric scale every
500 years during this period. As high-resolution
bathymetric data covers a depth range of 0—40 meters,
this dataset was merged with coarser-resolution bathy-
metric data to cover the full map extent. To elaborate
the Map, we merged this bathymetric data with a
lower resolution offshore map. Three layers were
included, added to the terrain datasets (Figure 1):
the hydrographic network for passive visualization;
the geographic coordinates of the coring sites; and
the coordinates of the two archeological sites under
study (Esquembre Bebia et al, 2008; Fernandez-
Lépez de Pablo & Gabriel, 2016).

2.2. Secondary data

2.2.1. Defining key dates of the morphogenetic
evolution

Previous studies (Brisset et al., 2018, 2020) have
explored the paleoenvironmental and morphogenetic
evolution of the coastal plain of Pego-Oliva during
the Holocene, based on a dense network of 18 sedi-
ment cores (Figure 2A, B), sedimentological analyses,

and radiocarbon dates (Figure 2C). In brief, these
works have shown that an Early- to Mid-Holocene
sea-level rise took place (from 10,000 to 7000 cali-
brated years Before Present — cal BP) and that the for-
mer littoral and lagoons were repeatedly flooded (best-
modeled age of 9000 cal BP at —20.5 meters, 8800 cal
BP at —18.5 m, 8500 cal BP at —15.5 m, and of 8100
cal. BP at —11.5 m) and buried below marine sedimen-
tary facies. This transgressive process ended with a
maximal landward migration of 4 km to the modern
shoreline (7300 cal BP at —4 m). Those results thus
allowed identifying five key dates in the area’s mor-
phogenetic evolution, corresponding to significantly
different altimetric sea level positions. We aimed to
reconstruct them in this study (Figure 2A, C).

2.2.2. Paleo-shorelines and paleo-sea extents
feature

The paleo-shoreline positions were approximated for
the five key dates based on the depths of the lagoon
facies encountered in the cores, that were roughly
(altimetric errors < 0.4 m) at the relative sea-level
elevation. Accordingly, contour lines corresponding
to these key dates were set as paleo-shorelines on the
modern bathymetry contour layer for depths of 20.5,
18.5, 15.5 and 11.5 meters. The shoreline correspond-
ing to the maximal transgression (a depth of 4 meters)
is located inland, so it was estimated by combining
field observations and modern topography contours.
The five paleo-sea extents were computed as polygons
by clipping the study area polygon adjusting to the
corresponding paleo-shorelines.

2.2.3. Paleo-lagoon extents

The presence and extent of inland paleo-lagoons were
confirmed via sedimentological analyses of sediment
cores (Figure 2A), dated by radiocarbon ages and
age-depth modeling (Figure 2C). First, these results
were included in a georeferenced attribute table
(Table 2), specifying the presence, or absence, of
lagoon sediment facies, for the five key dates. Second,
paleo-lagoon polygons were manually digitized, based
on precise core information and paired with an impre-
cise estimate of the lagoon extent offshore, which is
today underwater. We took into account the following
points: (1) lagoons are likely to be closed by a coastal
barrier to allow the development of freshwater habi-
tats; (2) the general shape of the Pego-Oliva valley bot-
tom (Torres et al., 2014) and the consistent inland
presence of buried lagoon facies, not only at Pego-
Oliva, but also over the southern part of the Valencia
gulf (Vinals & Fumanal, 1995); and, (3) the presence of
relict sand barriers under 10 km away from the mod-
ern coastline, intercalated with lagoon facies located
30-80 meters below the modern sea-level in the
near-gulf of Valencia (Albarracin et al.,, 2013).
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Table 1. Dataset used for paleosurface reconstructions, and site-catchment spatial analysis.
Altimetric &
horizontal
Data Type Description Format resolutions Source
Primary Topography Elevation contours (city administrative level), derived Shapefile 1 meter Institut Cartographic
from airborne LIDAR. 1/5000 Valencia
catalogo.icv.gva.es
Onshore Elevation contours (provincial administrative level) Shape 1 meter Ministerio para la
bathymetry derived from the national seismic coast survey file 1/1000 Transicion Ecoldgica
conducted by the Direccion General de la Costa y el Mar
(altitudinal range: 0 to —40 m).
Offshore Elevation contours (European sea) derived from merging Shapefile 1 meter EMODnet Digital Terrain
bathymetry selected bathymetric survey, composite DEMs, and 115 m Model
satellite-derived bathymetry completed by GEBCO emodnet-
model. bathymetry.eu
Hydrographic Digitized vector line of the streams (city administrative ~ Shapefile 0.5 meter Institut Cartographic
networks level). 1/5000 Valencia
catalogo.icv.gva.es
Coring sites Points of the location of the sediment cores and attribute ~ Shape 0.5cm This study
table (presence/absence of lagoon facies per key date). file Tm
Archeological Location points of the 2 archeological sites and attribute  Shape 0.5cm This study
sites table (site names). file Tm
Secondary  Paleo-shorelines ~ Vector extracted from the modern bathymetry Shapefile 1 meter This study
corresponding to the elevation of sediment facies in 1/1000
cores.
Paleo-sea Polygon produced from clipping each paleo-shoreline to  Shapefile 1 meter This study
extents the study extent. 1/1000
Paleo-lagoon Polygon produced by merging the results of the positive ~Shapefile 1 meter This study
extents presence of lagoon facies in cores, and a probable 1/1000
presence of coastal barrier separating the sea from the
lagoon.
Paleo-DEMs Digital Elevation Models computed based on masks of the  Raster 1 meter This study
modern topography and bathymetry contours. 5 meters
Site-Catchments  Polygons resulting from the Site-Catchment Analysis Shapefile 1 meter This study
results. 1/1000

