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Abstract: Background: To develop a deep-learning (DL) pipeline that allowed an automated seg-
mentation of epicardial adipose tissue (EAT) from low-dose computed tomography (LDCT) and
investigate the link between EAT and COVID-19 clinical outcomes. Methods: This monocentric retro-
spective study included 353 patients: 95 for training, 20 for testing, and 238 for prognosis evaluation.
EAT segmentation was obtained after thresholding on a manually segmented pericardial volume. The
model was evaluated with Dice coefficient (DSC), inter-and intraobserver reproducibility, and clinical
measures. Uni-and multi-variate analyzes were conducted to assess the prognosis value of the EAT
volume, EAT extent, and lung lesion extent on clinical outcomes, including hospitalization, oxygen
therapy, intensive care unit admission and death. Results: The mean DSC for EAT volumes was
0.85 ± 0.05. For EAT volume, the mean absolute error was 11.7 ± 8.1 cm3 with a non-significant bias
of −4.0 ± 13.9 cm3 and a correlation of 0.963 with the manual measures (p < 0.01). The multivariate
model providing the higher AUC to predict adverse outcome include both EAT extent and lung
lesion extent (AUC = 0.805). Conclusions: A DL algorithm was developed and evaluated to obtain
reproducible and precise EAT segmentation on LDCT. EAT extent in association with lung lesion
extent was associated with adverse clinical outcomes with an AUC = 0.805.

Keywords: adipose tissue; thoracic imaging; artificial intelligence; deep-learning; COVID-19

1. Introduction

Epicardial adipose tissue (EAT) is a unique adipose tissue that surrounds the heart and
is located between the myocardium and the visceral layer of the pericardium [1]. The role of
EAT with regard to the heart can be generally distinguished by mechanical, metabolic, ther-
mogenic, and endocrine/paracrine functions [2,3]. A major volume of EAT is linked to an
increased amount of fatal and non-fatal cardiovascular events [4], coronary calcification [5],
carotid stiffness [6] and atrial fibrillation [7]. EAT volume is now considered a potential
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therapeutic target for cardiovascular disease, although it is not routinely measured [8].
Consequently, its role has been suggested in COVID-19 infections, because inflammation
plays a major role in the progression of severe COVID-19 infection [9–11]. EAT has recently
been associated with pneumonia lesions, myocardial damage and adverse outcomes in
COVID-19 [12–14]. However, other studies did not find such an association [15,16]. In
particular, in a post-hoc analysis including 192 patients, Conte et al. showed that EAT
attenuation but not obesity or EAT volume was significantly associated with the risk of
ICU admission, death or invasive ventilation in COVID-19 disease [17]. The preliminary
step in these studies is to segment both COVID-19 lung lesion extent and EAT volume in
clinical care with fast, reproducible techniques that are available. Recent segmentation
studies have focused on deep-learning (DL) techniques, especially the use of convolutional
neural networks (CNNs), which have shown promising results in the automation of med-
ical imaging measures and segmentation [18]. Non-contrast computerized tomography
(CT) has been described as a more sensitive and accurate tool for measuring epicardial
fat thickness and volume, with high-resolution images that provide more details [19,20].
Low-dose chest CT (LDCT) is widely used in COVID-19 examinations.

Our main purpose was to develop and evaluate a complete DL pipeline that allows a
fully automated segmentation of EAT volume that could be used on LDCT in association
with a pre-existing COVID-19 lung lesions segmentation tool. We also aimed to investigate
the association between EAT volume and lung lesion extent in a COVID-19 cohort and the
impact of EAT volume on patient prognosis.

2. Materials and Methods
2.1. Study Design

This single-center retrospective study was conducted from January 2021 to March
2021. The conformity of the study with European data privacy rules was approved by the
local data protection officer and complied with the Declaration of Helsinki (N◦:20200012,
RGPD/ApHm: 2020-48). A total of 353 consecutive patients with COVID-19 confirmed by
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription polymerase
chain reaction (RT-PCR) test and who underwent LDCT for lesions extension were retro-
spectively selected for inclusion in the study. Some 115 patients were randomly selected
to develop a complete pipeline based on a CNN to segment and quantify EAT in LDCT.
A group of 95 patients were randomly assigned to the training dataset (47214 CT slices),
and 20 patients were assigned to the testing dataset (10412 CT slices). An external cohort
of 238 patients was selected to assess the correlation between lung lesions extent and EAT
volume and the potential impact of EAT volume on clinical prognosis. Automatic segmen-
tation of lung lesions due to COVID-19 was previously validated and used elsewhere [21].
A flow diagram of the procedure is shown in Figure 1.

2.2. Population and Data
2.2.1. Population

All patients were enrolled from one single center (La Timone—Assistance Publique
Hôpitaux de Marseille). All patients between 4 January and 30 March 2021, who had
a positive RT-PCR test result for SARS-CoV-2 and underwent unenhanced LDCT were
included. LDCT was performed on all patients over 55 years old or with risk factors for
adverse outcomes of COVID-19, such as hypertension, diabetes, obesity (defined as a body
mass index (BMI) ≥30 kg/m2), dyspnea, or abnormal lung auscultation. The exclusion
criteria were protocol refusal or an age below 18 years. Patient follow-up lasted 10 days in
cases of no adverse events, and the follow-up period was extended to cover an in-hospital
stay for patients who required hospitalization. A need for oxygen therapy, intensive care
unit (ICU) admission and death were recorded. All clinical data were anonymized.



Cells 2022, 11, 1034 3 of 14

2.2.2. Radiological Data

All patients underwent unenhanced, deep-inspiration LDCT on the same system (Rev-
olution EVO, General Electric Healthcare, Waukesha, WI, USA) with technical parameters
detailed in Appendix A. The pre-established top anatomic border was the lower part of the
neck. The bottom boundary was the location of the adrenal glands. All radiological data
were strongly anonymized.

Figure 1. Study flow chart. LDCT: low-dose chest computed tomography; EAT: Epicardial adipose
tissue pericardial volume; DL: Deep- Learning.

2.3. EAT Segmentation Model
2.3.1. Manual Segmentation

Manual image segmentation was undertaken for the selected population by one ob-
server: Observer 1 (O1); L.A.-Y., five years of experience. For each patient, images were
extracted from the picture archiving and communicating system and imported in DICOM
format on the validated post-processing software 3D Slicer (3D Slicer v4.11.20210226) [22].
Manual EAT segmentation and quantification were obtained in two phases on the medi-
astinal kernel [23]. First, manual segmentation was performed slice by slice on the entire
intrapericardial soft tissue volume by delineating the external border of the pericardium
using thresholding, painting, and erasing methods. The superior and inferior limits of
the pericardium were first identified as the top of the left atrium, and the lower limit
corresponded to the last slice in which the left ventricle was identified. Pericardial fat was
excluded. This segmentation was named Peri. The EAT tissue was then identified inside
the intrapericardial volume by using the standard fat attenuation range as a threshold,
from −140 Hounsfield units (HU) to −30 HU [24]. The remaining voxel was considered
the total volume of the EAT. EAT extent (Ext_EAT) was defined by the percentage of EAT
volume on the Peri volume. The obtained segmentation masks were all validated by one
experienced chest radiologist (A.J., 25 years of experience). All manual segmentations and
extracted clinical measures were defined by O1a. The manual segmentation is presented
in Figure 2.
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Figure 2. Example of manual segmentation of the Peri and EAT volumes in the LDCT. (A) LDCT
axial image on mediastinal window; (B) mediastinal thresholding to exclude pulmonary parenchyma;
(C) intrapericardial segmentation slice by slice using painting and erasing tools; (D) obtained 3D in-
trapericardial volume (Peri); (E) Obtained 3D EAT volume after standard fat attenuation thresholding.

2.3.2. Manual Segmentation and Slice Detection Model

The classification model was obtained by training a multitask U-Net network in which
the segmentation task would serve as a regularizer for the classification task. To this
end, a modified U-Net network is trained where a classification head is added to the
center of the U-Net in order to predict whether the current slice contains the heart. This
network is trained with supervision signals from both the cross-entropy loss function for
the classification task and from the segmentation loss function. When the training was
finished, only the first part of the network was kept as our final slice detection network.
The high-resolution network and object-context representation model specifications are
presented in Appendix B. Algorithm development was run on a Biprocessor Intel Xeon
Silver 4216 2.1GHz, RAM = 96Go, 2 GPU Nvidia Quadro RTX5000, 16Go.