Datasets used to reconstruct the evolution of the morphology

of the littoral of Pego-Oliva during the Early- to Mid-Holocene

Primary dataset

MEDITERRANEAN Modern topography
SEA \_— Modern shoreline
N Hydrographic network
¥ Coring sites

)
W Mesolithic (E/ Collado)
Y7 Early Neolithic (E/ Barranquet)
Paleo-shorelines

{_— 9000 cal BP

(_— 8800 cal BP
{_— 8500 cal BP

8100 cal BP
_— 7300 cal BP

Paleo-lagoon extents

~ 9000 cal BP
* 8800 cal BP
“ 8500 cal BP
8100 cal BP
0 5 10
: Kilon:eters . © Journal of Maps 2022

Figure 1. Main datasets used to reconstruct the evolution of the coastal morphology of the Pego-Oliva littoral during the Early- to
Mid-Holocene.
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Figure 2. Main lithostratigraphic and geochronological results obtained for the Pego-Oliva coastal plain (Brisset et al., 2018). (A)
Interpretative sketch of the sediment infilling signaling the presence of lagoon facies buried below the modern sea level at five key
dates of the morphogenetic evolution. (B) Synthetic paleoenvironmental evolution during the Early to Mid-Holocene. (C) Age

probability density function obtained for the five key dates of the morphogenetic evolution.

2.2.4. Paleotopographic modeling

Following the general paleosurface reconstruction
procedure, we considered a semi-automated method
coupled with modern morphometry derived from
the Digital Elevation Model (DEM) dataset as a gen-
eral basis, improved by field-knowledge for the area
of particular interest, i.e. in this case, the coastal
band. This approach resembles that of Brisset et al.
(2014) who reconstructed key morphogenetic evol-
ution dates (sediment deposition and erosion) of a
mountain catchment over the Holocene, applying
selective masks of the modern Digital Elevation
Model as a general basis, inserting new constraints
obtained by field measurements, and finally re-inter-
polating the morphological dataset. The three

elevation contour datasets (Topography, Bathymetry
On-shore, and Bathymetry Offshore) were imported
into a Geographic Information System (Coordinates
system: ETRS 1989 UTM Zone 30N). They were
then joined and clipped to the study area extent to rep-
resent the modern topo-bathymetry. Additional con-
straints, which differed depending on the key dates,
were added, and new raster paleo-DEMs were calcu-
lated using consistent parameter settings (format:
GeoTIFF, algorithm: Natural Neighbor, Pyramids
Level: 5, cell size: 5 m) described below.

e At 9000 cal BP, the modern elevation layer was edi-
ted by: (1) deleting the elevation lines of the interval
from +4 to —26 m (included); (2) changing the

Table 2. Attributed table of the coring sites GIS layer, specifying the presence (value = 1), or absence (value =0) of lagoon
sediment facies for each of the five key dates of the area’s morphogenetic evolution in the 18 sediment cores.