2.3.3. Performance Evaluation and Reproducibility

Manual Peri and EAT segmentations (O1a) were compared to the automatically ob-
tained segmentations (Auto) on the testing dataset (n = 20). Technical performance was
evaluated with the median and mean of the Sørensen-Dice coefficient (Dice). The O1a and
Auto clinical parameters were evaluated in terms of segmentation volume (cm3) using
mean absolute error (MAE), bias, and correlation. Efficiency, defined as the user interaction
time comparison, was also evaluated. The reproducibility of the Auto method was com-
pared to the inter-and intra-observer segmentation performances. Observer 1 performed
a second analysis designated (O1b)., Observer 2 (O2; A.B., with six years of experience),
performed 20 manual segmentations on the same testing dataset, designated (O2) and blind
to the segmentations from O1.

2.4. Prognosis Value and Association with COVID-19 Lesions

To evaluate the association of EAT volume (EAT) and EAT extent (Ext_EAT) with
COVID-19 lesions for prognosis, we used a cohort subset including 238 patients (Figure 1).
The two developed segmentation tools were put in a row and performed both the EAT
and lung lesion segmentations on the same LDCT. EAT segmentation was conducted
on the mediastinal window, while the lung lesion segmentation was performed on the
lung window. The lung lesion extent (Lesion_Ext, %) measures the percentage of lung
lesions (ground-glass opacities and condensations) in the total lung volume. We studied
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the association between the EAT and lung lesion measures with four clinical outcomes:
death, ICU transfer, need for oxygen therapy, and >10 days of hospitalization.

2.5. Statistical Analysis

The continuous and categorical variables are described by the mean, standard de-
viation (SD), range, and n (%). The Pearson correlation coefficient was used to measure
pairwise linear dependence between lung lesions extent and epicardial adipose tissue
volume. Student’s t-tests were performed to compare the means according to the clinical
outcomes. Associations between the EAT volume or Ext_EAT and lung lesion measures
and a combined clinical outcome (consisting of one or more of death, ICU transfer, need
for oxygen therapy, and >10 days of hospitalization) were estimated using multivariable
logistic regressions with adjustments for gender, age, and comorbidities (hypertension,
diabetes, cancer, chronic respiratory disease, coronary artery disease, and obesity). The
goodness of fit was assessed using the area under the receiver operating characteristic curve
(AUC-ROC, or AUC) to measure the models’ ability to discriminate patients. A two-sided
α value of less than 0.05 was considered statistically significant. The analyses were carried
out using the SAS 9.4 statistical software (SAS Institute, Cary, NC, USA).

3. Results
3.1. Population Characteristics

A total of 353 patients were included; 115 were used to develop and test the EAT
segmentation algorithm. The population characteristics are presented in Table 1. The EAT
and Peri measures of the training and testing datasets were extracted from the manual
O1a segmentations. EAT, Peri, and the COVID-19 lesions of the association dataset were
extracted from the automatic model segmentations. The mean dose-length product (DLP)
was 64.4 (±12.2) mGy cm2. The mean manual segmentation time for the EAT segmentation
was 17.4 (±8.0) min versus <1 min for the automatic EAT segmentation (p < 0.0001).

3.2. EAT Algorithm Performance and Reproducibility

The results concerning the EAT segmentations in terms of the clinical and technical
metrics on the test dataset are presented in Table 2. The mean Dice coefficients for the auto-
matic segmentation of all the pericardial and EAT volumes were 0.93 ± 0.03 and 0.85 ± 0.05,
respectively. For EAT, the median Dice reached 0.87. For the EAT volume measure, the
MAE was 11.7 cm3 ± 8.1 with a non-significant measure bias of −4.0 cm3 ± 13.9 and a
correlation of 0.963 with the manual measures (p < 0.01).