ID Shape Name 9000 cal BP 8800 cal BP 8500 cal BP 8100 cal BP 7300 cal BP modern
0 Point ZM PDGEST_1 0 0 0 0 0 0
1 Point ZM P4 0 0 0 1 0 1
2 Point ZM P3 0 0 1 1 0 1
3 Point ZM P1 1 1 1 0 0 0
4 Point ZM PDGEST_2 0 1 1 0 0 0
5 Point ZM P6 0 0 0 1 0 1
6 Point ZM P17_8 0 0 0 0 0 0
7 Point ZM PDGEST_5 0 0 0 0 0 0
8 Point ZM P17_5 0 0 0 0 0 0
9 Point ZM P17_7 0 0 0 0 0 1
10 Point ZM P17_3 0 0 0 1 0 1
1" Point ZM P7 0 0 0 1 0 1
12 Point ZM P17_4 0 0 0 0 0 0
13 Point ZM PDGEST_7 0 1 0 0 0 1
14 Point ZM PDGEST_3 0 0 0 0 0 0
15 Point ZM PDGEST_4 0 0 0 0 0 0
16 Point ZM PDGEST_6 0 0 0 0 0 1
17 Point ZM P17_2 0 0 0 1 0 1




attribute of the elevation line +5 m to a value of
—19m (depth of lagoon facies in the cores
PDGEST-1 and P1); (3) deleting modern topogra-
phy anomalies (highway, port infrastructure); (4)
creating one line to produce a flat coastal plain
(necessary to develop a lagoon), that intersects
these cores, and set at —20 m, as obtained in the
cores.

e At 8800 cal BP, the modern elevation layer was edi-
ted by: (1) deleting the elevation lines from +5 to
—16 m, (included); (2) creating one line (elevation:
—17 m) to produce a flat plain that intersects the
cores P1, PDGEST-2, PDGEST-7, and excludes
the others.

e At 8500 cal BP, the modern elevation layer was edi-
ted by: (1) deleting the elevation lines from +5 to
—15 m, (included); (2) creating one line (elevation:
—14 m) to produce a flat plain that intersects P1, P3,
PDGEST-2, and excludes the others.

e At 8100 cal BP, the modern elevation layer was edi-
ted by: (1) deleting the elevation lines from +5 to
—12 m, (included); (2) creating one line (elevation:
—11 m) to produce a flat plain, that intersects P6,
P4, P3, P17-3, P17-2, P7, and excludes the others.

e At 7300 cal BP, the modern elevation layer was edi-
ted by: (1) deleting the elevation lines from +5 to
—5m (included); (2) creating one line (elevation:
—4 m) to allow an inland sea transgression at the
depth of appearance of the marine facies in all the
cores except P17-8, PDGEST-5, P17-4, P17-5.

2.3. Spatial analysis

Based on the principles of the Optimal Foraging The-
ory, Site Catchment Analysis (SCA) is a well-estab-
lished technique to delimitate the accessibility of
potential resources, from a given location, considering
traveling time/or energy expenditure (Cannon, 2003).
For the purposes of the present study, the SCA was
undertaken to visualize the impact of the sea-level
rise on prehistoric land use considering a 1- and 2-
hour walking distance from the Mesolithic site of El
Collado and the Neolithic site of El Barranquet. In
the case of hunter-gatherer societies inhabiting tem-
perate biomes, a catchment area corresponding to a
2-hour distance of travel was a realistic estimation of
time expenditure for hunting expeditions departing
from a residential camp. This estimation is supported
by both ethnographic literature (Kelly, 1995), and
archeological case studies in Iberia (Arroyo, 2009).
In the case of small-scale agriculturalists, according
to recent studies on Early Neolithic settlement pat-
terns (Atiénzar, 2009), a 1-hour distance SCA
defines the area where most of the field crops are
located with respect to the villages.
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The SCAs were computed according to the follow-
ing steps: first, we calculated an anisotropic cost-of-
passage raster (Conolly & Lake, 2006) based on the
slope and the lagoon water bodies for each of the
five paleo-DEMs elevation models. In our cost-of-pas-
sage rasters, the cost of moving was weighted at 70%
for the slope and 30% for the lagoon bodies. We
then calculated an accumulated cost-surface by apply-
ing the Tobler’s hiking function (Tobler, 1993) as a
spreading algorithm. Finally, we vectorized the accu-
mulated cost-of-surface in 60-minute isolines and
selected 60 and 120-minute isolines to delineate the
site’s 1- and 2-hour catchment areas.

3. Results
3.1. The composite map

The map represents the Pego-Oliva marshland’s
Holocene paleogeographic evolution over five differ-
ent temporal slices. Maps at 9000, 8800, 8500, and
8100 cal BP reflect the changes in coastal biotopes
that occurred during the human occupation of the
El Collado Mesolithic site. For its part, the 7300 cal
BP snapshot depicts the coastal configuration during
the Early Neolithic occupation of the El Barranquet
site. We represented 1- and 2- hour traveling distance
catchment areas of the site for all time slices, in light
and dark gray dashed lines, respectively. The compo-
site map also represents the location of the lagoon
cores that provided positive or negative evidence of
lagoon sedimentary facies. This sedimentary data
was used to estimate the paleo-lagoon features for
each time slice.

For the Mesolithic period, the composite map
clearly shows the impact of the Early Holocene sea-
level rise (ca. 9000-8100 cal BP), and the concomitant
marine transgression on the 2-hour SCA of the El Col-
lado site. Within the 2-hour SCA, we found a mono-
tonic reduction in the extent of the biotopes
corresponding to coastal plains and marshes. Prelimi-
nary zooarchaeological data from El Collado faunal
assemblages (Fernandez-Lopez De Pablo et al., 2015)
indicate the exploitation of ungulates inhabiting low-
lands, such as aurochs and red deer, and mountain
ungulates such as ibex, as well as forest adapted
species, like wild boar. The narrowing of coastal plains
might have affected the density of the ungulate prey
that inhabited lowland areas, especially red deer and
aurochs. The map also shows how the paleo-lagoon
features are located between the 1- and 2-hour SCA
isochrones. The proximity of the coastal lagoons
along the Mesolithic occupation of El Collado is con-
sistent with the data on mollusks and fish bone assem-
blages. The latter showed the dominance of the
Mediterranean cockle (Cerastoderma glaucum), in
addition to other inhabiting lagoon mollusk species,
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such as Cerithium vulgatum, Hexaplex trunculus and
the overwhelming representation of the gilt-head
seabream (Sparus aurata) (Fernindez-Lopez de
Pablo & Gabriel, 2016). The Early Holocene dynamics
of this lagoon-barrier coastal system show a progress-
ively inland migration and a contraction of the extent
of the lagoon water bodies. Again, this observation fits
well with the diachronic trends observed in the mol-
lusk assemblages from the El Collado site. The latter
depicts a significant decrease in the relative frequen-
cies of lagoon species, replaced by edible land snails.
Finally, during the Neolithic occupation of the El
Barranquet site, at 7300 cal BP, we identified the maxi-
mum impact of the inland marine transgression in the
1- and 2-hour SCAs. All the analyzed cores provided
negative evidence of lagoon facies, supporting the
replacement of the coastal lagoons by a fully coastal
(infralittoral) biotope, delineating a small bay.

3.2. 3D bird-view visualization

Finally, we complemented the map series with an ani-
mated 3D bird-view visualization (Supplementary
Online Material), displaying the coastline inland
migration and changes in biotope configuration for
the coastal sector between the archeological sites of El
Collado and El Barranquet southward, towards the
Pego-Oliva lagoon and Nao cape. This visualization
strategy aimed to focus on the anthropic perception
of major transformations in coastal biotopes, affecting
daily subsistence and mobility practices by prehistoric
communities. This, in turn, informs on the risk percep-
tion embedded in very dynamic human-environmental
interactions such as: (i), the continuous narrowing of
hunting territories and shellfish collection areas along
the Mesolithic, impacting local scale environmental
carrying capacity (ca. 9000-8100 cal BP); and (ii), the
exposure to storm surge events during the Early Neo-
lithic (ca. 7300 cal BP).

4. Conclusion

We highlighted the potential impacts of coastal bio-
tope dynamics, associated with sea-level rise, on pre-
historic ~community subsistence and mobility
practices using paleo-geographical maps of a coastal
area of central Mediterranean Spain during the
Early- to Mid-Holocene. Our study provides a baseline
to interrogate the archeozoological, bioarcheological
and malacological records of this area of the Western
Mediterranean coast. Paleo-dataset visualization pro-
ducts are particularly informative about past percep-
tions, at inter-generational time scales, of the sea
level rise and the flooding of coastal plains, of ecologi-
cal resource availability and exposure to hydroclimatic
hazards.

Software

Dataset georeferencing, manual digitization, sha-
pefiles, and attribute table edition, as well as COST
raster computations were carried out on ArcGIS Desk-
top 10.6 (OESRI). The paleo-DEM rasters were com-
puted on ArcMap 10.6 using the Spatial Analyst
extension (©ESRI). The map layout was performed
on ArcMap 10.6 (©ESRI) and finalized on Adobe
Mlustrator 2021 (©Adobe Systems Inc.). The bird-
view visualization was performed on ArcScene 10.6
(©ESRI) and the video compiled on PowerPoint
2019 (©Microsoft).
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