Concerning the algorithm performances in comparison to the inter-and intraobserver
measure reproducibility (Table 2), the mean Dice for the EAT segmentation lesions was
0.85 ± 0.05 for O1a versus Auto, 0.85 ± 0.04 for O1a versus O1b, and 0.86 ± 0.03 for O1a
versus O2. For the EAT measure, the MAE was 11.7 ± 8.1 with insignificant bias, while
measured at 12.0 ± 9.1 for O1a versus O1b and 14.9 ± 11.2 for O1a versus O1b. The
correlations between the automatic and manual Peri and EAT measures are presented in
Figure 3. The Bland-Altman graphics are presented in Appendix C (Figure A1).

3.3. EAT and COVID-19 Association

There was an association (Pearson correlation coefficient: 0.139; p = 0.037) between
Lesion_Ext and EAT volume, as shown in Table 3 (and Appendix C—Figure A2). On the
contrary, there was no statistically significant association between Lesion_Ext and EAT_Ext.
The association between EAT volume and extent and the different related COVID-19 clinical
outcomes, i.e., death, ICU transfer, need for oxygen therapy, and >10 days of hospitalization
is presented in Appendix C (Table A1). EAT volume was significantly superior in patients
with a need for oxygen therapy (125.3cm3 ± 53.9 versus 101.6 cm3 ± 61.9; p = 0.0023) and
ICU admission (143.4cm3 ± 61.0 versus 108.3cm3 ± 57.8; p = 0.0023). There was no statistical
difference in terms of Eat volume and Ext_EAT for hospitalizations of >10 days and death
outcomes. Table 4 shows a significant link between the risk of an unfavorable clinical
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outcome and Ext_EAT (OR = 1.04; AUC = 0.744) and Lesion_Ext (OR = 1.10; AUC = 0.800).
A model combining both the Ext_EAT and Lesion_Ext DL measures increased the model
precision with AUC = 0.805 versus AUC = 0.733 (p = 0.0029) for the model without any DL
measures. Appendix C shows all different models, including EAT volume and Ext_EAT
(Table A2).

Table 1. Population characteristics. SD: standard deviation; BSA: body surface index; Peri: intra-
pericardial volume; EAT: epicardial adipose tissue volume; ICU: intensive care unit; Ext_EAT: epicar-
dial adipose tissue extent (%); Lesion_Ext: COVID-19 lung lesion extent (%).

EAT Segmentation Model Dataset EAT/COVID-19
Prognosis Dataset

Training Dataset
(n = 95)

Testing Dataset
(n = 20) (n = 238)

Gender
Male, n (%) 49 (51.58) 7 (35.00) 143 (60.01)

Age
18–44 years, n (%) 16 (16.80) 4 (20.00) 32 (13.45)
45–64 years, n (%) 47 (49.47) 9 (45.00) 104 (43.70)
>64 years, n (%) 32 (33.68) 7 (35.00) 102 (42.86)

Body mass index (kg/m2), mean (±SD), 25.7 (±4.37) 24.3 (±4.28) 24.1 (±3.87)
Comorbidities
Diabetes, n (%) 75 (78.94) 14 (70.00) 152 (63.4)

Hypertension, n (%) 46 (98.42) 11 (55.00) 97 (40.7)
Underweight, n (%) 0 (0.00) 0 (0.00) 3 (1.26)
Overweight, n (%) 24 (25.26) 7 (35.00) 88 (36.9)

Obesity, n (%) 18 (18.94) 3 (15.00) 47 (19.75)
Dyslipidemia, n (%) 28 (29.47) 6 (30.00) 62 (26.05)

Coronary artery disease, n (%) 11 (11.58) 1 (5.00) 44 (18.49)
Number of comorbidities

None, n (%) 10 (10.52) 2 (10.00) 60 (25.21)
One, n (%) 27 (28.42) 5 (25.00) 80 (33.61)

Two or more, n (%) 58 (61.05) 13 (65.00) 98 (41.17)
Epicardial adipose tissue measures

Peri (cm3), mean (±SD) 680.40 (±198.40) 617.93 (±104.47) 709.71 (±145.12)
Peri/BSA, (cm3/m2), mean 359.78 328.16 365.41

EAT (cm3), mean (±SD) 119.17 (±71.36) 115.47 (±49.12) 112.83 (±59.30)
EAT/BSA (cm3/m2), mean 63.05 61.32 58.83
Ext_EAT (%), mean (±SD) 17.51 (±21.64) 18.68 (±22.14) 15.60 (±6.50)
Delay symptoms—LDCT

Delay <7 days/asymptomatic, n (%) x x 148 (62.18)
Delay ≥7 days, n (%) x x 90 (37.82)

COVID-19 pulmonary lesions
Lesion _Ext (%), mean (± SD) x x 8.88 (±10.83)

Clinical outcomes
Oxygen therapy, n (%) x x 113 (47.48)

Hospitalization >10 days, n (%) x x 46 (19.33)
ICU, n (%) x x 30 (12.61)

Death, n (%) x x 22 (9.24)
Hospitalization >10

days/ICU/death/oxygen therapy, n (%) x x 128 (53.78)
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Table 2. Algorithm performance for technical and clinical metrics and comparison of algorithm
performance and inter-and intraobserver measure reproducibility’s. SD: standard deviation; Peri:
pericardial volume; EAT: epicardial adipose tissue volume; MAE: mean absolute error; Corr.: correla-
tion; O1a: initial segmentations made by Observer 1; O1b: second segmentations made by Observer 1;
O2: segmentation made by Observer 2.

O1a vs. Auto (n = 20) O1a vs. O1b (n = 20) O1a vs. O2 (n = 20)

Technical Metrics

Peri

Mean Dice 0.93 (±0.03) 0.92 (±0.02) 0.93 (±0.02)
Median Dice 0.93 0.92 0.93

EAT

Mean Dice 0.85 (±0.05) 0.85 (±0.04) 0.86 (±0.03)
Median Dice 0.87 0.85 0.86

Clinical Metric: Volume

Peri

MAE (cm3) (mean ± SD) 35.4 (±23.4) 37.2 (±23.2) 40.3 (±22.3)
Bias (cm3) (mean ± SD); p −6.8 (±42.7); p = 0.6 −22.4 (±38.3); p = 0.02 −21.8 (±41.3); p = 0.04

Corr. 0.945 0.945 0.936
EAT

MAE (cm3) (mean ± SD) 11.7 (±8.1) 12.0 (±9.1) 14.9 (±11.2)
Bias (cm3) (mean ± SD); p −4.0 (±13.9); p = 0.18 −6.0 (±14.0); p = 0.06 −12.8 (±13.6); p < 0.01

Corr. 0.963 0.962 0.970

Figure 3. Correlations of EAT and Peri volume measures for the automatic and manual segmentation
of the intra- and interobserver measures. Peri Vol: pericardial volume; EAT Vol: epicardial adipose
tissue volume; O1a: initial segmentations made by Observer 1. O1b: second segmentations made by
Observer 1; O2: Segmentation made by Observer 2. The blue line is the fitted regression line.
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Table 3. Correlation between lung lesions extent and epicardial adipose tissue volume and epicardial
adipose tissue extent (n = 238). EAT: epicardial adipose tissue volume (cm3); Lesion_Ext: COVID-19
lung lesion extent (%); Ext_EAT: epicardial adipose tissue extent (%).

DL_Measures Mean (±SD) Minimum Median Max Pearson Correlation
Coefficient (p-Value)

EAT (cm3) 112.8 ± 59.3 7.5 105.5 312.8
Lesion _Ext (%) 8.9 ± 10.8 0.0 5.0 65.9 0.139 (0.037)

Ext_EAT (%) 15.6 ± 6.5 2.2 15.0 34.6
Lesion _Ext (%) 8.9 ± 10.8 0.0 5.0 65.9 0.043 (0.522)

Table 4. Associations with combined clinical outcome (death, ICU transfer, need for oxygen ther-
apy, >10 days hospitalization)—Multivariable logistic regressions (n = 238). DL: Deep-learning
model; Ext_EAT: epicardial adipose tissue extent (%); Lesion_Ext: COVID-19 lung lesion extent (%);
ICU: intensive care unit; *: test versus “Model no DL”.

Model No DL Model Ext_EAT Model Lesion_Ext Model Ext_EAT +
Lesion_Ext

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Gender (Male vs. Female) 2.92 1.65 5.15 2.96 1.66 5.29 2.35 1.27 4.38 2.33 1.23 4.40
Age 1.04 1.02 1.06 1.04 1.02 1.06 1.03 1.01 1.05 1.03 1.01 1.05

Number of comorbidities (1 vs. 0) 1.51 0.75 3.04 1.73 0.84 3.59 1.39 0.64 3.03 1.62 0.72 3.64
Number of comorbidities (2 vs. 0) 1.22 0.62 2.42 1.18 0.58 2.41 1.26 0.60 2.61 1.28 0.60 2.77

Ext_EAT (%) 1.04 1.00 1.09 1.05 0.99 1.10
Lesion_Ext 1.10 1.05 1.15 1.10 1.05 1.15

Area Under Curve (AUC) 0.733 0.744 (p * = 0.3169) 0.800 (p * = 0.0047) 0.805 (p * = 0.0029).

4. Discussion

The proposed automatic quantification pipeline provided an accurate, fast, and re-
producible segmentation of EAT volume on LDCT. This allows the ability to obtain EAT
volume on a clinical routine, with a non-invasive, accessible method and a low radiation
dose, in less than 20 s.

Different methods have been proposed to develop EAT segmentation. Commandeur et al.
proposed a multi-task CNN approach in which the network would jointly learn to segment
the region inside the pericardium to classify each entry as belonging to epicardial fat,
allowing them to train their model with all CT slices, regardless of the presence of cardiac
tissue [25]. He et al. also used a pair of U-Nets combined sequentially [26,27]: the first U-
Net model aimed at producing an initial segmentation of the region inside the pericardium,
further refined by a morphological processing layer before being combined with the input
image and sent to a second U-Net targeting the final EAT segmentation. Our approach is
more conventional, as we found it more beneficial to distinguish the slice detection task
and the segmentation task using two models instead of one as in [27].

We randomly selected a population from our daily routine activity to extrapolate our
algorithm as much as possible to the general population. Notably, we chose to train our
model on all patient morphotypes to be as representative as possible. Currently, there are
no standard reference values for the measurement of epicardial fat volume or thickness in
the general population and in patients with COVID-19 [13,28]. In addition, the accurate
measurement of EAT volume and its relationship with body mass index (BMI) has not
been fully elucidated [24]. In a recent systematic review and meta-analysis including
more than 3500 patients by Nerlekar et al., the EAT volume was estimated to be about
108.5 cm3 (Min 76.4–Max140.6) in patients undergoing either intracoronary imaging or
CT coronary angiography evaluation, and noninvasive measurement of EAT by either
CT-derived volume or linear thickness [29]. Our results appeared to be lower in terms of
the median value of the EAT volume. However, these patients all had a chronic or recent
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history of coronary artery disease (versus 11.58% in our training cohort) and a mean BMI
of 29.4 kg/m2, which could explain the higher fat volume compared with our results. In
the Heinz Nixdorf Recall study, which included 4093 participants free of cardiovascular
disease from the general population, the mean EAT volume was measured at 85.9 cm3

(Min 61.4–Max120.9) [4,30]. Moreover, due to the anatomical variability of the pericardium
between individuals, it sometimes appeared difficult to specify exactly the superior and
inferior limits of the pericardium, and it can impact EAT volume measure.

Several automatic and semi-automatic software solutions have been proposed in the
past years for EAT segmentation with different performances. Ding et al. proposed an
automated segmentation model built on a geodesic active contours method with good
correlation with manual measures for EAT volume (0.97) [30]. We obtained a similar
correlation for the same measure (0.963), but segmentation time was shorter, less than
20 seconds versus one minute. Militello et al. obtained a higher Dice coefficient score
of 0.93 versus 0.87 in our study for EAT volume [31]. In their study, EAT segmentation
was conducted on cardiac CT with ECG synchronization. We trained our model on LDCT,
with lower resolution and non-ECG synchronization, making it more complex to segment
pericardium layers. We obtained good results on LDCT, which is widely used in clinical
care, especially for COVID-19 examinations. EAT segmentation could be obtained on the
same exam, without adding radiation dose. Commandeur et al. built a CNN model on a
wider and multi-center population, but we obtained similar median Dice of about 0.87 [32].
Bias was non-significant and also similar on the EISNER trial, close to 4 cm3.

Association between visceral ectopic fat depots, EAT in particular, and COVID-19
has been a subject of major interest recently., Many studies did not show any association
between EAT volume with pneumonia lung lesions extent while visceral fat was a marker
of worse clinical outcomes [33]. We found a moderate but significant association between
COVID-19 lesions extent and EAT volume. The hypothesis for this small association could
be that the link between COVID-19 lesions and pericardial fat would mainly contribute to
a local inflammatory effect on the neighboring lungs [34]. We did not study this correlation
because the algorithm allows intrapericardial volume (Peri) and EAT segmentations, but
not pericardial fat segmentation. Furthermore, EAT attenuation more than its amount
could be associated with worse outcomes, as reported by Conte et al. [17]. However, recent
studies have provided conflicting results [35]. The down regulation of ACE2 resulting from
SARS-CoV-2 infection reduces this action due to reduced conversion of Ang II to Ang-(1–7)
by ACE2, suggesting the possibility of EAT-mediated cardiac injury. Interestingly, it was
also shown that diet-induced obesity led to greater ACE2 expression in EAT [36]. This
raises the possibility for EAT in patients with obesity to serve as a hub for viral infections
that could mediate infection of the heart [37]. Furthermore, the capability of EAT to release
exosomes and microRNA that can enter cardiac cells open up numerous mechanisms by
which EAT may contribute to/mediate the entry of the SARS-CoV2 into the heart, causing
direct cardiac effects [38]. Grodecki et al. found a strong association between both measures,
and a link between EAT and COVID-19 adverse outcomes [13,14]. Some of our results
support these findings (Table A1), and EAT volume measurements could be integrated into
the clinical evaluation of COVID-19 patients. The benefit of this algorithm is that it can be
directly used on LDCT performed at the patient admission.

Our study has some limitations. All of the CT images studied were acquired on
the same scanner in one clinical center. The use of different scanners and multicenter
external validation are ongoing to validate the performance of the presented algorithm. The
EAT/COVID-19 prognosis dataset included patients with a lower prevalence of diabetes,
but multivariable analysis included adjustments for potential confounding factors such as
diabetes and obesity. Another limitation in our study was the absence of patients who had a
sternotomy, intracardiac device or a history of cardiac or pulmonary surgery. Although this
represents a moderate part of the general population, we have not yet tested our algorithm
in these different situations.
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5. Conclusions

A complete deep-learning pipeline was developed for the segmentation of the EAT
volume on LDCT acquisition. The automatically obtained radiological EAT volumes were
precise and reproducible. EAT quantification can be obtained as a daily routine to evaluate
cardiovascular and inflammatory risks. This inflammatory substrate is probably the reason
why EAT volume is associated with more COVID-19 adverse outcomes, and further studies
should be carried out to better understand this association.
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Appendix A. LDCT Technical Parameters

Detector collimation: 0.625 mm; field of view: 500 mm; matrix: 512 × 512; pitch: 1.375;
gantry speed: 0.35 seconds; 100–120 KV; 45 mAs; and reconstructed slice thickness: 1.2 mm.

Appendix B

Appendix B.1. High-Resolution Network

Most medical segmentation networks have an encoder-decoder structure in which
the representations produced by the encoder are low-dimensional, enforcing the use of a
decoder to recover a high resolution and, finally, the segmentation prediction. Recently,
Sun et al. proposed a so-called “high-resolution” network (HRNet) that maintains a
high-resolution representation throughout the entire network [39]. They achieved state-of-
the-art results in natural (as opposed to medical) image segmentation tasks, such as with
the Cityscape dataset. Considering that there is a correlation between architectural success
for natural image segmentation and medical image segmentation, we chose to implement
xHRNet as our segmentation network.

Appendix B.2. Object Context Representation

Another active topic in medical image segmentation is related to the representation of
the global and local contexts around the pixels, which is essential to segment them correctly.
Classical CNNs only detect contextual dependencies in a homogenic and nonadaptive
manner, and the very structure of the detected dependencies is limited by the rigidity of
the kernels. Hence, some dependencies at the global image level cannot be detected with
those models, which is problematic in medical image segmentation tasks where anatomical
dependencies exist at all scales.

Approaches to solving this issue can be divided into three categories:
Multi-scale context approaches (e.g., convolutions “with holes” and spatial pyramid

pooling). The contexts at different scales are aggregated by combining the feature maps
generated with different levels of pooling or convolution dilation rates. The advantage
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is that objects are detected on different scales; the disadvantage is that global relations
between objects are again ignored.

“Relation to individuals” approaches that consider the relations between a given
position and the other individual positions of its context.

“Relation to objects” approaches like object-contextual representations (OCR), where
the relation of a position to its context is studied through a representation of each ob-
ject (class).

We opted for the last option and added an OCR module at the end of our HRNet.
Because the class of a pixel is given by the object wherein it lies, the best representation
for its context is at the object scale and not at the pixel scale; experimental results seem to
confirm this OCR.

Appendix C.

Figure A1. The Bland–Altman analysis for the EAT and Peri volumes between the automatic and
manual measurements on the testing dataset. Peri Vol: pericardial volume; EAT Vol: epicardial
adipose tissue volume; O1a: initial segmentations made by Observer 1. O1b: second segmentations
made by Observer 1; O2: segmentation made by Observer 2. In each Bland–Altman plot, the x-axis
denotes the average of the two measurements, and the y-axis is the difference between them. The
blue dashed line denotes the mean difference (bias), and the two orange dashed lines denote ± 1.96
standard deviations from the mean.
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Figure A2. Correlation between COVID-19 lesion extent and EAT volume (n = 238). Lesion_Ext:
COVID-19 lung lesion extent (%); EAT: epicardial adipose tissue volume (cm3).

Table A1. Correlation between epicardial adipose tissue volume and extent and COVID-19 clinical
outcomes (n = 238). EAT: epicardial adipose tissue volume (cm3); ICU: intensive care unit; Ext_EAT:
epicardial adipose tissue extent (%), * Student t-test.

EAT (cm3) Ext_EAT (%)

Criteria Mean (±SD) Minimum Maximum p-Value * Mean (±SD) Minimum Maximum p-Value *

Need for Oxygen Therapy
Yes 125.3 (±53.9) 8.2 275.1 16.7 (±6.7) 3.3 34.5
No 101.6 (±61.9) 7.5 312.8 p = 0.0023 14.6 (±6.2) 2.2 31.0 p = 0.013

Hospitalization >10 days
Yes 116.2 (±52.3) 18.0 221.6 15.2 (±6.8) 3.5 34.0
No 112.1 (±60.9) 7.5 312.8 p = 0.6771 15.7 (±6.4) 2.2 34.0 p = 0.700

ICU admission
Yes 143.4 (±61.0) 16.8 275.1 19.0 (±7.2) 6.1 34.5
No 108.3 (±57.8) 7.5 312.8 p = 0.0023 15.1 (±6.2) 2.2 31.2 p = 0.002

Death
Yes 126.4 (±62.0) 28.8 275.1 16.2 (±7.6) 3.6 34.5
No 111.6 (±59.0) 7.5 312.8 p = 0.2871 15.5 (±6.4) 2.2 33.9 p = 0.677

Table A2. Associations with combined clinical outcome (death, ICU transfer, need for oxygen therapy,
>10 days hospitalization)—Multivariable logistic regressions adjusted on age, gender, and number
of comorbidities (n = 238). DL: Deep-Learning model; EAT: epicardial adipose tissue volume (cm3);
Ext_EAT: epicardial adipose tissue extent (%); Lesion_Ext: COVID-19 lung lesion extent (%).

AUC p *

Model No DL 0.7332 Reference model
Model EAT 0.7309 0.6452

Model Ext_EAT 0.7437 0.3169
Model Lesion_Ext 0.7995 0.0047

Model EAT + Lesion_Ext 0.7991 0.0047
Model Ext_EAT + Lesion_Ext 0.8047 0.0029

*: test versus “No DL” model.
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